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ABSTRACT

Motivation: Development of high-throughput technology makes
it possible to measure expressions of thousands of genes
simultaneously. Genes have the inherent pathway structure, where
pathways are composed of multiple genes with coordinated
biological functions. It is of great interest to identify differential gene
pathways that are associated with the variations of phenotypes.
Results: We propose the following approach for detecting differential
gene pathways. First, we construct gene pathways using databases
such as KEGG or GO. Second, for each pathway, we extract
a small number of representative features, which are linear
combinations of gene expressions and/or their transformations.
Specifically, we propose using (i) principal components (PCs) of gene
expression sets, (ii) PCs of expanded gene expression sets and (iii)
expanded sets of PCs of gene expressions, as the representative
features. Third, we identify differential gene pathways as those with
representative features significantly associated with the variations
of phenotypes, particularly disease clinical outcomes, in regression
models. The false discovery rate approach is used to adjust for
multiple comparisons. Analysis of three gene expression datasets
suggests that (i) the proposed approach can effectively identify
differential gene pathways; (ii) PCs that explain only a small amount
of variations of gene expressions may bear significant associations
between gene pathways and phenotypes; (iii) including second-
order terms of gene expressions may lead to identification of new
differential gene pathways; (iv) the proposed approach is relatively
insensitive to additional noises; and (v) the proposed approach can
identify gene pathways missed by alternative approaches.
Contact: shuangge.ma@yale.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
In the past decade, we have witnessed a period of unparalleled
development in the field of bioinformatics. Among the many newly
encountered bioinformatics problems, identification of differential
genomic markers or sets of markers has attracted extensive attention
(Allison et al., 2006; Lesk, 2002; Wong, 2004). Identification of
those differential markers or marker sets may reveal the genomic
forces that drive variations of phenotypes.

∗To whom correspondence should be addressed.

Microarray technology makes it possible to measure expressions
of thousands of genes simultaneously. In this article, we focus
on microarray studies where clinical outcomes or phenotypes
are measured along with expressions of thousands of genes.
Genes or gene sets that have significant associations with the
phenotypes/clinical outcomes in regression models will be referred
to as ‘differentially expressed’. We note that the proposed
methodologies can be extended to accommodate studies without
clinical outcomes but with multiple experimental conditions.

With individual genes, there have been many publications
investigating methodologies for identifying differential genes. We
refer to McLachlan et al. (2004) and Knudsen (2006) for a
comprehensive review. Identification of differential genes typically
involves (i) computing a significance statistic for each individual
gene. Shrinkage, penalization and thresholding methods have been
proposed to remove extreme measurements due to randomness; and
(ii) adjusting for multiple testing and identifying differential genes.
Specifically, the false discovery rate (FDR) approaches have been
proposed (Benjamini and Yekutieli, 2001).

Recent biomedical studies have suggested that variations of
certain phenotypes, especially clinical outcomes of complex
diseases such as cancer, are associated with differential expressions
of multiple genes instead of a single gene. Such an observation
has motivated researchers to define clusters of genes, instead of
individual genes, as functional genomic units. These clusters are
composed of multiple genes with coordinated biological functions,
and have been referred to as ‘pathways’.

Detection of differential gene pathways or clusters has also been
extensively investigated. Well-known examples include the gene set
enrichment analysis (GSEA; Subramanian et al., 2005), the global
test (Goeman et al., 2004) and the maxmean approach (Efron and
Tibshirani, 2007), among others. We refer to Allison et al. (2006),
Tintle et al. (2008), Nettleton et al. (2008),Ackermann and Strimmer
(2009), Goeman and Buhlmann (2007) and Nam and Kim (2008)
for comprehensive reviews of existing approaches. We note that the
validity of different approaches is built on different assumptions of
underlying data and model structures. With practical data, numerical
studies in Tintle et al. (2008), Nettleton et al. (2008), Sneddon (2004)
and references therein have suggested that different approaches may
identify different sets of differential gene clusters, and there is no
approach dominatingly better than the alternatives.

