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ABSTRACT

Motivation: Over the past decade, the prospect of inferring networks
of gene regulation from high-throughput experimental data has
received a great deal of attention. In contrast to the massive effort
that has gone into automated deconvolution of biological networks,
relatively little effort has been invested in benchmarking the proposed
algorithms. The rate at which new network inference methods are
being proposed far outpaces our ability to objectively evaluate and
compare them. This is largely due to a lack of fully understood
biological networks to use as gold standards.
Results: We have developed the most realistic system to date
that generates synthetic regulatory networks for benchmarking
reconstruction algorithms. The improved biological realism of our
benchmark leads to conclusions about the relative accuracies of
reconstruction algorithms that are significantly different from those
obtained with A-BIOCHEM, an established in silico benchmark.
Availability: The synthetic benchmark utility and the specific
benchmark networks that were used in our analyses are available
at http://mblab.wustl.edu/software/grendel/
Contact: brent@cse.wustl.edu

1 INTRODUCTION
High-throughput assays for mRNA expression have paved the
way for computational methods that aim to reverse engineer
the control architecture of gene regulation. Technologies such as
spotted microarrays (Schena et al., 1995) and oligonucleotide chips
(Lockhart et al., 1996) have allowed for genome wide expression
profiling. More recently, short read sequencing has shown promise
for even more precise quantification of mRNA (Cloonan et al.,
2008; Mortazavi et al., 2008). Initially, analyses of high-throughput
expression data focused on clustering the data in order to identify
coregulated genes whose products might take part in a shared
biological process (Eisen et al., 1998). Shortly thereafter, algorithms
were developed to reconstruct the underlying regulatory network
that best accounts for the expression data. These algorithms differ
in the level of detail at which they reconstruct networks. Some output
an undirected graph where edges do not indicate which gene is the
regulator (Margolin et al., 2006); others specify the regulator with
directed edges (Husmeier, 2003), and a few even label the edges
with kinetic parameters (Goutsias and Lee, 2007).

Improvement and adoption of network reconstruction algorithms
has been impeded by the difficulty of objectively assessing
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their accuracy. Evaluation is difficult primarily because there are
very few, if any, fully understood biological networks to use as
gold standards. The adoption of standard benchmarks is further
complicated by the fact that some inference algorithms require
steady state expression data while others require time courses,
some require genetic perturbations while others do not and so on.
Currently, there is no generally accepted substrate on which to
compare network reconstruction algorithms.

The most important property of network reconstruction
benchmarks is sufficient biological realism to predict accuracy in
practical applications. Benchmarks should also provide a sizable
population of distinct networks and a range of network sizes, from
small pathways to genome scale networks. Without a sufficient
number of networks, it is impossible to assess the statistical
significance of accuracy differences. An ideal benchmark should
be flexible enough to render different types of simulated expression
data for the same network structure. As we will show, the accuracy
of a reconstruction algorithm is strongly determined by the design of
gene expression experiments from which the data were generated.
A flexible benchmarking system can be used to guide both the
development of reconstruction systems and the design of expression
experiments aimed at generating data for them.

