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ABSTRACT

Motivation: Gene expression class comparison studies may identify
hundreds or thousands of genes as differentially expressed (DE)
between sample groups. Gaining biological insight from the result of
such experiments can be approached, for instance, by identifying the
signaling pathways impacted by the observed changes. Most of the
existing pathway analysis methods focus on either the number of DE
genes observed in a given pathway (enrichment analysis methods),
or on the correlation between the pathway genes and the class of the
samples (functional class scoring methods). Both approaches treat
the pathways as simple sets of genes, disregarding the complex gene
interactions that these pathways are built to describe.
Results: We describe a novel signaling pathway impact analysis
(SPIA) that combines the evidence obtained from the classical
enrichment analysis with a novel type of evidence, which measures
the actual perturbation on a given pathway under a given condition.
A bootstrap procedure is used to assess the significance of the
observed total pathway perturbation. Using simulations we show
that the evidence derived from perturbations is independent of the
pathway enrichment evidence. This allows us to calculate a global
pathway significance P-value, which combines the enrichment and
perturbation P-values. We illustrate the capabilities of the novel
method on four real datasets. The results obtained on these data
show that SPIA has better specificity and more sensitivity than
several widely used pathway analysis methods.
Availability: SPIA was implemented as an R package available at
http://vortex.cs.wayne.edu/ontoexpress/
Contact: sorin@wayne.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
The typical result of a microarray experiment comparing two groups
of samples (e.g. normal and diseased) is a list of differentially
expressed (DE) genes together with their estimated expression
changes between the groups. Translating such results into a better
understanding of the underlying biological phenomenon is key to
translating the now abundant high-throughput expression data into
biological knowledge. An automated approach to map the list of
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DE genes onto Gene Ontology (GO) terms is the most widely
used attempt at this (Drăghici et al., 2003; Khatri and Draghici,
2005; Khatri et al., 2002). More recently, biological annotations
have started to include descriptions of gene interactions in the
form of gene signaling networks, such as KEGG (Ogata et al.,
1999), BioCarta (www.biocarta.com) and Reactome (Joshi-Tope
et al., 2005). This richer type of annotations have opened the
possibility of an automatic analysis aimed to identify the gene
signaling networks that are relevant in a given condition, and perhaps
even the specific signals or signal perturbations involved. This
analysis is usually referred to as a pathway analysis. A PubMed
search for ‘microarrays and pathway analysis’ returned more than
1800 results, illustrating the numerous attempts to use and develop
such techniques. Currently, the pathway analysis with microarray
data is primarily performed using the classical approaches inherited
from the ontological profiling: over-representation analysis (ORA)
(Drăghici et al., 2003; Khatri et al., 2002) and functional class
scoring (FCS) (Goeman et al., 2004; Mootha et al., 2003; Pavlidis
et al., 2004; Subramanian et al., 2005; Tian et al., 2005). However,
both ORA and FCS techniques are limited by the fact that each
functional category is analyzed independently without a unifying
analysis at a pathway or system level (Tian et al., 2005). This
approach is not well suited for a systems biology approach that
aims to account for system-level dependencies and interactions, as
well as identify perturbations and modifications at the pathway or
organism level (Stelling, 2004).

Most of the approaches currently available for the analysis of
gene signaling networks share a number of important limitations.
First, these approaches consider only the set of genes on any given
pathway and ignore their position in those pathways. This may
be unsatisfactory from a biological point of view. If a pathway
is triggered by a single gene product or activated through a
single receptor and if that particular protein is not produced, the
pathway will be greatly impacted, probably completely shut off.
A good example is the insulin pathway (www.genome.ac.jp/KEGG/
pathway/hsa/hsa04910.html). If the insulin receptor (INSR) is not
present, the entire pathway is shut off. Conversely, if several
genes are involved in a pathway but they only appear somewhere
downstream, changes in their expression levels may not affect
the given pathway as much. Second, some genes have multiple
functions and are involved in several pathways but with different
roles. For instance, the above INSR is also involved in the adherens
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junction pathway as one of the many receptor protein tyrosine
kinases. However, if the expression of INSR changes, this pathway is
not likely to be heavily perturbed because INSR is just one of many
receptors on this pathway. All these aspects are not considered by
any of the existing approaches aiming at assessing the impact of
a condition on a given signaling pathway. There is a very recent
technique (Efroni et al., 2007), however, which takes into account
some topological information but this technique aims at phenotype
prediction rather than the assessment of given condition which is our
primary goal here. Third, and probably the most important current
limitation is that the knowledge embedded in these pathways about
how various genes interact with each other is largely unexploited.
The very purpose of these pathway diagrams is to capture our current
knowledge of how genes interact and regulate each other on various
pathways. However, the existing analysis approaches consider only
the sets of genes involved on these pathways, without taking into
consideration their topology. Our understanding of various pathways
is expected to improve as more data are gathered. Pathways will be
modified by adding, removing or redirecting links on the pathway
diagrams. Most existing techniques are completely unable to even
sense such changes. Thus, these techniques will provide identical
results as long as the pathway diagram involves the same genes, even
if the interactions between them are completely redefined over time.
Finally, until now, the expression changes measured in these high-
throughput experiments have been used only to identify pathways
with unexpectedly high number of DE genes (ORA approaches)
or pathways whose genes are clustered in the ranked list of DE
genes (FCS methods), but not to directly estimate the impact of such
changes on specific pathways. This is also an important limitation.
For instance, ORA techniques will see no difference between a
situation in which a subset of genes is DE just above the detection
threshold (e.g. 2-fold) and the situation in which the same genes are
changing by many orders of magnitude (e.g. 100-fold). Similarly,
FCS techniques can provide the same rankings for entire ranges
of expression values, if the correlations between the genes and
the phenotypes remain similar. Even though analyzing this type of
information in a pathway and system context would be extremely
meaningful from a biological perspective, currently there is no
technique or tool able to do this.