In this article, our goal is to identify gene pathways
with significant associations with the clinical outcomes in
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regression models. Here, the gene pathways are constructed using
existing pathological information of genes. Since a pathway may
contain a large number of genes (more than the sample size),
straightforward model fitting may lead to saturated models and
improper significance. To tackle this problem, we propose first
extracting a small number of representative features, which are linear
combinations of gene expressions and/or their transformations, from
each gene pathway. Regression models will be fit and significance
will be defined with those representative features.

We propose using the principal components (PCs) of gene
expressions and/or their transformations as the representative
features of gene pathways. Detection of differential gene pathways
using PC analysis (PCA)-based approaches has been investigated in
Kong et al. (2006), Chen et al. (2008) and other articles. Compared
with Kong et al. (2006), the proposed approach is applicable to
not only data with binary outcomes, but also data with other type
of outcomes. Compared with Chen et al. (2008), we investigate
the possible contributions beyond the first PC. Such an aspect has
been neglected in most previous studies. No supervised screening is
conducted to avoid possible exclusion of important genes because
of the screening. Inference is based on the permutation test to avoid
possible overfitting. In addition, we consider the effects of higher
order terms, which have been ignored in Kong et al. (2006) and
Chen et al. (2008). Although higher order gene effects have been
discussed in Jiang and Gentleman (2007) and other articles, they
have not been seriously investigated with PCA-based approaches.
In this article, we investigate whether the associations between the
gene pathways and clinical outcomes can be attributed to higher
order terms, particularly second-order terms, of gene expressions.

In Section 2, we describe construction of gene pathways and
their representative features via PCA. In Section 3, we describe the
proposed PCA-based approach. In Section 4, we analyze three gene
expression datasets to further investigate the proposed approach.
Analysis of sensitivity to additional noises and comparisons with
alternative approaches are conducted. Discussions of the proposed
approach are provided in Section 5. The article concludes with
Section 6. A heuristic discussion of the theoretical validity of the
proposed approaches are provided in the Supplementary Material.

2 METHODS

2.1 Gene pathways
Genes have the inherent pathway structure, where pathways are composed
of multiple genes with coordinated pathological functions. In recent years,
more and more attention has been drawn towards pathway-based methods
for analyzing gene expression data. ‘Pathway analysis is a promising tool
to identify the mechanisms that underlie diseases, adaptive physiological
compensatory responses, and new avenues for investigation’ (Curtis et al.,
2005).

Although pathways can be viewed as an interactive dynamic network,
in this study, we choose a simpler point of view and think of pathways as
static gene clusters. Such a perspective has been adopted in studies, such as
Wei and Li (2007), Pang and Zhao (2008) and Shi and Ma (2008). Of special
note, (i) for a small number of genes, the present pathway information can be
partial or even wrong. However, this does not prevent pathways from being
a useful tool for gene expression data analysis; (ii) different gene pathways
may have overlapping genes, since one gene may have multiple pathological
functions; (iii) in our numerical study, we retrieve pathway information from
KEGG. The pathway structure can be further refined, if more databases such
as BioCarta or GO are utilized; and (iv) some genes may not be annotated.

Pathway information for those genes is not available. Those genes will be
excluded from analysis in this study. Such an approach has been adopted by
Wei and Li (2007).

2.2 Principal component analysis
PCA is a dimension reduction method and has been extensively used in gene
expression analysis (McLachlan et al., 2004; Sharov et al., 2005). With gene
expression data, dimension reduction or variable selection are usually needed
to extract a small number of representative features that can represent the
effects of all genes. Variable selection methods can be used when there are a
small number of strong signals. In contrast, dimension reduction, including
PCA, may perform better when there exist a large number of weak signals.

Consider a feature set O composed of m variables {X1,...,Xm}. In the
context of gene expression analysis, the Xis may denote gene expressions
and/or their transformations. With the PCA, any linear combinations of the
Xis can be rewritten as

β1X1 +···+βmXm =γ1U1 +···+γkUk,

where U1,...,Uk are the k PCs and k is the rank of O. Particularly, Uis have
unit norms and are the linear combinations of Xj,j=1,...,m, with Ui being
orthogonal to Uj for i �= j. Variation explained by Ui decreases as i increases.