Several approaches to evaluating reconstruction algorithms have
been explored. One approach assumes genes that share common
Gene Ontology (GO) categories (Braunstein et al., 2008) are more
likely to be in a regulatory relationship than those that do not.
However, many genes without a direct regulatory relationship
also share GO terms. Predictions have also been evaluated on
well studied pathways from model organisms, such as the cell
cycle pathway in Saccharomyces cerevisiae (Kim et al., 2003).
However, there are still uncertainties about these networks, so novel
predictions could be mistaken as false positives. Another approach
to benchmarking is to synthesize a small biological network through
genetically engineering cells (Stolovitzky et al., 2007). Advantages
of this approach are that the true network structure is known and
gene expression is measured in a real biological system. However,
this is feasible only for small networks and cannot generate
enough different networks to provide the statistical power needed to
conclude that one algorithm is more accurate than another. In silico
benchmarks address the need for statistical power because they can
run multiple independent trials generated from the same topological
and kinetic distributions. They also provide a flexible, low cost
method of comparing a wide variety of experimental designs for
obtaining gene expression data. However, if in silico benchmarks
are not realistic they may provide a misleading estimate of the
reconstruction accuracy in real applications.
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Several in silico regulatory networks have been proposed as
benchmarks (Smith et al., 2003; Zak et al., 2001), but these are
single instances of small, hand built networks and cannot provide
robust estimates of expected accuracy. Systems for generating
populations of artificial regulatory networks have also been
developed. A-BIOCHEM (Mendes et al., 2003) is a system that
can generate networks according to several topological (in-degree
and out-degree) distributions, such as Erdos–Renyi and power-
law. However, the network generating software is not public, and
only a limited collection of networks is made available. Another
limitation is that the kinetic parameters are arbitrary and the
resulting networks do not conform to the timescale of a real
biological system. Furthermore, translation is not modeled: mRNA
acts as a surrogate for active protein product. SynTReN (Van den
Bulcke et al., 2006) makes the same assumptions about kinetics,
but generates more realistic topologies by sampling subgraphs of
known transcriptional networks. This approach has the advantage
of capturing features beyond degree distribution, such as clustering
coefficients, modularity and enrichment of biological network
motifs. The downside of this sampling approach is that the networks
generated may not be probabilistically independent, since they can
contain overlapping pieces of the known networks, and this problem
gets worse as the size of the benchmark networks increases. This
lack of independence limits the potential for testing the statistical
significance of differences between reconstruction algorithms.

To address these limitations, we have developed a publicly
available, synthetic benchmarking system that is more biologically
realistic than previous methods. It uses network topologies that
closely reflect those of known transcriptional networks and kinetic
parameters from genome wide measurements of protein and mRNA
half-lives, translation rates and transcription rates in S.cerevisiae.
We compared our method with an established in silico benchmark,
A-BIOCHEM (Mendes et al., 2003). Using these benchmarks, we
evaluated the accuracy of four network reconstruction algorithms,
most of which have not been directly compared before: ARACNE
(Margolin et al., 2006), CLR (Faith et al., 2007), Symmetric-N
(Agrawal, 2002; Chen et al., 2008) and DBmcmc (Husmeier, 2003).
Our results show that the increased realism of our simulations leads
to conclusions that are significantly different from those indicated
by the more established A-BIOCHEM benchmark.

2 APPROACH
In order to provide a more realistic synthetic benchmark to
users and developers of network reconstruction systems, we have
built an open and extensible software toolkit, Gene REgulatory
Network Decoding Evaluations tooL (GRENDEL). GRENDEL
generates random gene regulatory networks according to user-
defined constraints on the network topology and kinetics. It then
simulates the state of each regulatory network under various user-
defined conditions (the experimental design) and produces simulated
gene expression data, including experimental noise at a user defined
level. Figure 1 shows an overview of the workflow we use to
generate and simulate regulatory networks.

The artificial networks generated by GRENDEL are continuous-
time dynamical systems with three independent types of molecular
species: mRNAs, proteins and environmental stimuli (e.g. extra-
cellular glucose or iron). To our knowledge, all other in silico
benchmarks use the mRNA concentration as a proxy for active
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Fig. 1. The basic workflow we are using to generate an in silico regulatory
network and produce simulated expression data from it. The user inputs are
shown above each step of the process.
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Fig. 2. A time course plot showing the dynamics of the three molecular
species in our simulation: mRNAs, proteins and external signals. In this
simulation, the signal represses transcription of a gene. Note the decorrelation
of mRNA and protein following the condition shifts.

protein product. This eliminates the decorrelation of a gene’s
mRNA and protein concentrations that arises during condition shifts
in real systems. Figure 2 shows an example of mRNA–protein
decorrelation in our system. In real networks, the relationship
between a gene’s mRNA and protein concentrations has been shown
to be crucial for determining biologically relevant dynamics, as in
certain oscillators (Hatzimanikatis and Lee, 1999).

