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ABSTRACT

Motivation: The modeling of conservation patterns in genomic DNA
has become increasingly popular for a number of bioinformatic
applications. While several systems developed to date incorporate
context-dependence in their substitution models, the impact on
computational complexity and generalization ability of the resulting
higher order models invites the question of whether simpler
approaches to context modeling might permit appreciable reductions
in model complexity and computational cost, without sacrificing
prediction accuracy.
Results: We formulate several alternative methods for context
modeling based on windowed Bayesian networks, and compare their
effects on both accuracy and computational complexity for the task
of discriminating functionally distinct segments in vertebrate DNA.
Our results show that substantial reductions in the complexity of both
the model and the associated inference algorithm can be achieved
without reducing predictive accuracy.
Contact: bmajoros@duke.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
Models of molecular evolution have proven useful in performing
a variety of tasks, including phylogeny reconstruction (Felsenstein,
1981), RNA secondary structure prediction (Gulko and Haussler,
1996), gene finding (Pedersen and Hein, 2003; Siepel and Haussler,
2004a), motif discovery (Moses et al., 2004; Siddharthan et al.,
2005) and others. In the case of DNA analysis, the accurate
modeling of substitution rates can in some cases facilitate effective
discrimination between genomic elements of differing functions by
uncovering the different selective pressures shaping those elements.
These substitution models typically consist of a phylogeny and
one or more matrices describing substitution propensities between
different residues in the genomic sequences of related taxa.

While the phylogeny components of these models control
for the non-independence (due to commonality of descent) of
residues observed at homologous sites in different genomes (i.e.
within individual columns of a multi-species alignment), they
do not take into account possible dependencies between sites
(i.e. between columns), though such dependencies certainly exist
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(Averof et al., 2000; Smith et al., 2003; Whelan and Goldman,
2004). In the case of short-range dependencies (i.e. extending
linearly along a several-nucleotide stretch of DNA), the effect
of such dependencies on substitution rates has been referred
to as context-dependence. Context-dependence in substitution
rates between orthologous sites may conceivably result from a
number of distinct but potentially interacting phenomena, including
context-dependent mutation, context-dependent selection, multiple
compensatory changes at nearby sites, or perhaps other effects. For
the purpose of identifying functional elements in extant genomes,
however, a productive first step is to model only the sum result of
these various causal phenomena.

Practical systems utilizing context-dependent models have been
described previously [Siepel and Haussler, 2004b (SH04); Gross and
Brent, 2005 (GB05)], which specify rates of substitution between
entire n-mers (i.e. oligomers of length n). By utilizing a Markov
assumption (a form of conditional independence), these solutions are
able to decompose the conditional likelihood according to individual
columns in the alignment. As with existing codon models [e.g.
Goldman and Yang, 1994 (GY94)], however, these approaches tend
to be both parameter rich (a potential liability when training data
are limited, due to the possibility of overfitting) and computationally
intensive, with both the number of parameters and the computational
cost growing exponentially with the size of the modeled context (n).
For these reasons, n has often been limited in practice to n< 3.

In this article, we show how a more general decomposition of
the likelihood is possible under an alternative set of conditional
independence assumptions, allowing one to vary the dependency
structure and the number of parameters in the model to better
suit the available data. Our formulation is based on the theory
of Bayesian networks, a well-established probabilistic modeling
framework which is both flexible and theoretically rigorous (Pearl,
1988). Although previous authors have cast the problem in terms
of Bayesian networks (Gross and Brent, 2005) and other graphical
models (Jojic et al., 2004; McAuliffe et al., 2004), our treatment
is more general in that we show how a greater range of network
topologies may be utilized to improve the robustness of the resulting
model and/or improve its computational complexity. We show how
significant reductions in numbers of parameters may be achieved
through the use of sparse dependency graphs and conditional
probability distributions on substitution events. This reduction in
complexity renders the modeling of longer contexts more feasible
than before.
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2 METHODS

2.1 Notation
We denote by A the multiple-sequence alignment which is provided as a fixed
input to our models; A is a 2D matrix in which the rows correspond to taxa
and the columns (or ‘sites’) correspond to homologous nucleotide positions
(or gaps) in the aligned genomes. Although an input alignment will contain
only sequences from extant taxa (denoted L, for ‘leaves’), we may augment
the alignment with additional rows for ancestral species (denoted A); the set
of all taxa to be included in our model is thus T = A∪L. We assume that the
phylogeny P relating these taxa has a known topology, though the branch
lengths β may be unknown; as described later, we will be rooting the tree so
as to place a chosen ‘target’ genome at the root. Note that the definition of L
and A will not be affected by a re-rooting of the tree, so that after re-rooting,
the root of the tree may be an element of A or L.

Given a taxon v∈T , Av
i will denote the character state (i.e. residue)

belonging in the i-th column of the alignment and corresponding to taxon
v; in those cases where v∈A, Av

i is unobservable and must be either
inferred (through maximum likelihood or some other means) or eliminated
via marginalization. We assume 1-based coordinates, so that the columns of
A range from 1 to �, where � is the length of the alignment. Ai will denote
a single column of A, whereas A[i,j] will denote the closed interval [i,j]
consisting of columns {Ai, …,Aj}. Av denotes a single row of the alignment;
Av[i,j] is an interval within that row. If V ⊆T is a set of taxa, then AV denotes
the alignment which results when all other taxa are omitted from A.

Since we consider only DNA substitution in this article, residues in an
alignment will be drawn from the alphabet α = {A,C,G,T}; the additional
symbols ‘-’ (denoting a gap) and ‘.’ (denoting an unaligned position) are
considered separate from α (i.e. they are treated as missing data). A ‘higher
order’ alphabet αn may be derived from α by taking all n-mers over the
base alphabet: αn = {x1,x2, …, xn|xi ∈α, 1� i�n}. Concatenation is denoted
w + x, where w and x may be sequences or individual symbols. A model
θ = (P ,β,ψ) will consist of a phylogeny P , a set of branch lengths β for that
phylogeny and a substitution model ψ .