This article describes a radically different approach that attempts
to capture all aspects above. A global probability value, PG, is
calculated for each pathway, incorporating parameters, such as
the log fold-change of the DE genes, the statistical significance
of the set of pathway genes and the topology of the signaling
pathway. We recently proposed a technique that combines the
pathway topology with the over-representation evidence with very
good results (Draghici et al., 2007). However, in this analysis, the
evidence measure captured from the pathway topology was not
completely independent from the over-representation evidence. In
turn, this made the statistic used to rank the pathways more sensitive
to noise in the expression data putting too much emphasis on the
magnitude of changes. Also, the false positive rates of this method
was higher than expected by chance for short lists of DE genes. The
approach described here remedies these weaknesses, while retaining
the very novel capability of incorporating the pathway topology.
The capabilities of the proposed impact analysis are illustrated on
a number of real datasets and simulations. We also show that in
this technique, the two types of evidence considered are indeed
completely independent.

2 SYSTEM AND METHODS
The impact analysis combines two types of evidence: (i) the over-
representation of DE genes in a given pathway and (ii) the abnormal
perturbation of that pathway, as measured by propagating measured
expression changes across the pathway topology. These two aspects are
captured by two independent probability values, PNDE and PPERT .

The first probability, PNDE =P(X ≥Nde |H0), captures the significance of
the given pathway Pi as provided by an over-representation analysis of the
number of DE genes (NDE ) observed on the pathway. In the equation above,
H0 stands for the null hypothesis, that the genes that appear as DE on a given
pathway are completely random. From a biological perspective this would
mean that the pathway is not relevant to the condition under study. The PNDE

value represents the probability of obtaining a number of DE genes on the
given pathway at least as large as the observed one, NDE. These PNDE values
were obtained assuming that NDE (the number of DE genes on the pathway
analyzed) follows a hypergeometric distribution with three parameters: m—
the number of all pathway genes present on the array, n—the number of
genes on the array not belonging to the pathway, k—total number of DE
genes. Any of the existing ORA or FCS approaches can be used to calculate
PNDE , as long as this probability remains independent of the magnitudes of
the fold-changes.

The second probability, PPERT , is calculated based on the amount of
perturbation measured in each pathway. We define a gene perturbation
factor as:

PF(gi)=�E(gi)+
n∑

j=1

βij · PF(gj)

Nds(gj)
(1)

In Equation (1), the term �E(gi) represents the signed normalized measured
expression change of the gene gi (log fold-change if two conditions are
compared). The second term in Equation (1) is the sum of perturbation factors
of the genes gj directly upstream of the target gene gi, normalized by the
number of downstream genes of each such gene Nds(gj). The absolute value
of βij quantifies the strength of the interaction between genes gj and gi.
These weights have been introduced in order to allow the model to capture
the properties of various types of relationships. The results presented in this
article are obtained using all |β|=1 in order to minimize the number of model
parameters. The sign of β reflects the type of interaction: +1 for induction
(activation), −1 for repression and inhibition, as described by each pathway.
Note that β will have non-zero value only for the genes that directly interact
with the gene gi according to the pathway description. The work described
here used human signaling pathways from KEGG (Ogata et al., 1999). These
pathways contain nodes, representing genes/proteins, and directed edges,
representing gene signals or interactions such as activation or repression.
Given an edge directed from gene/protein A to gene/protein B, we say A is
upstream of B, or B is downstream of A.

Equation (1) essentially describes the perturbation factor PF for a gene
gi as a linear function of the perturbation factors of all genes in a given
pathway. In the stable state of the system, all relationships must hold, so the
set of all equations defining the impact factors for all genes form a system
of simultaneous equations whose solution will provide the values for the
gene perturbation factors PFgi (details are provided in the Supplementary
Material). Subsequently, we calculate the net perturbation accumulation at
the level of each gene, Accg, as the difference between the perturbation factor
PF of a gene and its observed log fold-change:

Acc(gi)=PF(gi)−�E(gi) (2)

This subtraction is needed to ensure that DE genes not connected with any
other genes will not contribute to the second type of evidence since such
genes are already taken into consideration in the ORA and captured by PNDE .
In can be shown (see Supplementary Material) that the vector of perturbation
accumulations Acc can be obtained using the matrix equation:

Acc=B ·(I −B
)−1 ·�E (3)
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where B represents the normalized weighted directed adjacency matrix of
the graph describing the gene signaling network:

B=




β11
Nds(g1)