Environmental stimuli, or signals, were included for the purpose
of supporting time courses. Signals are different than mRNAs and
proteins in that they are driven by external rules and are independent
of the concentrations of mRNAs and proteins. Signal transduction
happens on a much faster timescale than transcription, so we can
approximate it as being instantaneous. Using this approximation, the
signal controls transcription in the same way a transcription factor
does, simplifying the transduction cascade.

Computationally generating random biological networks involves
two modular steps: topology generation and kinetic parameteri-
zation. The topology generation step defines the reagents, catalysts
and products of each reaction. In our implementation, the topology
is represented by a directed graph with nodes representing signals
and genes. An edge from node A to B in the network indicates that
A regulates the transcription of B, where A is either a gene or a
signal and B is a gene. After generating a graph indicating which
genes regulate which other genes, GRENDEL chooses parameters
for the differential equations that determine the concentration of each
protein and each mRNA. These parameters allow for the simulation
of both a network’s responses to environmental changes and the
effects of genetic interventions on those responses.
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After generating a network, GRENDEL exports it in Systems
Biology Markup Language (SBML) (Hucka et al., 2003), a versatile
representation that is becoming a standard for communicating
biochemical models. Networks specified in SBML can be simulated
by using one of several SBML integration programs, including
COPASI (Hoops et al., 2006), CellDesigner (Funahashi et al.,
2003) and SBML ordinary differential equation (ODE) Solver
Library (SOSlib) (Machne et al., 2006). Our software uses
SOSlib to deterministically integrate the ODEs that define the
dynamical system, resulting in noiseless expression data. Simulated
experimental noise is then added to the data according to a log
normal distribution, with user-defined variance. Biological noise is
not considered here, but the networks our method produces could be
simulated with biological noise by using an SBML-based stochastic
integrator (Ramsey et al., 2005).

3 METHODS

3.1 Topology selection
In a regulatory network, the out-degree of a gene represents the number
of genes it regulates, while the in-degree represents the number of genes
that regulate it. Biological networks are often described as being scale
free, meaning that their degree distributions follow a power-law (Barabasi
and Oltvai, 2004). However, the evidence suggests that only the out-
degree distribution is scale-free. The in-degree distribution is compact
(concentrated around its mean) (Shen-Orr et al., 2002; Thieffry et al., 1998).
To generate random networks with these characteristics, we developed a
new algorithm. Our algorithm extends the preferential attachment model of
Barabasi and Albert (1999), to support directed graphs with distinct in-degree
and out-degree distributions.

The preferential attachment model starts from an empty graph and
incrementally adds nodes. Newly added nodes are connected to an existing
node selected according to a distribution favoring nodes that already have
many connections. In our extension of this model, newly added nodes form
following multiple directed connections.

(1) Start with a graph containing signal nodes and k genes, but no edges.
These initial nodes, which are called seeds, will have no incoming
edges, so they will be unregulated. The number of seeds, k, is a user-
selected parameter.

(2) For each non-seed gene gj ,

(a) assign gj an in-degree I[gj] according to the user-specified
in-degree distribution;

(b) add gj to the network by choosing I[gj] existing network
nodes as parents (regulators) according the distribution given by
Equation (1).

P(ai,j =1)= B+∑N
n=1 ai,n

Z
(1)

where ai,j is an element of the adjacency matrix for the network under
construction, B is a user-defined constant that determines the power of
the power-law distribution and Z is a normalizing constant obtained by
summing the numerator over all possible parents—i.e. all nodes currently
in the network. The probability of selecting each node in the network as a
parent is proportional to its current out-degree plus the constant B. In our
current implementation, k is set to 0 if there are signals and 1 if there are
not (the number of signals is a user-selectable parameter). This algorithm
produces a network in which the out-degree distribution follows a power-law
and the in-degree can follow any specified distribution from which sampling
is possible. In an analysis of the yeast transcriptional network (Balaji et al.,
2006), a power-law was fit to the empirical out-degree distribution: x−0.6919,
and an exponential was fit to the empirical in-degree distribution: e−0.3852x .
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Fig. 3. Representative 100 gene networks from the A-BIOCHEM and
GRENDEL benchmarks with the SIM network motif shown in bold.
(a) A-BIOCHEM, (b) GRENDEL.