Given a list of variables V = (v1, …, vm) and a list of values
X = (x1, …, xm), V ∼X will denote the putative assignment v1 = x1,
v2 = x2, …, vm = xm, so that P(V ∼X) denotes the probability of the variables
in V taking their respective values from X. The operator δ(a,b) denotes the
Kronecker delta function, which evaluates to 1 if a = b, and 0 otherwise;
δn(a,b) for strings a and b evaluates to 1 if the first n letters of a and b
match, and 0 otherwise. The operator ∧ denotes logical conjunction.

C(u) will denote the children of u in some tree-structured directed
graphical model (such as a phylogeny or a tree-structured Bayesian network).
Given random variables u and v, and residues x and y, P(v = y|u = x,λ) will
denote the probability that v assumes the value y, given that u assumes the
value x and also conditional on the predicate λ; we may use the abbreviated
notation P(v|u,λ) when y and x are unambiguous (such as when v and u are
associated with specific positions in an alignment). In directed tree models,
the edges are assumed to point away from the root. Edges are denoted u→v
for parent u and child v. When we consider Bayesian networks defined on
a multiple-sequence alignment, an edge uj →vk will correspond to residues
Au

j and Av
k . Alternatively, when each of the variables in a network have been

associated with specific positions in an alignment, we may denote by AV the
residues in A associated with the variables in the set V ; this will permit us
to utilize predicates of the form: V ∼AV . In such situations, we may also use
either of the abbreviations P(V ) or P(AV ) to mean P(V ∼AV ).

The Supplementary Data contain a glossary of terms and several figures
which provide a conceptual overview of our methods (Supplementary Figs
S1, S2 and S3).

2.2 Bayesian networks for substitution modeling
Substitution models, both context-dependent and context-independent, may
be represented via Bayesian networks—probability distributions represented
by weighted, directed acyclic graphs (Friedman, 2004; Heckerman, 1999;

Pearl, 1988). In a Bayesian network, directed edges represent dependencies
between nodes. A key advantage of this formalism is that it readily permits
the exploration of alternative dependency structures exhibiting different
tradeoffs between model complexity and predictive accuracy. In the case of
context-dependent substitution models, this means that one is able to observe
the effect on model fit and overtraining tendencies as edges are added to or
removed from the network; by using, e.g. an appropriately regularized cross-
validation strategy one may thus search for the network with the greatest
predictive accuracy when applied to a particular modeling task.

Formally, we define a Bayesian network as a tuple G = (V , α, E , P) in
which V is a set of vertices or variables taking values from the finite alphabet
α, E ⊆V ×V is a set of directed edges forming an acyclic graph, and P(v|V )
is a conditional probability function defined for each vertex v∈V conditional
on sets of vertices V ⊆V . Each edge u→v in E denotes a dependence
relation between u and v in which the value assumed by variable u is taken to
directly influence the probability of v assuming particular values. Formally,
if ρ(v) = {u|(u→v)∈E} is the set of vertices directly influencing v according
to E , then:

∀
v∈V,x∈α

P
(
v = x |V −σ (v)

) = P
(
v = x |ρ(v)

)
, (1)

where σ (v) is the set consisting of v and all the vertices which v can influence,
either directly or transitively:

u∈σ (v) iff

{
u = v, or
(w→u)∈E and w∈σ (v), for some w.

(2)

Thus, we say that v is conditionally independent of the set V-σ (v)-ρ(v), given
the values of ρ(v). Given the set of conditional independence assumptions
encoded by a Bayesian network, one can utilize Equation (1) to compute the
likelihood that the variables V = (v1, …, vm) of the network will take their
respective values from the list X = (x1, …, xm)∈αm, as follows:

P
(
V ∼X

) =
∏
v∈V

P(
(

v|ρ(v)
)
, (3)

In this case, we say that all the variables are observable, since they have
been assigned putative values. When only a proper subset of variables
W ⊂V are assigned values, the remaining variables U = V −W are termed
unobservables. Denote the unobservables in the network by U = (u1, …, uk).
To evaluate the likelihood of a putative assignment W ∼X to the observables,
we can marginalize by summation over all possible combinations of values
for the unobservables:

P(W ∼X) =
∑

Y∈αk

P
(
W ∼X,U ∼Y

)
, (4)

where P(W ∼X,U ∼Y) is given by Equation (3). When the network is a
tree—in which case ∀v∈V |ρ(v)|�1—the likelihood given by Equation (4)
admits an efficient factorization given by:

∑
y∈α

Lr
(
y
)
P

(
r = y

)
, (5)

for root variable r and recursive function Lu:

Lu
(
x
) =



δ
(
u,x

)
if u is a leaf,∏

v∈C(u)

∑
y∈α

Lv
(
y
)
P

(
v = y|u = x

)
otherwise, (6)

which is precisely Felsenstein’s ‘pruning’algorithm for phylogeny likelihood
on ungapped alignments (Felsenstein, 1981), and is also known as the
sum-product algorithm on trees (Kschischang et al., 2001; Lauritzen and
Spiegelhalter, 1988). This recursion may be efficiently computed via
dynamic programming (Durbin et al., 1998), in which case the time
complexity is O(|α|2|V|), though a temporary matrix of size O(|α||V|) is
also required to store intermediate values. Because we will be considering
enhancements to the formulation of Equation (6), we refer to this base
version as F0.
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Modeling DNA substitution patterns at a single site with a Bayesian
network is simple in the absence of context effects: the network is given by
the known (rooted) phylogeny of the species present in a multiple-sequence
alignment, with individual variables (i.e. vertices) corresponding to taxa in
the phylogeny (of which only the leaves, representing extant species, are
observable). The values of the observables are given by the residues in the
alignment; variables that would normally be observable may be treated as
unobservables when the corresponding position in the alignment contains
a gap (i.e. ‘-’ or ‘.’). Felsenstein’s algorithm gives an efficient means of
computing the likelihood of a single column of the alignment, as given by
Equations (5) and (6). To compute the likelihood of the entire alignment, we
note that the lack of context effects warrants an independence assumption
between columns:

P
(
A

) =
�∏

i=1

P
(
Ai

) =
�∏

i=1

Lr
(
Ar

i

)
P

(
r = Ar

i

)
, (7)

for alignment A of length �; we assume the alignment has been augmented
with empty rows (i.e. all gaps) corresponding to unobserved taxa. We now
have a Bayesian network consisting of � disjoint trees, in which each variable
uj corresponds to the residue at site j in species u (i.e. uj is the variable to
which the residue Au

j is assigned).
Note that in adopting the Bayesian network formulation for context

modeling we follow Siepel and Haussler (2004b) in committing only to
an empirical model of local dependencies in the alignment, rather than
to an underlying process of evolutionary change at the level of individual
generations. Process-based models [e.g. Hwang and Green, 2004 (HG04);
Pedersen and Hein, 2003] are forced to admit that local dependencies
within one generation may give rise over evolutionary time to long-range
dependencies between taxa, and require sampling based methods (such as
Markov chain Monte Carlo—MCMC) to properly capture the resulting long-
range dependencies, due to the exorbitant computational costs which would
otherwise be incurred. Thus, although in evaluating P(v = y|u = x) we make
use of the construction P(t) = eQt often associated with continuous-time
Markov models described by an instantaneous rate matrix Q and branch
length t, we utilize this construction merely for the purposes of parameter
tying—i.e. so that the same Q can be shared across all branches of the
phylogeny.

As stated previously, it is convenient to re-root the phylogeny so that one
of the extant taxa occupies the root; this will generally allow the removal
of a single unobservable from the network (Gross and Brent, 2005), and
is also convenient when the purpose of evolution modeling is to inform
the prediction of functional elements in a single target genome (e.g. gene
finding with a phyloHMM), so that the target genome is the most natural
choice for the root. Re-rooting of the phylogeny is always possible when
using a reversible substitution matrix (Felsenstein, 1981). Our interest will
therefore be the computation of the conditional likelihood P(AV−R|AR), for
R = {r(i)|1� i��} the set of root vertices r(i) in all columns i:

P
(

AV−R
∣∣AR

)
=

�∏
i=1

Lr(i)
(
Ar

i

)
. (8)

Incorporation of context effects into the network involves the addition of
edges connecting trees from different columns—e.g. ui →vj for taxa u and
v, and columns i and j. We will initially require these additional edges to
respect the original phylogeny, so that, e.g. if ui →vj is added to the network
to represent context effects between columns i and j, then either u→v must
be present in the original phylogeny (with u as the parent of v), or u = v;
we will relax this requirement later when we consider models having only
observable contexts. It should be clear that the conditional independence
assumptions imposed by the phylogeny are well-justified (in the absence of
lateral DNA transfer) by evolutionary principles.

Unfortunately, the network when augmented in this way is no longer
a collection of trees, so that it no longer suffices to apply Felsenstein’s
algorithm to each column independently. In the next section, we describe

two solutions to this problem. First, however, we formalize the notion of
a network template. Let Gt = (Vt ,α,Et ,Pt) be a Bayesian network defined
on an abstract alignment with some small number n of columns, and let
A be the full N-column alignment for which we wish to evaluate the
likelihood, n 
 N . Let T be the set of taxa in the phylogeny, and define
Vt = {uz

i |1≤ i≤n, z∈T}. We can use Gt as a template in order to construct
a full Bayesian network G = (V ,α,E ,P) for A, by instantiating the template
once for each column in A. Formally, define V = {vz

i |1≤ i≤N, z∈T}. For
each uz

i →uw
n in Et , and each column j>n in A, add to E an edge vz

j−n+i →vw
j ;

for columns j≤n add only those edges vz
j−n+i →vw

j for which Et has an edge
uz

i →uw
n such that n−i< j. Finally, define P(vz

j |ρ(vz
j )) = Pt(uz

n|ρ(uz
n)) for all

j>n, or P(vz
j |ρ(vz

j )) = Pt(uz
n|ρ(uz

n)∩{uz
i |n−i< j}) for j≤n. We say that the

template Gt is of order n−1. Supplementary Figure S4 illustrates template
instantiation.

2.3 Observable versus unobservable contexts
Given a context-dependent network G = (V ,α,E ,P) instantiated on an
alignment A from some template Gt , we say that contexts in G are fully
observable if, for every edge zi →wj ∈ E such that i = j, the residue Az

i
associated with variable zi is present in the alignment (i.e. it is not a
gap or an unaligned position). Likelihood evaluation for networks with
fully observable contexts can be carried out using a simple extension of
Felsenstein’s algorithm:

Lu
(
x
) =



δ
(
u,x

)
if u is a leaf,∏

v∈C(u)

∑
y∈α

Lv
(
y
)
P

(
v = y|u = x,context(v)

)
otherwise, (9)

where context(v) is the joint event describing the observed context: ρ(v)-
{u}∼Aρ(v)−{u}.

When contexts are not fully observable, Felsenstein’s single-site algorithm
will not suffice, since there will be context variables for which the
value is unknown; Felsenstein’s algorithm marginalizes only over those
unobservables in the current column of the alignment. Although the
general sum–product algorithm can still be applied on the full network
G (Kschischang et al., 2001), in the most general case the dense web
of dependencies in the full network will prevent efficient factorization,
so that summations must be evaluated over all columns simultaneously,
resulting in a time complexity of O(|α|2�|T |) and space requirements on
the order of O(|α|�|T |)—i.e. exponential in the length � of the alignment.
The MCMC approaches of Jensen and Pedersen (2000), Hwang and Green
(2004) and Arndt and Hwa (2005) circumvent this computational difficulty
via sampling.