β12
Nds(g2)

··· β1n
Nds(gn )

β21
Nds(g1)

β22
Nds(g2)

··· β2n
Nds(gn )

··· ··· ··· ···
βn1

Nds(g1)

βn2
Nds(g2)

··· βnn
Nds(gn )




(4)

I is the identity matrix, and

�E =




�E(g1)
�E(g2)

···
�E(gn)


 (5)

Only the pathways with non-null determinant of I −B matrix were
considered for analysis, even though simple, yet reasonable, transformations
of B can be performed to avoid such singularities. Out of the 64 human gene
signaling pathways available in KEGG, the majority (52 pathways) satisfy
this requirement without any other transformations. The situations in which
pathways yield a singular matrix and how these situations can be addressed
will be described elsewhere. The total net accumulated perturbation in the
pathway is computed as tA =∑

i Acc(gi). The second probability, PPERT , will
be the probability to observe a total accumulated perturbation of the pathway,
TA, more extreme than tA just by chance:

PPERT =P(TA ≥ tA |H0) (6)

This probability can be calculated using a bootstrap approach. In this
procedure, the same number of DE genes as the one observed on the pathway
are allowed to occupy any position in the pathway (random gene IDs) and
have any possible log fold-change in the range of those considered by the
experimenter to be DE. This allows empirical determination of the null
distribution of TA values (details of the bootstrap procedure are given in
the Supplementary Materials). Figure 1 illustrates the computation of PPERT

for a simple 6 gene pathway containing two DE genes. Unlike the classical
over-representation approach, the perturbation evidence is shown to be able

Fig. 1. Capturing the topology of the pathways and the position of the gene
through the perturbation analysis. The figure shows a six-gene pathway with
two DE genes (shown in gray) in two different situations. One of the two DE
genes is in common (gene B) while the second gene is either a leaf node (a), or
the entry point in the pathway (b). In (a), gene (F) cannot perturb the activity
of other genes; in (b) gene (A) has the ability to influence the activity of all
the remaining genes in the pathway, as the topology of the pathway indicates.
An ORA would find the two situations equally (in)significant (PNDE =0.48
for a set of 20 monitored genes, out of which five are found to be DE). The
perturbation evidence extracted by SPIA will give more significance to the
situation in (b) (PPERT =0.24), even though fold-changes in (b) are almost
twice as small as those in (a) (PPERT =0.57).

to capture the importance of the position of the DE genes in the pathway as
well as their fold-changes.

The two types of evidence, PNDE and PPERT , are finally combined into
one global probability value, PG, that is used to rank the pathways and test
the research hypothesis that the pathway is significantly perturbed in the
condition under the study. When the null hypothesis is true, the probability
of observing a pair of P-values whose product is at least as extreme (low)
as the one observed for a given pathway i, ci =PNDE (i)·PPERT (i), can be
shown to be (see Supplementary Materials):

PG =ci −ci ·ln(ci) (7)

Both components combined within PG, PNDE and PPERT , are independent
of the size of the pathways. PNDE is the probability of observing the given
number of DE genes or higher, just by chance. The number of genes expected
by chance will increase with the size of the pathway, much like the number
of black balls extracted from an urn containing black and white balls will
increase with the number of balls extracted in a given trial. Hence, PNDE will
be independent of the size of the pathway, much like the hypergeometric
probability of extracting a given number of black balls from the urn will
automatically take into consideration the number of balls extracted in that
particular trial. The second component, PPERT is calculated in a bootstrapping
process in which both the pathway and the number of DE genes per pathway
are fixed. PPERT will become significant only if the observed fold-changes in
the observed pathway nodes yield a significantly different impact compared
with what is observed on the same pathway when the same number of fake DE
genes are thrown in random locations throughout the same pathway. Again,
this bootstrap is calculated for each pathway and hence will be independent
of the pathway size.

Since PG is a combined probability value, it can be used not only to rank
the pathways, but also to choose a desired level of type I error. When several
tens of pathways are tested simultaneously, as is the case throughout this
study, small PG values can occur also by chance. Therefore, we suggest
controlling the false discovery rate (FDR) of the pathway analysis at 5% by
applying the popular FDR algorithm (Benjamini and Yekutieli, 2001).