When the Xis are the gene expressions, the PCs have been referred
to as ‘super genes’, ‘latent variables’ and ‘latent causes’ among other
terminologies. The rationale of using PCA in pathway-based gene expression
analysis is that the effects of a pathway on the clinical outcome can be
captured by a small number of ‘super genes’, and expressions of those super
genes are linear combinations of expressions of the genes. The super genes
may correspond to the linear combinations of genes that best explain the
variations of gene expression. We refer to Johnson and Wichern (2001) for
more discussions of PCA techniques, and McLachlan et al. (2004) for their
applications in gene expression analysis.

2.3 Expanded gene expression set
For the set O={X1,...,Xm}, we define its second-order expanded set as
EO =O∪{XiXj : i,j=1,...,m}. That is, the expanded feature set is composed
of the original features and their second-order terms. In a similar manner,
we can define expanded feature sets with even higher order terms. We focus
on the second-order expanded set in this article, since it is relatively simple
and has an affordable computational cost.

In bioinformatics studies, with the number of input features much larger
than the sample sizes, attention has been mainly focused on the linear effects.
In the context of gene expression data, some articles have argued heuristically
that using linear effects of genes can be better than using non-linear effects,
although non-linear effects can be more flexible (Zhang et al., 2006). In the
context of genome wide association studies, publications such as Carrasquillo
et al. (2002) have shown that including the second-order interactions may
improve identification and classification. With gene expression data, although
we expect the linear effects of genes to capture most of their associations with
the clinical outcomes, there is no reason why higher order terms should have
no detectable contributions. In the context of gene expression analysis, there
are a few studies showing that transformations, which include the second-
order terms as special cases, may improve identification of differential
genes (Xiong, 2006). In addition, Jiang and Gentleman (2007) discusses
the possibility of non-linear gene effects in pathway analysis.

In this article, we will focus on the second-order terms of gene
expression, including quadratics and interactions. Other transformations
of gene expressions are possible, but of less interest due to the lack of
interpretability.

2.4 Construction of representative features
A key step of the proposed approach is to construct a small number of
representative features for each gene pathway. The representative features are
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expected to capture most of the associations between genes within a pathway
and the clinical outcome. Motivated by the successes of PCA with gene
expression data and the possibility of non-linear gene effects, we consider
the following ways of constructing representative features. For a pathway
composed of m genes, denote X1,...,Xm as the gene expressions.

(R1) Consider O={X1,...,Xm}, i.e. the set composed of the m gene
expression measurements. We select the first c PCs of O as the
representative features. Since it is not clear how many PCs should be
used, we consider c=1,...,c∗, i.e. c∗ different sets of representative
features composed of the first 1,...,c∗ PCs. In our numerical study,
we set c∗ =5.

With (R1), we assume that the PCs of the gene expressions
can capture the associations between gene pathways and clinical
outcomes. We will compare representative feature sets composed of
different number of PCs. Such a comparison may partly answer the
question of ‘how many PCs will be needed’, which has been ignored
in many previous studies. To achieve such a comparison, we will
focus on gene pathways with at least c∗ genes. Smaller pathways
can be studied by investigating each gene separately, and thus the
proposed approach is not needed.

(R2) With O={X1,...,Xm}, we construct its second-order expanded set
EO. We then select the first c PCs of EO as the representative features.
Following the same rationale as with (R1), we will consider c=
1,...,c∗.

With (R2), we consider the sets composed of gene expressions
and their second-order terms. We assume that the PCs of such
sets can capture the associations between the pathways and clinical
outcomes. Here, the PCs are linear combinations of gene expressions
and their second-order terms.

(R3) With O={X1,...,Xm}, we select its first d PCs. Denote P as the set
composed of the d PCs, and EP as its second-order expanded set.
Members of EP are selected as the representative features. We will
consider d =1,...,d∗. In our numerical study, we set d∗ =3.
With (R3), we first construct PCs of the gene expressions. The
PCs and their second-order terms are selected as the representative
features.