An alternative solution is to utilize a windowing scheme, in which a fixed-
length window of width n+1, for some small n, is superimposed over each
interval of the alignment, with the computation of the column likelihoods
within the window taking into account only those dependencies falling within
the window. Under such a discipline, we need only perform summations
over the (n+1)-mers inhabiting each taxon within the window (rather than
over the �-mers making up an entire row in the alignment), so that for
reasonable values of n (say, 1≤n≤5) the inference problem is rendered
tractable, though not extremely fast—O(�|α|2n+2|T |). The cost of such an
approach is a willingness to assume that the variables within the sliding
window are conditionally independent of variables outside the window. Such
an assumption is not unreasonable so long as actual context effects do not
extend over distances longer than n columns. Note that while variables close
to the edge of the window will be most severely affected by the conditional
independence assumption, these same variables will be re-evaluated at each
of the other window positions as the window is moved (in 1 bp steps) along
the length of the alignment.As long as n is made sufficiently large to cover the
longest inter-column dependence in the Bayesian network, all dependencies
in the network will contribute to the computation of the likelihood.

Formally, let G = (V ,α,E ,P) be a network instantiated on an alignment
A from an n-th order template Gt—i.e. such that the longest inter-column
dependency spans n+1 columns. Let u→v ∈ P be an edge in the phylogeny
P . Then we can approximate the probability P(Av[i,j]|Au[i,j]) of observing the
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substitution of the (n+1)-mer Au[i,j] in ancestor u by Av[i,j] in descendant v as
follows:

P
(

Av
[i,j]

∣∣∣Au
[i,j]

)
≈

j∏
k=i

P
(
vk

∣∣ρ(
vk

) ∩{
ui, ...,uj

})
, (10)

for vk the variable in V associated with cellAv
k in the alignment. We can then

compute the (conditional) likelihood of an interval [i,j] of the alignment via
Ln

r (Ar[i,j]), for the observable root genome r and a generalized Felsenstein
recurrence Ln

u defined on complete (n+1)-mers x:

Ln
u(x) =



δ
(
u,x

)
if u is a leaf,∏

v∈C(u)

∑
y∈αn+1

Ln
v (y)P

(
v = y|u = x

)
otherwise. (11)

We refer to this version of Felsenstein’s algorithm as FNMER; it permits a
dynamic-programming implementation identical to the one for F0 except for
the use of the higher order alphabet αn+1.

As noted previously (Gross and Brent, 2005; Siepel and Haussler, 2004b),
(n+1)-mer substitution probabilities such as those given by Equation (11) can
be converted into conditional, single-column probabilities via:

P
(

AL−r
k

∣∣∣AL−r
[k−n,k−1] ,A

r
[k−n,k]

)
=

P
(

AL−r
[k−n,k]

∣∣∣Ar
[k−n,k]

)

P
(

AL−r
[k−n,k−1]

∣∣∣Ar
[k−n,k]

) =
Ln

r

(
Ar

[k−n,k]

)


n
r

(
Ar

[k−n,k]

) ,
(12)

for k>n, where 
n
u is a modified version of Ln

u which marginalizes over the
final symbol in the leaf (n+1)-mers:


n
u(x) =



δn

(
u,x

)
if u is a leaf,∏

v∈C(u)

∑
y∈αn+1


n
v

(
y
)
P

(
v = y|u = x

)
otherwise. (13)

The likelihood of the entire alignment may then be estimated by employing
an n-th order Markov assumption (Supplementary Fig. S2 illustrates these
steps):

P
(
AL−r |Ar

)≈P
(

AL−r
1

∣∣Ar
1

) n∏
k=2

P
(

AL−r
k

∣∣∣AL−r
[1,k−1] ,A

r
[1,k]

)

×
�∏

k=n+1
P

(
AL−r

k

∣∣∣AL−r
[k−n,k−1] ,A

r
[k−n,k]

) (14)

Such an assumption can be justified by noting that context-dependence is,
by definition, a local effect. As with Markov chains, conditioning may be
performed on columns to the right (instead of to the left) of the current
column; furthermore, conditioning simultaneously on both left and right
contexts is also possible as long as cycles are not induced in the dependency
structure.

2.4 Joint versus conditional models
By generalizing the Markov assumption of Equation (14) to apply to the
ancestral taxon as well as the descendant, we can decompose the substitution
probability P(v = y|u = x) on (n+1)-mers into a product of conditional
probabilities in which a single-nucleotide substitution is conditioned on a
pair of n-mers (one from the ancestor and one from the descendant):

P
(

Av
[i−n,i]

∣∣∣Au
[i−n,i]

)
=

i∏
m=i−n

P
(

Av
m

∣∣∣Av
[i−n,m−1],Au

[i−n,i]

)

≈
i∏

m=i−n
P

(
Av

m

∣∣∣Av
[i−n,m−1],Au

[i−n,m]

)
,

(15)

where the second line invokes an additional conditional independence
assumption (illustrated in Supplementary Fig. S3). For contexts of length
n we say the substitution is of n-th order.