3 RESULTS AND DISCUSSION

3.1 Absence of false positives under the null hypothesis
From the specificity perspective, an ideal pathway analysis method
should not find any significant pathway when a set of randomly
selected genes from the reference array are assigned random log
fold-changes, regardless of what type of distribution they are
drawn from. However, even if the data are completely random
(i.e. the null hypothesis is true), any statistical test will reject the
null hypothesis for a number of cases directly controlled by the
significance threshold, α. It is important, however, to verify that
a proposed test does not provide any false positives beyond this
expected proportion. In order to verify that signaling pathway impact
analysis (SPIA) does not provide a number of false positives above
the significance threshold, we performed a number of simulations
of the null hypothesis that can be divided into three scenarios.
A reasonable scenario in which one should not find significant
pathways is when the DE genes have random normal log fold-
changes, and the genes are selected at random. In this setup (further
referred to as scenario I), we select Nde random genes as DE from
a reference array of size 20 000. The reference array includes all
genes from all 52 pathways analyzed. The genes were assigned log
fold-changes from a random normal distribution, N(0,1). This is
illustrated in top left panel of Figure 2. An alternative model for the
null hypothesis is an experiment in which one compares two groups
of samples among which there are no real biological differences.
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Fig. 2. Distribution of P-values under three null distribution scenarios for
the hypergeometric and SPIA models. Nde =300 gene IDs were selected at
random out of 20 000 possible IDs containing all genes on all 52 pathways
analyzed. The randomly selected gene IDs were assigned log fold-changes
from (i) a random normal distribution N(0,1); (ii) a bimodal distribution
obtained by sampling from the tails of a N(0,1) distribution; and (iii) random
normal N(3,0.5). For each scenario, the experiment was repeated 200 times
and PNDE , PPERT and PG were computed for all pathways receiving at least
one DE gene. The resulting P-values for all pathways and all iterations were
pooled together and shown as histograms for ORA (PNDE ) and SPIA (PG)
on rows 2 and 3, respectively. The false positives rates for SPIA at α=5%
were 4.7%, 5.0% and 4.6%, in scenarios I, II and III, respectively. For ORA,
the same positive rates were 4.5% in all three scenarios. False positive rates
as an average over these three scenarios are provided in Table 1 for several
values of Nde.

However, due to various reasons, such as improper normalization or
array batch effects problems, the values measured for various genes
will be different. Thus, one can always falsely identify some genes
as DE [using for instance a fold-change selection method (Drăghici,
2002)]. In this case, the distribution of the log fold-changes will be
bimodal (scenario II). This is illustrated in the top center panel of
Figure 2. In this second scenario, log fold-changes are still drawn
from a random normal distribution, N(0,1) but they are restricted
to be at least one SD away from the mean. Another particularly
interesting situation is when all DE genes log fold-changes are either
positive or negative (all genes are up-regulated or down-regulated).
This situation is illustrated in the top right panel of Figure 2. In this
case the log fold-changes of the so called DE genes may have a
unimodal distribution but they will be all far from 0 and share the
same sign, e.g. a random normal distribution with mean 3 and SD
of 0.5 (scenario III). It should be noted that, from this perspective,
the main limitation of the classical hypergeometric analysis turns
into an advantage: since the hypergeometric enrichment analysis
does not take into consideration either the specific fold-changes, nor
the pathway topology, it will not be susceptible to false positives
due to such causes as described above. Indeed, this is illustrated
in the middle panel of Figure 2 which shows that the distribution
of the hypergeometric P-value is essentially uniform in all three

Table 1. The false positive rates and the correlation coefficients between
PPERT and PNDE , as a function of the number of DE genes analyzed averaged
over the three scenarios depicted in Figure 2

Nde FP(ORA) FP(SPIA) R2

100 0.072 0.068 0.0022
300 0.045 0.048 0.0028
500 0.038 0.044 0.0032

1000 0.036 0.045 0.0041
2000 0.038 0.045 0.0041
5000 0.036 0.046 0.0002

The data show no correlation between PPERT and PNDE , as well as an average false
positive rate at the expected 5% level.

Fig. 3. Correlation analysis between PNDE and PPERT under the null
hypothesis. This scatter-plot shows all pairs of P-values for 52 pathways, 200
random trials and the three fold-change distribution scenarios considered.
As shown in Table 1, the squared correlation coefficient, R2, was less than
0.005, regardless of the number of genes analyzed, Nde. The current plot was
obtained with Nde =300.

scenarios considered. The results presented in Figure 2 show that
SPIA also yields a uniform distribution of P-values under the null
hypothesis and therefore will provide no false positives beyond the
unavoidable level equal to the chosen significance threshold, α. This
is true regardless of the number of DE genes analyzed (Table 1).

3.2 The independence of the perturbation and
enrichment statistics

The fact that PPERT and PNDE are two independent variables under
the null hypothesis, is theoretically justified by the design of the
bootstrap procedure used to compute PPERT . This independence
has also been verified using a simulation, as follows. A set of
Nde =300 gene IDs was selected at random out of 20 000 possible
IDs containing all genes on all 52 pathways analyzed. The randomly
selected gene IDs were assigned log fold-changes from (i) a random
normal distribution N(0,1); (ii) a bimodal distribution obtained by
sampling from the tails of a N(0,1) distribution; and (iii) random
normal N(3,0.5). For each scenario, the experiment was repeated
200 times and PNDE , PPERT were computed for all pathways
receiving at least one DE gene. The resulting pairs of PNDE
and PPERT are shown as a scatter plot in Figure 3. The squared
correlation coefficient was R2 =0.0028, indicating essentially no
correlation between the two P-values. This remains true regardless
of the number of DE genes analyzed (Table 1). These simulations
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prove that the evidence from perturbations as computed by SPIA
is linearly independent from the over-representation evidence under
the null hypothesis.