GRENDEL generates networks using our extended preferential attachment
algorithm with out-and in-degrees that match these empirical distributions.

To get a clearer picture of the networks generated by our algorithm,
we compared their degree distributions with those of the A-BIOCHEM
CenturySF networks. This collection consists of 50 networks, each
containing 100 genes with an average of 200 edges per network.
The networks are scale free: both in-and out-degree distributions can be
approximated by a power-law. We generated an analogous set of 50 networks
each with 100 genes, where both in-and out-degree distributions were set
to match the yeast network, as described above (no signals were used in
this set of networks). We noted that the out-degree distributions of the
GRENDEL networks have much longer tails, corresponding to the presence
of larger hubs. For in-degree distributions, theA-BIOCHEM networks follow
a power-law, while GRENDEL networks are exponential. The tail lengths are
the same, with the most highly regulated gene in each set of networks having
22 regulators, but the A-BIOCHEM networks have an under representation
of genes with three or more regulators. When comparing two representative
networks from each benchmark (Fig. 3) clear differences beyond degree
distribution are evident. Unlike GRENDEL, the A-BIOCHEM network
contains no single input modules (SIMs)—a network motif where a single
gene exclusively regulates a set of genes (Shen-Orr et al., 2002). A likely
reason for the lack of SIMs in the A-BIOCHEM networks is that each gene
has a total degree of two or more. As a result of this artifact, any gene that
does not act as a transcription factor must itself be regulated by at least two
other genes.

3.2 Kinetic parameterization
Before the behavior of a randomly generated network can be simulated,
parameters must be chosen for the differential equations that determine the
concentration of each protein (pi) and each mRNA (mi). The equation for
the change in concentration of protein i is

δpi

δt
=TP

i mi −DP
i pi (2)

which requires two parameters: the protein’s translation (TP
i ) and degradation

(DP
i ) rate constants. The equation for the change in concentration of

mRNA i is
δmi

δt
=Si(R)−DM

i mi (3)

where DM
i is the degradation rate constant of the mRNA, R is a vector

of regulator concentrations (signals and proteins) and Si maps regulator
concentrations to the transcription rate of gene i.

Similar to other approaches, we use a transcriptional rate law, Si(R),
that models Hill kinetics (Hill, 1910; Hofmeyr and Cornish-Bowden, 1997).
We begin by defining a repression function for a single regulator:

F(R,K,n)= Kn

Rn +Kn
(4)
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where, R is the concentration of the repressor, K is the binding affinity of
the repressor and n is the Hill-coefficient that controls the sigmoidicity of F.
When the regulator concentration is zero, F(R,K,n) is one (no repression).As
the regulator concentration increases without limit, F(R,K,n) tends toward
zero (total repression). The corresponding activation function is

G(R,K,n)= Rn

Rn +Kn
+1 (5)

where R represents the activator concentration. G(R,K,n) is one when the
activator is absent and tends toward 2 as activator concentration increases
without limit. The effects of these activation and repression functions on the
transcription rate are defined by:

Si(R)=
[
βi +Z

([∏
Rk∈Ai

G(Rk,Kik,nik)
]
−1

)]
×

[∏
Rj∈Ii

F(Rj,Kij,nij)
]
×TM

i

(6)

where Ii is the set of regulators acting as repressors of gene i, Ai is the set
of regulators that act as activators of gene i and R is a vector of regulator
concentrations. TM

i is the maximum transcription rate, βi defines the basal
transcription rate of gene i, and ranges from 0 to 1, Z is a normalization
factor that forces the activation term to lie between βi and 1.

Z = 1−βi

2|Ai | −1
(7)

When βi =0.5, Equation (6) is equivalent to the A-BIOCHEM transcriptional
rate law described in (Mendes et al., 2003). Once a network topology has
been defined, each regulator is designated as either a repressor or an activator
for each gene.