Table 1. Numbers of parameters required by models of orders 1–5

Order REV REV GTR GTR HKY FEL
+JOINT +JOINT +COND +COND +COND +COND

+INDEP +DUAL +SINGLE +SINGLE +SINGLE

1 120 48 96 24 8 4
2 2016 288 1536 96 32 16
3 32 640 1536 24 576 384 128 64
4 523 000 7680 393 216 1536 512 256
5 8 × 106 36 864 6 × 106 6144 2048 1024

GTR: reversible 4 ×4̇ model (six parameters + equilibrium frequencies) of Tavaré
(1986); REV: general reversible model on n-mers of any size; JOINT: utilizes a single
joint matrix; COND: utilizes a collection of conditional matrices; DUAL: assumes
dual contexts; SINGLE: assumes single contexts; INDEP: assumes multiple changes
in an n-mer are conditionally independent; HKY: Hasegawa et al. (1985) model (two
parameters + equilibrium frequencies); FEL: Felsenstein’s (1981) model (one parameter
+ equilibrium frequencies).

Setting λ = (ui−n, ...,um−1)∼Au[i−n,m−1] ∧(vi−n, ...,vm−1)∼Av[i−n,m−1],
the final term in Equation (15) may be rewritten:

i∏
m=i−n

P
(

Av
m

∣∣∣Av
[i−n,m−1],Au

[i−n,m]

)
=

i∏
m=i−n

P
(
Av

m

∣∣Au
m,λ

)
, (16)

where P(Av
m|Au

m,λ) may be represented by any standard 4 × 4 substitution
matrix (e.g. GTR, HKY, etc.) drawn from a collection of matrices indexed
by Au[i−n,m−1]+Av[i−n,m−1]. We refer to such a collection of matrices as a
conditional substitution model, as compared to the joint substitution model
comprising a single 4n+1 × 4n+1 substitution matrix on entire (n+1)-mers.

Examples of joint substitution models are SH04 and GB05, mentioned
previously, as well as the codon model GY94. To appreciate the reduction in
parameters achieved by employing a conditional substitution model rather
than a joint model, note that in the case of a dual-context (i.e. taking context
from both the immediate taxon and its parent), general reversible model, the
conditional scheme requires only 6 × 42n free parameters (the coefficient 6
arising from the number of parameters in the GTR ‘core’ matrix), as opposed
to (42n+2−4n+1)/2 for the joint model. Table 1 lists the numbers of parameters
required for various model configurations.

Many joint models (e.g. GY94, SH04 and HG04) avoid an explosion
of parameters by assuming conditional independence between substitution
events (denoted + INDEP in the table) within an n-mer—i.e. instantaneous
rate Qx,y = 0 for any two n-mers x and y differing in more than one position.

Conditional substitution models afford much additional convenience due
to their use of standard 4 × 4 nucleotide matrices, particularly in terms
of software re-use and parameter estimation (Supplementary Methods). In
particular, much existing software for modeling of molecular evolution may
be fairly easily modified to model context effects in this way.

2.5 Single versus dual contexts
We now consider several specific network topologies. The reference model
for all of our further descriptions will be the full n-th order model described
above in relation to Equations (11–14), which we call the ‘whole hog’ model
(abbreviated HOG). Under this model, Av

i is assumed to directly depend on
the parent residue in the current column (i) as well as on the residues of the
current taxon v and its parent taxon u in all of the preceding n columns (i.e.
the n-th order Markov assumption applied to a pair of taxa), giving rise to
the following Bayesian network description:

P
(

Av
i

∣∣∣AT −σ (v)
[0,i] ,Av

[0,i−1]

)
= P

(
Av

i

∣∣∣Au
[i−n,i] ,A

v
[i−n,i−1]

)
, (17)

for all v∈T -{r}. Because we take context from two taxa we say that we
are using dual contexts. Due to the use of dual contexts, evaluation of the
window likelihood via FNMER induces a time complexity of O(42n+2|T |) for
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Fig. 1. Some options for context-dependence in substitution models. Vertices
represent variables (residues in an alignment); arrows denote dependencies as
in a Bayesian network. Two taxa are shown—an ancestor and its immediate
descendent. A vertex containing an N represents an unobserved character
state which has been fixed to a single, inferred state. Contexts may also be
taken from the right (data not shown) as long as no cycles are induced.

a single window, since for each branch in the phylogeny we require iteration
over all possible pairs of (n+1)-mers. Thus, for even moderate values of
n, HOG incurs a large computational cost due to the nested summations
resulting from the recursion, and also due to the large number of parameters
(especially in the case of a general reversible matrix: see REV+JOINT in
Table 1). In addition, a dynamic-programming matrix of size O(4n+1|T |) is
required during inference.

Because of the high computational cost of the full HOG model, it
is worthwhile to consider simpler networks in which some subset of
dependencies in the HOG model is omitted. The first alternative model
which we consider occurs under the assumption that the descendant context
is likely to be identical to the ancestral context most of the time and can
therefore be ignored; we call this model ACO (ancestral contexts only—see
Fig. 1). We expect this assumption to hold best in the case of relatively
low substitution rates, or when context dependence is not overly strong.
Since this model utilizes single (rather than dual) contexts, it requires
considerably fewer parameters than HOG (6 × 4n instead of 6 × 42n in the
case of general reversible models), though the inference procedure has the
same time complexity.

ACO can be formally characterized via its Bayesian network description:

P
(

Av
i

∣∣∣AT −σ (v)
[0,i] ,Av

[0,i−1]

)
= P

(
Av

i

∣∣∣Au
[i−n,i]

)
, (18)

for u the parent of v in P . Inference in ACO again uses the generalized
Felsenstein recurrence FNMER, except that the (n+1)-mer substitution term
of Equation (11) is replaced with the one below:

P
(

v = Av
[i−n,i]

∣∣∣u = Au
[i−n,i]

)def=
i∏

m=i−n

P
(

v = Av
m

∣∣∣u = Au
[i−n,m]

)
. (19)

We denote this modified inference procedure FACO. Even though the ACO
model utilizes only a single context, the inference procedure must still sum
over all possible pairs of (n+1)-mers, so that the time complexity is identical
to that of FNMER.