3.3 Sensitivity and pathways ranking on real datasets
Assessing the capabilities of any pathway analysis method in real
experiments is a challenge in itself because the ground truth is never
known. In the absence of a gold standard, the best alternatives
are to: (i) analyze the results of the pathway analysis method
in the light of the existing biological knowledge regarding the
condition studied, and (ii) compare it with the existing methods in
the context of the same existing biological knowledge. The absence
of a definitive answer regarding the involvement of a given pathway
in a given condition makes it impossible to calculate exact values
for sensitivity, specificity, ROCs, etc. However, the methods can
be compared in terms of the number of pathways that are found
to be significant in a given condition and how well the significant
pathways fit with the existing biological knowledge. This type of
assessment is the current best practice in this area (Subramanian
et al., 2005).

We used four datasets in order to illustrate the capabilities of
the newly proposed pathway analysis method, SPIA. The first such
dataset compares 12 colorectal cancer samples with 10 normal
samples (Hong et al., 2007) using Affymetrix HG-U133 Plus
2.0. microarray platform. This dataset is available via the Gene
Expression Omnibus (ID = GSE4107) and it will be referred to as
the Colorectal cancer dataset. Several pathways are known to be
relevant to the colorectal cancer, including the colorectal pathway
itself, the PPAR signaling pathway (Shureiqi et al., 2003) and MAPK
signaling pathway (Fang and Richardson, 2005).

The second dataset is the result of comparing gene expression
levels in cervix tissue samples from women at term with spontaneous
labor (TL group) (n=9) and those at term without labor (TNL group)
(n=7). The microarray platform used was Affymetrix HG-U133
Plus 2.0. The details of this study and its biological significance are
described elsewhere (Hassan et al., 2006, 2007). This dataset will
be referred to as LaborC.

The third dataset is the result of comparing gene expression levels
between umbilical veins (UV)(n = 6) and umbilical arteries (UA)
tissues (n = 6) using Illumina BeadChips Human-6 V2 arrays. This
dataset will be referred to as Vessels dataset. The details of this study
and its biological significance are presented elsewhere (Kim et al.,
2008). This dataset is available in the Arrays Express repository (ID:
E-TABM-368).

The fourth dataset used in this study was produced by comparing
gene expression levels in myometrium tissue samples from women
at term with spontaneous labor (n=27) and those at term without
labor (n=30) using Affymetrix HG-U133 Plus 2.0 platform. In
essence, this experiment studies the same medical condition as
the second dataset (spontaneous labor at term) except that the
investigated tissue is different (myometrium rather than cervix) and
the numbers of samples are much larger for each class (27/30 rather
than 9/7). The details of this study and its biological significance are
not published yet. This dataset will be referred to as LaborM.

After proper preprocessing, including log2 transformation and
quantile normalization (Irizarry et al., 2003), microarray expression
data from all three experiments were analyzed in the same way.
Differential expression was inferred using a moderated t-test

(Smyth, 2005) and aFDR adjustment of the resulting P-values. For
the Colorectal cancer and Vessels datasets, genes were considered
as DE provided they had a FDR corrected P < 0.05. For the LaborC
and LaborM datasets, genes were considered as DE provided they
had a FDR corrected P-value less than 0.05 and 0.01, respectively,
and their fold-change was greater than 2 and 1.5, respectively. The
additional stringency used on the gene selection for these later two
datasets was implemented in order to be consistent with the original
analyzes of the authors.

The richness and suitability of this ensemble of four datasets
can be discussed from three different perspectives. First, they were
obtained using two different microarray platforms (Affymetrix and
Illumina). Second, the distribution of log fold-changes for the DE
genes has different properties among the datasets, since for the
Colorectal cancer and Vessels data no threshold on fold-changes
was used, as opposed to the other two datasets. Finally, for all
datasets there are several biological clues about what pathways
are expected to be involved. Also, since both LaborC and LaborM
datasets studied the impact of spontaneous labor in two closely
related uterine regions, a number of similarities can be expected
between the pathways impacted in these two experiments.

The SPIA algorithm was compared with several existing pathway
analysis methods including the classical over-representation
analysis (ORA) using a hypergeometric model, and the gene set
enrichment analysis (GSEA) (Subramanian et al., 2005). The
comparison was based on statistical power (the ability to find
significant pathways), specificity (the ability to limit the number
of false positive pathways), as well as the ability to provide a
meaningful ranking of the pathways analyzed.

A significance threshold of 5% was used on the FDR corrected
P-values in order to infer pathway significance. For both SPIA and
ORA the FDR adjusted P-values were computed from the nominal
P-values using the R function ‘p.adjust’, while for GSEA, the FDR
values (also called Q-values) are reported as provided by the R
GSEA V 1.0. Only the top 15 pathways are given in tables for
each analysis method, with pathway names being truncated to save
space. The correspondence between the pathway IDs shown in
these tables and the full KEGG pathway names can be found at
ftp://ftp.genome.jp/pub/kegg/xml/organisms/hsa/index.html.