With (R1), it is assumed that linear effects of genes are sufficient. In
contrast, with (R2) and (R3), it is assumed that higher order terms may have
significant contributions beyond linear terms. The representative features
defined in (R2) and (R3) are all linear combinations of gene expressions and
their second-order terms. However, with c and d smaller than the full ranks
of their corresponding sets, (R2) and (R3) are in general not equivalent. With
the three different ways of defining the representative features, for a specific
pathway, there are c∗ +c∗ +d∗ different sets of representative features.

3 IDENTIFICATION OF DIFFERENTIAL PATHWAYS
Consider gene expression data with clinical outcome Y .
Identification of differential pathways consists of the following
steps.

(1) Construct gene pathways using information retrieved from
public databases. Only genes with pathway information
will be used in downstream analysis. In this study, the
KEGG (http://www.genome.ad.jp/kegg/) is used to construct
gene pathways. Specifically, since lymphoma and leukemia
data are analyzed and the general scheme is ‘cancer-
related’, for each gene, we search for its pathways using
a list of manually picked keywords as suggested by
http://www.sonycsl.co.jp/person/tetsuya/sub2.html.

(2) For each gene pathway:

(a) Construct the c∗+c∗+d∗ different sets of representative
features.

(b) Fit a regression model with Y as the response and
the representative features as the covariates. Compute a
summary statistic T , which can measure the association
between the outcome and covariates.

(c) Randomly permute the response Y , fit the same regression
model, and compute the summary statistic.

(d) Repeat Step (c) for B times, and compute a permutation
P-value for T . In our numerical study, we set B=50 000.

(e) The above procedure generates c∗+c∗+d∗ p-values for
each specific pathway.

(3) For each pathway, select l (which can be one or more) P-
values based on the specific analysis of interest. Combine
and analyze the l×M P-values from the M pathways using
the FDR approach.

3.1 Statistical modeling
With gene expression data, we commonly encounter continuous,
categorical and censored survival clinical outcomes. For each type
of clinical outcome, there are multiple applicable models. With
continuous outcomes, we propose using the linear regression model
and the mean squared error as the summary statistic T . With
categorical outcomes, the logistic model and the deviance are chosen
as the default model and the summary statistic. With censored
survival data, the Cox proportional hazards model and the statistic
of the score test are chosen as the default model and the summary
statistic. We note that when there are strong evidences of model
misspecification, alternative models may need to be considered.

3.2 Controlling the FDR
Denote N as the total number of tests and P-values. Since multiple
tests will be considered simultaneously, we use the following
approach to control the FDR: (i) we set the expected FDR to q=0.2;
(ii) we order the P-values across N tests p(1) ≤p(2) ≤ ...≤p(N); (iii)
we let r be the largest i such that p(i) ≤ i/N ×q/C(N); and (iv)
pathways corresponding to p(1) ...p(r) are defined as significantly
differential.

With gene pathways constructed using pathological information,
different pathways may share common genes. To account for
the possible complicated correlations among P-values caused by
overlapped pathways, we set C(N)=∑N

i=11/i as suggested in
Benjamini and Yekutieli (2001).

4 DATA ANALYSIS

4.1 DLBCL data
DLBCL (diffuse large B-cell lymphoma) is a fast growing,
aggressive form of non-Hodgkin’s lymphoma (NHL). The DLBCL
prognostic study was first reported in Rosenwald et al. (2002).
This study retrospectively collected tumor-biopsy specimens and
clinical data for 240 patients with untreated DLBCL. The median
followup is 2.8 years, with 138 observed deaths. Lymphochip cDNA
microarrays were used to measure expressions of 7399 genes.

884

http://www.genome.ad.jp/kegg/
http://www.sonycsl.co.jp/person/tetsuya/sub2.html


Differential gene pathways

1 2 3 4 5

–1
0

–8
–6

–4
–2

0

DLBCL Data

number of PC

lo
g(

p)

Fig. 1. Analysis of DLBCL data with representative features (R1). Log
P-values versus number of PCs.

The raw data and detailed experiment protocol are available at
http://llmpp.nih.gov/DLBCL/. We retrieve pathway information
from KEGG as described in Section 3. A total of 1047 genes belong
to 159 KEGG pathways, with sizes ranging from 1 to 127 and
median size 7. Among the 159 gene pathways, 97 have sizes equal
to or larger than 5 and will be studied in our downstream analysis.