The summation over (n+1)-mers in FACO can be eliminated by assuming
that unobserved contexts are either identical to the root context or similar
enough to it that the root context (which is observable) can be used
in their place—a somewhat stronger assumption than that used in ACO
regarding the low rate of substitution in the context sequence. Under this
assumption, the summation term in FACO may be modified to sum over single
nucleotides rather than (n+1)-mers, resulting in a significant reduction in time
complexity for inference. We refer to the resulting model as TRCO (transitive
root contexts only) and the associated inference algorithm as FTRCO. The
Bayesian network for TRCO is described by:

P
(

Av
i

∣∣∣AT −σ (v)
[0,i] ,Av

[0,i−1]

)
= P

(
Av

i

∣∣∣Ar
[i−n,i−1] ,A

u
i

)
, (20)

for root r. The inference algorithm FTRCO for this model may be derived
directly from Equation (9) since contexts are observable:

Ln
u(x) =



δ
(
u,x

)
if u is a leaf,∏

v∈C(u)

∑
y∈α

Ln
v

(
y
)
P

(
v = y|u = x,λ

)
otherwise, (21)

where λ= (ri−n, …, ri−1)∼Ar[i−n,i−1]. In contrast to Equation (12), only one
invocation of this recursion is necessary to obtain the conditional probability
of a column: Ln

r (Ar
i ).

A further simplification of TRCO is achieved by ignoring contexts
altogether, except in the evaluation of substitutions between the root and
its immediate descendants:

P
(
v = y|u = x,λ

)def=
{

Mn,v
x,y

(
λ
)

if u = r,
M0,v

x,y() otherwise,
(22)

where Mn,v
x,y

(
λ
)

denotes the (x,y) entry of the n-th order substitution matrix

between v and its parent taxon, which is conditional on context λ; M0,v
x,y is

the corresponding entry from the zeroth-order matrix, which has no context.
This model we refer to as RCO (root contexts only).

As a final alternative model, we consider the use of Fitch’s maximum
parsimony algorithm (Fitch, 1971) for reconstruction of ancestral states,
followed by ACO applied to the resulting, augmented alignment. The
resulting model we denote MP (maximum parsimony) and its inference
algorithm FMP:

Ln
u(x) =




1 if u is a leaf,∏
v∈C(u)

Ln
v

(
Av

i

)
P

(
v = Av

i

∣∣u = x,λ
)

otherwise, (23)

for the current column i and context predicate λ= (ui−n, ...,ui−1)∼
Au[i−n,i−1]. Because the ancestral sequences are inferred prior to the
computation of the likelihood, there are no unobservables in the network.
Thus, FMP need not perform any summation, rendering the algorithm
extremely fast. Fitch’s parsimony algorithm is itself very fast, since
asymptotically it has O(|T |) time complexity and most of the operations
are simple memory accesses and bit operations. Like the other alternatives
to HOG considered above, we expect MP to be most useful when substitution
rates are low, so that the ancestral state reconstruction would be most similar
to the actual ancestral states. Note that once the ancestral states have been
reconstructed we may apply any of the foregoing models (e.g. HOG, ACO,
RCO and TRCO) or other conceivable models, though we explicitly consider
only ACO here.

3 RESULTS

3.1 Experiments
We compared both joint and conditional models of various orders
on the task of modeling context-dependent substitution rates at
third codon positions of human protein-coding exons, which are
known to exhibit strong context effects due to the degeneracy
structure of codons in their mapping to amino acids (Percudani,
2001). The conditional models included ACO, RCO, TRCO and MP
models of first order, each with a core GTR matrix for evaluation
of the P(Av

m|Au
m,λ) term. A first-order SH04 model served as an

arbitrary representative of current n-mer-based approaches—i.e.
REV+JOINT+INDEP (reversible, joint and assuming conditional
independence between substitution events within an n-mer). The
effects of different context lengths were investigated by also testing
models of zeroth (GTR) and second (TRCO+GTR) orders. For
all of these we estimated the model parameters from third codon
positions of internal exons; as a null model we re-estimated all
parameters from period-3 positions in introns (choosing one of
three frames arbitrarily). Denoting the resulting foreground and
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background models as θ fg and θbg, respectively, we then evaluated
the discriminative power of each model on a held-out set of coding
exons and introns via the following likelihood ratio rule:

class
(
A

) =



foreground if
P
(
AT −{r}|Ar;θfg

)
P
(
AT −{r}|Ar;θbg

) >1

background otherwise
.

Under a uniform prior, such a rule is equivalent to a Bayes’classifier;
we therefore included equal numbers of positive and negative test
cases in each test set. Note that such a classifier is far simpler than
a full parsing model such as a ‘PhyloHMM’ (Siepel and Haussler,
2004a); indeed, each of the substitution models we consider may
be utilized in one or more individual states within a full-blown
PhyloHMM, though in this work we focus only on the substitution
models. Results were averaged via 5-fold cross-validation. Receiver
operating characteristics (ROC) curves were also obtained; the area
under the ROC curve (AUC) for each model was also computed,
to allow comparison of classification accuracy at varying levels of
sensitivity.

Genomic features were taken from random genes in the ENCODE
regions (ENCODE Project Consortium, 2004); gene annotations
were taken from the October 2005 set of VEGA ‘known genes’
(Harrow et al., 2006). Elements from a single gene were included
either in the training partition or the test partition, but not both.
MAVID (Bray and Pachter, 2004) alignments of human (hg17),
mouse (mm5), rat (rn3), dog (canFam1) and chicken (galGal2) were
used, with human selected as the target (root) genome. Each training
set in the 5-fold cross-validation consisted of 200 elements of each
type, totaling 329 kbp of human sequence on average, or roughly
1.6 Mb on average across five species.