On the colorectal cancer dataset, the three pathway analysis
methods were compared in terms of their ability to identify the
colorectal cancer pathway, the PPAR signaling pathway (Shureiqi
et al., 2003) and MAPK signaling pathway (Fang and Richardson,
2005) as relevant to colorectal cancer disease. Using a 5% cut-
off of the FDR adjusted P-values, both ORA and SPIA identified
the PPAR signaling pathway and MAPK signaling pathway as
significant to the condition under the study (Tables 2 and 3).
However, only SPIA identified the colorectal cancer pathway itself
as significant (Table 2). This was possible due to additional evidence
from perturbations (PPERT = 0.04 in Table 2). In addition, SPIA
downgraded the Alzheimers disease pathway from second position
in the top with ORA to the fourth position. This pathway is most
likely not relevant to colorectal cancer, and it appears among the
significant pathways for both ORA and SPIA because 14 genes
of this pathway are DE, out of all 22 genes of this pathway that
are represented on the reference array. On the other hand GSEA
identified no significant pathway on this dataset (Tables 1 and 2
in Supplementary Material). Also, according to GSEA, the top
ranked pathways for this dataset are the Huntington’s disease and
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Table 2. SPIA results on colorectal cancer dataset

KEGG pathway PNDE PPERT PG PFDR
a PFWER

b Status

Focal adhe..4510 0.0001 0.0000 0.0000 0.00000 0.00000 Act.
ECM-recept..4512 0.0001 0.0004 0.0000 0.00001 0.00002 Act.
PPAR signa..3320 0.0000 0.1240 0.0000 0.00011 0.00034 Inh.
Alzheimers..5010 0.0000 0.7260 0.0001 0.00059 0.00235 Act.
Adherens j..4520 0.0001 0.0852 0.0001 0.00090 0.00452 Act.
Axon guida..4360 0.0002 0.2324 0.0006 0.00487 0.02922 Act.
MAPK signa..4010 0.0001 0.7112 0.0007 0.00504 0.03527 Inh.
Tight junc..4530 0.0007 0.5156 0.0032 0.02073 0.16585 Act.
Colorectal..5210 0.0098 0.0432 0.0037 0.02151 0.19359 Act.
Wnt signal..4310 0.0187 0.0704 0.0101 0.05227 0.52268 Inh.
Renal cell..5211 0.0259 0.1048 0.0188 0.08869 0.97561 Inh.
Regulation..4810 0.0046 0.7328 0.0226 0.09797 1.00000 Act.
Thyroid ca..5216 0.0516 0.1032 0.0332 0.13284 1.00000 Inh.
Cytokine-c..4060 0.5049 0.0132 0.0401 0.14880 1.00000 Act.
Antigen pr..4612 0.9948 0.0080 0.0464 0.16094 1.00000 Act.

a,bCalculated for PG; Act., activated, Inh., inhibited. The last pathway considered
significant is underlined (FDR < 0.05).

Table 3. ORA results on colorectal cancer dataset

KEGG pathway PNDE PFDR
a PFWER

b

PPAR signa..3320 0.00000 0.00012 0.00017
Alzheimers..5010 0.00000 0.00012 0.00024
ECM-recept..4512 0.00006 0.00078 0.00308
Focal adhe..4510 0.00007 0.00078 0.00360
Adherens j..4520 0.00008 0.00078 0.00411
MAPK signa..4010 0.00009 0.00078 0.00465
Axon guida..4360 0.00022 0.00165 0.01156
Tight junc..4530 0.00069 0.00450 0.03599
Regulation..4810 0.00461 0.02665 0.23982
Colorectal..5210 0.00983 0.05113 0.51134
Wnt signal..4310 0.01871 0.08843 0.97275
Renal cell..5211 0.02591 0.10365 1.00000
Complement..4610 0.02591 0.10365 1.00000
Insulin si..4910 0.03546 0.13172 1.00000
Gap juncti..4540 0.04630 0.14911 1.00000

a,bCalculated for PNDE . The last pathway considered significant is underlined
(FDR < 0.05).

Parkinson’s disease pathways, which are not likely to be relevant to
colorectal cancer.

For the LaborC dataset, SPIA identified cytokine–cytokine
receptor interaction, complement and coagulation cascades, focal
adhesion and ECM-receptor interaction pathways as being the most
significantly impacted pathways in this condition (Table 4). These
pathways are also the top four found by ORA. SPIA clearly indicates
that there are no other significant pathways beyond these top four
(the next most significant P-value is 0.46 for the FWER correction).
This difference of over two orders of magnitude is independent of the
type of correction (no correction, FDR or FWER) and represents a
clear demarcation, also independent of the choice of any of the usual
significance threshold: 1% and 5%. In contrast, the classical ORA
results place the pathways in a continuum of P-values in which the
choice of the multiple correction method and that of the significance
threshold can significantly change the results (Table 5). For instance,
two additional pathway are reported as significant at the usual 5%