The novelty of our kinetic model lies in its use of more realistic parameters.
The parameter selection process begins by randomly pairing each gene in the
synthetic network with a real gene from S.cerevisiae. The synthetic network’s
gene is assigned the translation rate, protein decay rate, mRNA decay rate
and mRNA transcription rate of the real gene, which are available from
high-throughput studies (Belle et al., 2006; Garcıa-Martınez et al., 2004;
Ghaemmaghami et al., 2003; Holstege et al., 1998). In this way, our synthetic
networks should behave on the same timescale as a real biological system.
The parameters that are not available for large numbers of real genes are
the Hill coefficients nik , binding affinities Kik and βi. To facilitate direct
comparisons with A-BIOCHEM, we set these parameters in order to achieve
equivalence as follows: nik =1.5, Kik =0.01/max(Rk) where max(Rk) is the
saturating concentration of regulator R and βi =0.5.

4 RESULTS
We set out to evaluate the utility of synthetic benchmarks for two
applications: assessing the performance of network reconstruction
methods relative to one another and supporting cost–benefit analysis
of designs for gene expression experiments. To accomplish this,
we carried out three sets of computational experiments. The first
set examines how the design of a steady state gene expression
experiment affects the performance of network inference methods.
The second set investigates the effects of technical noise on
the quality of network inference from steady state data. The
third set explores the effects of sampling frequency on network
reconstruction from time course data. Throughout, we compared the
results obtained with our benchmarking suite, GRENDEL, to those
obtained with A-BIOCHEM (Mendes et al., 2003), a benchmark
that has been used in several previous studies (de la Fuente et al.,
2004; Laubenbacher and Stigler, 2004; Margolin et al., 2006).

The reconstruction algorithms we evaluated are: ARACNE
(Margolin et al., 2006), CLR (Faith et al., 2007), Symmetric-N
(Agrawal, 2002; Chen et al., 2008) and DBmcmc (Husmeier, 2003).

ARACNE, CLR and Symmetric-N are applied to steady state
expression data; Symmetric-N and DBmcmc are applied to time
course data. To evaluate an inference method, we compared each
edge it inferred to the known network structure. To facilitate
comparison among inference algorithms the gold standard network
was first converted to an undirected network. For each inferred
network, we calculated precision (NTP/(NTP +NFP)), recall
(NTP/(NTP +NFN )) and the area under the precision recall curve.

4.1 Experiment 1: design of gene expression
measurements

We analyzed the effects of experimental design by using a set
of networks generated by GRENDEL and a set of networks
(Century SF) provided byA-BIOCHEM (see Section 3.1 for details).
We wanted to test whether the degree distributions of our networks
and those of the CenturySF networks might lead to differing
conclusions about experimental design. To isolate the effects of
network topology, the kinetic parameters, such as transcription and
mRNA degradation rates for every gene in the system, are the
same for both sets of networks. Using these networks, we generated
simulated data from five experimental designs:

• Diverse: 300 measurements from a diverse population.

• Knockouts: 100 measurements knocking out each gene.

• Overexpression: 100 measurements overexpressing each gene.

• Knockouts + overexpression: 200 measurements knocking
out and overexpressing each gene.

• Knockouts + two overexpressions: 300 measurements
knocking out each gene and overexpressing at two levels.

The Diverse dataset was generated for comparison with (Margolin
et al., 2006), who used it to model samples from a genetically and
phenotypically diverse population, such as samples from tumors
found in different individuals. In their model, every sample has
the same network topology but completely independent, randomly
chosen kinetic parameters for all genes. For each simulated
measurement Mk , we set TM

i
′ =σi,kTM

i and DM
i

′ =τi,kDM
i for

each gene, where σi,k and τi,k are random variables chosen from
the uniform distribution [0.0,2.0]. For each gold standard network
topology, all of these parameters were randomly selected 300 times,
creating 300 independently parameterized networks. Figure 4 shows
the precision recall curves for ARACNE, CLR and Symmetric-N
on this dataset. ARACNE is clearly the method of choice in the
A-BIOCHEM network topologies, recovering close to 50% of the
true edges in the network before acquiring many false edges. Using
the GRENDEL network topology, the estimated accuracies of all
methods were lower, but their relative accuracies were about the
same as on the A-BIOCHEM topologies.