Phylogenies were constructed via a two-step process: first, we
inferred tree topologies from training sets via neighbor-joining
(NJ— Saitou and Nei, 1987); given the fixed branching patterns
produced by NJ, branch lengths were then estimated simultaneously
with all other model parameters via maximum likelihood estimation
(MLE) using quasi-Newton methods; identical meta-parameters
(i.e. step-sizes and convergence thresholds) were used for all runs
to ensure equal treatment of all model classes (Supplementary
Methods). Computations were performed on a cluster of 80 Xeon
processors running at 2.8 GHz.

Columns in the alignment for which a gap was present in the
target sequence were deleted, as in Siepel and Haussler (2004b).
Gaps in non-target genomes were treated as ‘missing information’,
as in Whelan and Goldman (2004), by summing over all possible
nucleotide states for those missing variables; better modeling of
gaps is a current topic of research, but is not addressed by the
present work.

A further set of cross-validation runs was performed on the
ENCODE data to assess the effect of different types of core matrices
within conditional models.

In order to verify that context dependence could be detected
and exploited by our models in at least one other type of genomic
element, we also applied our TRCO+GTR model at several orders
(0–3) and SH04 at first order to the task of discriminating between
experimentally validated regulatory elements (positive class) and
ancestral repeats (negative class). The latter dataset included 1268
positive and 1268 negative examples from human (hg18), rhesus
macaque (rheMac2), chimpanzee (panTro1), cow (bosTau2), dog
(canFam2), mouse (mm8) and rat (rn4), totaling 1.1 Mb of sequence

Table 2. Summary of 5-fold cross-validation results for ENCODE data

Model n Accur (%) SD AUC # parms LLexon LLintron Ttrain Tcol

GTR 0 74.8 2.6 .895 13 −11 486 −85 890 3.0 1.2 × 10−5

SH04 1 77.4 2.4 .918 55 −11 392 −85 550 384 2.1 × 10−4

TRCO+GTR 1 77.8 3.9 .924 31 −11 352 −85 735 10 1.3 × 10−5

ACO+GTR 1 77.3 3.9 .920 31 −11 354 −85 726 382 6.2 × 10−4

RCO+GTR 1 74.9 3.2 .902 31 −11 463 −85 753 26 1.9 × 10−5

MP+GTR 1 74.5 2.1 .859 31 −12 520 −112 213 7 1.4 × 10−5

TRCO+GTR 2 81.2 4.2 .945 103 −11 182 −85 671 180 1.7 × 10−5

n : length of context (not including the current column); Accur: mean classification
accuracy (percentage correctly classified test cases); SD: standard deviation of accuracy;
AUC: area under ROC curve; #parms: number of parameters (including branch lengths);
LLexon: mean log-likelihood of training exons; LLintron: mean log-likelihood of
training introns; Ttrain: mean training time, in CPU-hours (elapsed time × number
of CPUs); Tcol: mean time (seconds) required to evaluate a single column in test
alignments.

Fig. 2. ROC curves for TRCO+GTR (orders 0–2) and SH04 (first order)
on ENCODE data. y-axis: sensitivity; x-axis: false-positive rate. n: order of
model.

from the positive class and 1.0 Mb from the negative class;
sequences were downloaded from the UCSC browser (Kent et al.,
2002) using coordinates obtained from the recent study by Taylor
et al. (2006).

3.2 Cross-validation results
Results on the ENCODE data are summarized in Table 2 (see also
Supplementary Figs S5 and S6) and Figure 2. Among the first-order
conditional models, TRCO+GTR produced the highest classification
accuracy (77.8%), fully matching the accuracy of the n-mer model
SH04 (77.4%), despite having many fewer parameters (31 versus 55)
and requiring roughly one-fortieth the computational effort during
training (10 CPU-hours versus 384 CPU-hours) as compared to the
n-mer model. The only model to require less training time than
TRCO+GTR was MP+GTR, which required 7 h rather than 10,
but produced a substantially lower classification accuracy (74.5%).
Conversely, ACO+GTR was found to produce nearly the same
accuracy as TRCO+GTR (77.3%) but required nearly as much time
as the n-mer model for training (382 CPU-hours). Thus, among first-
order models, TRCO was found to present the best tradeoff between
model complexity and discriminative power.
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Table 3. Effect of core matrix type on accuracy of conditional model
(TRCO) in 5-fold cross-validation experiments

Model acc(0) (%) acc(1) (%) �0,1 (%) parms(0) parms(1) Y ↔ R EQ

JC 67.8 68.3 0.5 1 4 no no
FEL 69.1 69.5 0.4 1 4 no yes
K2P 73.6 74.9 1.3 2 8 yes no
HKY 73.8 76.5 2.7 2 8 yes yes
GTR 74.8 77.8 3.0 6 24 yes yes

JC: Jukes and Cantor’s (1969) model; K2P: Kimura’s (1980) 2-parameter model; acc(n):
classification accuracy for n-th order model; �0,1: acc(1)-acc(0); parms(n): number
of free parameters (excluding equilibrium frequencies) in n-th order matrix; Y ↔ R:
whether transition and transversion rates can be separately parameterized; EQ: whether
non-uniform equilibrium frequences can be modeled.

Table 4. Classification accuracy on mammalian promoter dataset

Model n parms acc MC acc+MC Time

GTR 0 17 72.9 81.0 86.0 6.6
TRCO+GTR 1 35 74.9 82.9 86.2 25.3
TRCO+GTR 2 107 76.2 85.8 88.3 161.3
TRCO+GTR 3 395 76.1 84.8 87.0 3910
SH04 1 59 68.6 82.9 84.7 1146

n: order of substitution model; parms: number of free parameters (excluding equilibrium
frequencies); acc: classification accuracy of substitution model alone; acc+MC:
classification accuracy of combined substitution model and n-th order Markov chain
applied to root taxon; MC: classification accuracy of Markov chain alone; time: training
time in CPU-hours.