Table 4. SPIA results on the LaborC dataset

KEGG Pathway PNDE PPERT PG PFDR
a PFWER

b Status

Cytokine-c..4060 0.0000 0.0000 0.0000 0.0000 0.0000 Act.
ECM-recept..4512 0.0002 0.0008 0.0000 0.0001 0.0002 Act.
Complement..4610 0.0000 0.0652 0.0000 0.0003 0.0008 Inh.
Focal adhe..4510 0.0001 0.0384 0.0000 0.0004 0.0016 Act.
Renal cell..5211 0.0016 0.8032 0.0097 0.0804 0.4652 Act.
Jak-STAT s..4630 0.0028 0.4764 0.0100 0.0804 0.4823 Act.
Phosphatid..4070 0.0111 0.1968 0.0156 0.1067 0.7467 Act.
mTOR signa..4150 0.0238 0.2760 0.0396 0.2378 1.0000 Inh.
Regulation..4810 0.0198 0.5080 0.0563 0.2804 1.0000 Inh.
Type II di..4930 0.0533 0.2568 0.0724 0.2804 1.0000 Inh.
MAPK signa..4010 0.0211 0.6532 0.0729 0.2804 1.0000 Act.
Toll-like..4620 0.0282 0.5104 0.0754 0.2804 1.0000 Act.
Circadian..4710 0.1100 0.1320 0.0759 0.2804 1.0000 Inh.
Huntington..5040 0.1716 0.0996 0.0867 0.2971 1.0000 Inh.
Epithelial..5120 0.6281 0.0308 0.0957 0.3061 1.0000 Act.

a,bCalculated for PG; Act., activated, Inh., inhibited. The last pathway considered
significant is underlined (FDR < 0.05).

Table 5. ORA results on the LaborC dataset

KEGG pathway PNDE PFDR
a PFWER

b

Cytokine-c..4060 0.0000 0.0000 0.0000
Complement..4610 0.0000 0.0004 0.0008
Focal adhe..4510 0.0001 0.0010 0.0030
ECM-recept..4512 0.0002 0.0029 0.0117
Renal cell..5211 0.0016 0.0151 0.0755
Jak-STAT s..4630 0.0028 0.0221 0.1326
Phosphatid..4070 0.0111 0.0760 0.5323
Regulation..4810 0.0198 0.1127 0.9497
MAPK signa..4010 0.0211 0.1127 1.0000
mTOR signa..4150 0.0238 0.1144 1.0000
Toll-like..4620 0.0282 0.1230 1.0000
Type II di..4930 0.0533 0.2100 1.0000
Insulin si..4910 0.0569 0.2100 1.0000
Cell cycle..4110 0.0923 0.3117 1.0000
TGF-beta s..4350 0.0974 0.3117 1.0000

a,bCalculated for PNDE . The last pathway considered significant is underlined
(FDR < 0.05).

significance on the FDR corrected values, while at the 10%, there are
three such additional pathway. Unfortunately, the most ‘significant’
of these additional pathways is the Renal cell carcinoma pathway,
which in fact is very unlikely to be truly relevant to pregnancy and
labor.

On the other hand, GSEA was unable to find any significant
pathways in this condition (after either FDR or FWER) suggesting a
more limited power (Tables 6 and 7). Furthermore, GSEA produces
two tables, one for the term labor (TL), which is the normal condition
in this case, and one for the non-labor at term (TNL). In general, it
is unclear what the biological interpretation would be for something
which is found to be significantly perturbed in the normal condition
(this is not the case here because GSEA does not find any pathway
to be significant in this condition).

For the Vessels dataset, it can be argued (Kim et al., 2008) that
the main difference between the umbilical veins and arteries is their
pro-inflammatory behavior, therefore one of the most biologically
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Table 6. GSEA results on the LaborC dataset, enrichement in TL group

KEGG pathway NOM FDR FWER FDR Global
P-value Q-value P-value (median) P-value

Cytokine-c..4060 0.0142 0.58128 0.341 0 0.263
Toll-like..4620 0.0513 0.51643 0.6175 0.38462 0.179
Jak-STAT s..4630 0.0515 0.60647 0.541 0.45455 0.2435
Complement..4610 0.0665 0.41882 0.646 0.3125 0.106
Adipocytok..4920 0.0858 0.33712 0.709 0.26316 0.0525
Type II di..4930 0.0926 0.32744 0.8105 0.25641 0.0425
ECM-recept..4512 0.1102 0.38869 0.6945 0.3 0.0775
Maturity o..4950 0.1407 0.38816 0.786 0.30612 0.063
Focal adhe..4510 0.1421 0.34761 0.7925 0.27778 0.05
Epithelial..5120 0.1626 0.32478 0.8405 0.26471 0.037
MAPK signa..4010 0.1814 0.43041 0.931 0.375 0.0615
Regulation..4810 0.1818 0.44217 0.96 0.38961 0.0515
Renal cell..5211 0.1998 0.41124 0.9385 0.35503 0.046
Type I dia..4940 0.2083 0.40331 0.912 0.34091 0.056
Colorectal..5210 0.3005 0.57367 0.9925 0.55556 0.082

Output from R GSEA V 1.0.