In the Knockouts design, for each steady state measurement Mi,
a single gene was knocked out by setting TM

i
′ =0. The expression

level of every gene was measured 100 times, with a different gene
knocked out each time. The Overexpression design was analogous,
but each gene was overexpressed rather than being knocked out.
Constitutive overexpression from a plasmid was modeled by adding
to the system an additional term that produced the mRNA at a
constant rate. The Knockouts + overexpression design combines
the measurements from Knockouts and Overexpression for a
total of 200 observations. Knockouts + two overexpressions
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Fig. 4. Precision–recall curves for network inference from the Diverse
design. The precision–recall curves that are shown reflect the median
performance, ranked according to AUC-PR. (a) A-BIOCHEM topology.
(b) GRENDEL topology.
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Fig. 5. Effects of different experimental designs on reconstruction accuracy.
(a) A-BIOCHEM topology. (a) GRENDEL topology.

augments the data from Knockouts + overexpressions with another
100 measurements in which each gene is expressed at twice the
concentration of the first overexpression.

Figure 5 shows the results in terms of area under the precision–
recall curve (AUC-PR). The error bars represent the standard error
of the mean. For the Diverse experiment, ARACNE outperforms
the other methods when inferring the A-BIOCHEM networks, but
for the GRENDEL networks, CLR does slightly better. Outside of
the Diverse regime, the outcome is dramatically different: the other
systems consistently outperform ARACNE.

On the A-BIOCHEM benchmark, CLR performs slightly better
on Knockouts than on Diverse, but on the GRENDEL benchmark
it performs much worse on Knockouts than on Diverse. Similarly,
A-BIOCHEM suggests that knock outs are more informative to
CLR than overexpressions, whereas GRENDEL shows the opposite
to be true. When using the GRENDEL benchmark, the estimated
accuracies of all methods were lower than with A-BIOCHEM.
GRENDEL thus appears to provide a tighter upper bound on how
well these methods would perform on a real biological system
similar to the yeast transcriptional network.

4.2 Experiment 2: effects of technical noise
In a follow-up experiment, we wanted to investigate the effects of
experimental noise on inference accuracy. The log2 signal intensity
ratio of technical replicates in oligo and spotted arrays has been
shown to follow a normal distribution whose SD ranges from
0.1 to 0.5 (Irizarry et al., 2005). We therefore examined three
levels of simulated noise: low (SD = 0.1), medium (SD = 0.25) and
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Fig. 6. Knockouts + two Overexpressions revealing the effects of technical
noise on network reconstruction accuracy. (a) A-BIOCHEM topology.
(b) GRENDEL topology.

high (SD = 0.5), and a noise-free baseline condition. To simulate
technical noise, we perturbed the noise free data for each gene
by a multiplicative factor independently chosen from the specified
log2-normal distribution.

Figure 6 shows the impact of noise on reconstruction of networks
with the A-BIOCHEM and GRENDEL topologies using simulated
data from the Knockouts + two overexpression design. In both
benchmarks CLR was the least sensitive to noise followed by
Symmetric-N and ARACNE. For all three algorithms, the effects of
noise were not as strong on the GRENDEL networks compared with
the A-BIOCHEM networks. Upon further examination, we found
that the effect of noise was the most pronounced on genes with
fewer than three regulators, which account for 55% of edges in A-
BIOCHEM compared with 20% in GRENDEL. However, that does
not account for the entire effect: the loss in accuracy inA-BIOCHEM
is higher than GRENDEL even when in-degree is held constant. This
suggests that global topological features may also have an effect.