Clear differences in prediction accuracy were seen when
comparing models of orders 0–2. The accuracy of the zeroth-order
GTR model (74.8%) was substantially less than that of the best first-
order model (TRCO+GTR) (77.8%), which was in turn substantially
less than that of the second-order TRCO+GTR model (81.2%).
These differences are starkly apparent in the ROC curves (Fig. 2), in
which it can be seen that while the three orders are clearly separable
by their ROC curves, the first-order curves for TRCO+GTR and
SH04 are nearly inseparable. Thus, while these experiments had
sufficient resolution to clearly separate models of different orders, no
substantial difference could be detected between the NMER-based
model and our conditional model.

Table 3 shows the effect of utilizing different core matrices within
a zeroth- or first-order TRCO model. Results indicate that all five
core matrices benefitted from the use of context, with the gain in
accuracy generally being greater for the more complex models.
Thus, the use of more complex core matrices does not obviate
the need for context modeling. Conversely, context modeling did
not eliminate the need for either explicit transition–transversion
modeling (as in models K2P, HKY and GTR) or the specification of
non-uniform equilibrium frequencies (as in FEL, HKY and GTR).

Table 4 summarizes the results on the mammalian promoter
dataset. Classification accuracy of the substitution model and a
Markov chain applied to the root taxon (both singly and in
combination) generally increased with increasing model order n.
However, by third order there was no improvement in accuracy for
the substitution model, and the Markov chain appeared to suffer
from over-training. The first-order SH04 model performed less well

than TRCO, even after the addition of the Markov chain; additional
experiments utilizing an independently trained SH04 model are
provided in the Supplementary Data.

4 DISCUSSION
Context-dependent models based on substitutions of full n-mers,
such as the various codon models derived from GY94 and the
more general models SH04 and GB05, are computationally very
expensive. Within the realm of purely phylogenetic applications,
the GY94 model for triplet substitutions has seen relatively little
use over the years, compared to single-nucleotide models of coding
regions, due presumably to its high computational cost (Schadt and
Lange, 2002; Shapiro et al., 2006; Whelan and Goldman, 2004).

Like the GY94 model, the more general SH04 model for
n-mer substitutions employs a rate matrix in which simultaneous
substitutions at multiple positions within an n-mer are not permitted.
Although this constraint is to some degree relaxed when Q is
compounded via P(t) = eQt , evaluation of joint probabilities for
compound substitution events within an n-mer effectively treats
these as conditionally independent events. Thus, while GY94 and
SH04 both incur a high computational cost due to their use of
dual contexts, even these models do not capture the full range of
conceivable context-dependence over short distances—in particular,
they are unable to fully utilize the information available in those dual
contexts so as to capture effects such as compensatory changes at
neighboring sites.

In contrast, for nongapped sequences the GB05 model is able
to capture all possible context effects of a particular order, but
requires significantly more parameters than even SH04, since
separate matrices must be trained for each branch in the phylogeny.
Reduction in numbers of parameters for n-mer-based models has
been attempted by assuming strand symmetry (Jojic et al., 2004;
Siepel and Haussler, 2004b); however, this is not an ideal assumption
when modeling functional elements in DNA, since many such
elements are not believed to be strand symmetric.

There has therefore remained a need for more practical context-
dependent substitution models. While several recent studies have
cast the problem in terms of graphical probability models, these
have either ignored context-dependence (McAuliffe et al., 2004),
considered only dual contexts (Gross and Brent, 2005), or considered
only unobservable contexts (Jojic et al., 2004). Our investigation
into the use of alternate dependency networks for single-nucleotide
substitutions suggests that in the absence of rapid compensatory
changes, context-dependent substitution modeling can be achieved
with far fewer parameters and substantially lower computational
costs while still permitting accurate discrimination between genomic
elements under different selective pressures. Since the complexities
of our single-context models are reduced at all orders compared to
existing, n-mer-based models, the use of contexts of greater length
than has been previously considered is now rendered feasible.

Within a Bayesian network framework, a potentially large number
of different models may be considered, corresponding to the large
number of possible networks for context-dependent nucleotide
substitution. Although we have considered only a few possible
networks, other topologies may prove useful, either generally or
for specific modeling tasks; selection of optimal topologies for a
given application via automated means is one interesting option for
future investigation (e.g. Heckerman, 1999). The special case of
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observable contexts should be especially useful when combining
large phylogenies and long contexts, in which the computational
savings would be substantial.

Conditional substitution models potentially offer several
additional advantages which we have not explored in this work;
we briefly list a few of these. In the case of conditional models
with fully observable contexts, an interpolation scheme such as
those commonly used for variable-order Markov chains (Ohler et al.,
1999; Salzberg et al., 1998) can be applied to mitigate the effects of
sampling error for rare contexts. A conditional substitution model
could, in principle, be conditioned on other random variables besides
individual nucleotide identities—for example, one could condition
on the local GC density computed over arbitrary window sizes
(effectively capturing a much larger context but at a courser level),
or on other intrinsic or extrinsic features of the DNA local to a
given site (e.g. observed or predicted structural or chromatin-state
features, etc.). The n-mer-based models could conceivably be so-
conditioned as well, resulting in hybrid joint/conditional models;
the latter may be particularly useful in capturing compensatory
substitutions at adjacent sites while also conditioning on single-
sequence (i.e. nondual) contexts at sites further away. Our simple
conditional models may be especially useful in combination with
indel (insertion/deletion) models, in which case an insertion or
deletion within an n-mer would confuse an n-mer-based substitution
model by introducing frameshifts between parent and child n-
mers. Yet another possible avenue for future research is the use of
degenerate alphabets to allow longer context modeling with fewer
parameters—e.g. using the purine/pyrimidine alphabet {Y,R} for
some or all of the context positions instead of the full {A,C,G,T},
similarly to the approach described by Taylor et al. (2006).
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