Table 7. GSEA results on the LaborC dataset, enrichement in TNL group

KEGG pathway NOM FDR FWER FDR Global
P-value Q-value P-value (median) P-value

Notch sign..4330 0.0468 0.9707 0.5935 0.75 0.382
Tight junc..4530 0.1083 0.5329 0.8295 0.42568 0.1325
Ubiquitin..4120 0.1104 0.7213 0.707 0.55263 0.2715
Dentatorub..5050 0.1554 0.6512 0.805 0.51852 0.2185
Endometria..5213 0.1845 0.7443 0.9475 0.64615 0.26
Phosphatid..4070 0.1934 0.6644 0.971 0.6 0.195
GnRH signa..4912 0.1946 0.6939 0.9625 0.6087 0.221
Olfactory..4740 0.3213 0.5848 0.9725 0.525 0.1295
Hedgehog s..4340 0.3350 0.6803 0.9935 0.64412 0.164
Cell cycle..4110 0.3377 0.5825 0.9805 0.52859 0.1205
Amyotrophi..5030 0.3672 0.7403 0.993 0.7 0.223
Basal cell..5217 0.3685 0.6308 0.9935 0.60577 0.117
Thyroid ca..5216 0.4229 0.6429 0.9955 0.62821 0.1085
Gap juncti..4540 0.4621 0.6696 0.9985 0.66422 0.126
Melanogene..4916 0.5304 0.7081 1 0.7 0.132

Output from R GSEA V 1.0.

meaningful pathways is the Antigen processing and presentation
(pathway 4612 in Fig. 4, bottom right panel). Indeed, this pathway
was identified by SPIA as the most significant (raw P<0.00005,
P=0.0016 after either FWER or FDR, see Table 3 in Supplementary
Materials). In contrast, the classical ORA ranks this pathway only
on the 9th place, with a P-value that may or may not be significant
depending on the type of correction and significance threshold
(P = 0.288 after FWER, P = 0.0321 after FDR). With the most
stringent correction (FWER) and significance threshold (0.01), SPIA
identifies one additional pathway in this condition: Axon guidance.
This is in agreement with the ORA which reports this pathway as the
most significant in this condition. Both methods report this because
12 out of the 127 genes on this pathway are DE in this condition,

Fig. 4. Two-dimensional plots illustrating the relationship between the
two types of evidence considered by SPIA. The X-axis shows the over-
representation evidence, while the Y -axis shows the perturbation evidence.
In the top-left plot, areas 2, 3 and 6 together will include pathways that meet
the over-representation criterion (PNDE <α). Areas 1, 2 and 4 together will
include pathways that meet the perturbation criterion (PPERT <α). Areas 1,
2, 3 and 5 will include the pathways that meet the combined SPIA criteria
(PG <α). Note how SPIA results are different from a mere logical operation
between the two criteria (OR would be areas 1, 2, 3, 4 and 6; AND would
be area 2). Interestingly, SPIA removes those pathways that are supported
by evidence of any one single type that is just above their corresponding
thresholds but not supported by the other type of evidence (areas 4 and 6),
but adds pathways that are just under the individual significance thresholds
but supported by both types of evidence (area 5). The other plots show
the pathway analysis results on the Colorectal cancer (top right), LaborC
(bottom left) and Vessels (bottom right) datasets. Each pathway is represented
by a point. Pathways above the oblique red line are significant at 5% after
Bonferroni correction, while those above the oblique blue line are significant
at 5% after FDR correction. The vertical and horizontal thresholds represent
the same corrections for the two types of evidence considered individually.
Note that for the Colorectal cancer dataset (top right), the colorectal cancer
pathway (ID = 5210) is only significant according to the combined evidence
but not so according to any individual evidence PNDE or PPERT .

which is about four times more than expected by chance. On this
data, ORA identified nine significant pathways, SPIA identified
eight, while GSEAnone (Tables 3–6 in the Supplementary Material).

The LaborM dataset studied the same medical condition as
the LaborC, except that the samples were collected from the
myometrium, rather than cervix, both parts of the (same) uterus. It is
therefore reasonable to expect that some of the pathways involved in
LaborC and LaborM would be common. Both ORAand SPIAranked
the cytokine–cytokine receptor interaction as the most relevant
pathway. The roles of cytokines in the human myometrium in labor
have been previously assessed in several investigations, indicating
their biological significance in human parturition (Breuiller-
Fouche and Germain, 2006). Studies on uterine macrophages in
the myometrium showed that the inflammatory cytokines, IL1β

and TNFα, are important regulators of PGHS2 and IL8 (Tattersall
et al., 2008). An increase in IL1, IL6, IL8 and TNFα within tissues
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of the laboring uterus and cervix is well known (Osman et al.,
2003). Increased mRNA expression of CCL13, CCL19, CCL21,
CXCR4 and CXCR5 in the myometrium has also been shown (Bethin
et al., 2003; Breuiller-Fouche and Germain, 2006). The cytokine–
cytokine receptor interaction pathway was also the most relevant in
the LaborC dataset according with these two methods. In contrast,
GSEA failed to identify this pathway as significant in either LaborM
or LaborC sets (Tables 6 and 7; Supplementary Tables 9 and 10).
This is disappointing in the light of the fact that each group had
approximately 30 samples, therefore justifying the expectation of a
reasonable statistical power. Furthermore, GSEA’s rankings of this
pathway were not consistent between these two related datasets.
Combined with the low false positive rate verified on various null
hypothesis simulations, the results on all three datasets suggest a
higher statistical power for SPIA when compared with GSEA.

4 CONCLUSIONS
This study introduced the SPIA, which provides increased sensitivity
when compared with GSEA, as well as improved specificity and
better pathway ranking when compared with ORA. The SPIA
algorithm was implemented as a standard R library available
at http://vortex.cs.wayne.edu/ontoexpress/.
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