4.3 Experiment 3: time course data
To isolate the effects of using realistic parameters for half-lives,
transcription rates, and translation rates, we created two sets of
networks using GRENDEL. In one set, kinetic parameters were
drawn from genome wide measurements in S.cerevisiae. In the
second set, the kinetic parameters were as in the A-BIOCHEM
benchmark—all degradation, transcription and translation rate
constants were set to 1.0. Each set contained 250 simulated
networks, each with 20 genes and two external signals. For each
network, we simulated a time course experiment in which gene
expression was measured at fixed intervals for ∼33.3 h. During
this time, each system underwent four condition shifts: two where
each environmental signal was perturbed and two when each signal
was restored to its original state. The times at which each signal
was perturbed and restored were chosen at random. We varied
the sampling interval from 60 min to 2 min. For each interval,
we evaluated DBmcmc and Symmetric-N on the arbitrary and
realistically parameterized networks.

Figure 7(a) shows the accuracy of DBmcmc as a function of
sampling frequency. As the sampling frequency increases, so does
the accuracy, but not by very much. As the sampling interval
decreases from 1 h to 10 min, the modest accuracy improvement
begins right away when benchmarking on networks with realistic
parameters. On arbitrarily parameterized networks, however, the
improvement is even smaller, and it does not begin until the sampling
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Fig. 7. Evaluating the performance of DBmcmc and Symmetric-N
comparing arbitrary kinetic parameterizations against realistic ones on a 20
gene network with two external signals. (a) DBmcmc. (b) Symmetric-N.

frequency reaches 5 min. A possible reason for this is that the
networks with arbitrary parameters reached steady state much more
quickly than those with the realistic parameters, so there is a greater
chance that multiple cascading regulatory events will occur between
sampling intervals. The networks with realistic parameters respond
more slowly, so they have a reduced chance of multiple regulatory
events occurring between sampling intervals.

For Symmetric-N, the arbitrary and realistic parameterizations
cause the performance to trend quite differently than with DBmcmc,
see Figure 7(b). For the arbitrary parameterization, performance
actually benefited from sampling at longer intervals. For the realistic
parameterization, performance improved as the sampling interval
decreased, reaching a plateau at ∼10 min intervals.

Symmetric-N did very well on some of the random networks
and very poorly on others, with few networks yielding intermediate
accuracy (data not shown). This was true for all sampling intervals
and both kinetic parameterizations. The fact that the performance
distribution of Symmetric-N was bimodal underscores the need to
test reconstruction algorithms over a large population of networks
as opposed to a single network instance.

5 DISCUSSION
One of the benefits of using simulated networks to evaluate
reconstruction algorithms is the statistical power one gets from
being able to generate many networks sampled from the same
distribution. If an algorithm performs very poorly at reconstructing a
specific subset of networks, the ability to generate large populations
of networks enables developers to identify the weaknesses of
their method. In silico benchmarks also allow for properties of
regulatory networks, such as degree distributions, experimental
noise, biological noise and network size, to be varied independently
of one another. This helps to identify the properties that contribute
most to reconstruction error.

Simulated networks also have great potential as cost effective
tools for determining the optimal experimental design to use with a
given network reconstruction method. We have demonstrated the use
of simulated networks in determining the optimal sampling interval
for a time course experiment. For steady state data, we have shown
they can provide hints about how many samples should be taken to
achieve the desired level of accuracy, and whether gene knockouts or
overexpressions are more useful. Being able to simulate experiments
will likely reduce the cost of network reconstruction, improve its
accuracy and set expectations appropriately. However, the results

obtained with simulated networks are only a first step in evaluation
that must ultimately be followed by application to real biological
systems. At present, simulated networks are rough approximations
that omit many important aspects of biological systems, including
localization and post-translation modifications.

GRENDEL is an extensible, open source toolkit that provides
greater flexibility and realism than previously published synthetic
benchmarks. GRENDEL’s more realistic network topologies not
only lead to lower accuracy estimates for all algorithms tested, but
also they change estimates of which algorithms are more accurate
under different experimental designs. We believe that GRENDEL
will be useful both to experimentalists designing gene expression
studies and algorithm developers implementing and testing new
computational approaches. We hope that, through both of these
avenues, it will help to advance the useful application of algorithms
for reconstructions of gene regulatory networks.
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