4.1.1 Pathway identification using linear gene effects We first
consider the representative features generated with (R1), and
consider effects of different numbers of PCs. With c∗ =5, we show
in Figure 1 the log P-values of the 97 pathways as a function
of the number of PCs. It can be seen that, when the number
of PCs increases, the P-values have an overall decreasing trend,
which suggests that more pathways can be potentially identified as
differential. The numbers of differential pathways identified using
the first 1–5 PCs are 2, 11, 29, 29 and 29, respectively. Using the first
three PCs can identify the most differential pathways, while keeping
the number of representative features small. In the Supplementary
Material, we provide detailed information on pathways identified
with three PCs. Information on pathway names, pathway sizes and
unadjusted P-values is available.

We note that, although it is possible to get a P-value associated
with T directly from the model fitting, we adopt the permutation
approach to avoid any overly optimistic result.

Analysis of sensitivity to noises: as one reviewer pointed out,
pathways, especially large pathways, may contain genes unrelated
to the clinical outcomes. The proposed approach may potentially
suffer from those noisy genes. To understand sensitivity to noises of
the proposed approach, we consider the following analysis.

For a pathway with m genes, we add max(1,10%×m) noisy
genes, where expressions of the noisy genes are normally distributed
with mean 0, and variance equal to the median variance of the
original m genes. Thus, the ‘new’ pathway contains the original
m genes as well as 10%m noises. In addition, we also consider
20% and 30% additional noises. With 10%,20% and 30% additional

Table 1. Pathway identification using different approaches: number of
pathways identified (number of overlap with the proposed approach)

Approach DLBCL MCL Leukemia

GSEA 2 (1) 69 (31) 1 (1)
Maxmean 0 (0) 2 (2) 2 (2)
Global test 0 (0) 68 (46) 0 (0)
Kong’s NA NA 2 (2)
Univariate 1 (1) 77 (46) 33 (19)
Proposed 29 (29) 50 (50) 50 (50)

NA: Kong’s approach is only applicable to binary clinical outcomes.

noises, the proposed approach identifies 24, 28 and 24 pathways,
respectively. The numbers of overlaps with pathways identified
without noises are 24, 27 and 24, respectively, which suggests that
the proposed analysis is relatively insensitive to noises.

Comparisons with alternative approaches: we analyze the DLBCL
data with the following well-known alternative approaches and
summarize the comparison results in Table 1: (i) the GSEA
(Subramanian et al., 2005), which identifies two pathways as
differential: the ribosome pathway, which has also been identified
with the proposed approach, and the phenylpropanoid biosynthesis
pathway missed by the proposed approach. Our preliminary
investigation finds no association between the phenylpropanoid
biosynthesis pathway and lymphoma progression; (ii) the maxmean
approach (Efron and Tibshirani, 2007), which identifies no pathway
as differential; and (c) the global test (Goeman et al., 2004), which
identifies no pathway as differential.

4.1.2 Pathway identification using both linear and non-linear gene
effects We conduct the following analysis, which can account for
contributions from non-linear gene effects.

Analysis I: in the first set of analysis of non-linear effects, we
use the representative features generated with (R2) and different
numbers of PCs. With c∗ =5, the numbers of differential pathways
identified using the first 1–5 PCs are 0, 0, 1, 1 and 2, respectively. The
Natural killer cell-mediated cytotoxicity pathway, which consists
of 60 genes, is identified with # PC = 5. This pathway is not
identified using only linear effects. The significance of the natural
killer cell-mediated cytotoxic pathway for NHL has been suggested
in early biomedical studies (Mehta et al., 1989). Natural killer
activity and antibody-dependent cellular cytotoxicity are two natural
defense mechanisms that protect the host against various kinds
of infections. The natural killer cells have a potential role in
immune surveillance against virally infected cells and tumors, as
well as in the regulation of normal stem-cell differentiation. The
cells responsible for mediating the two activities are the large
granular lymphocytes. Suppressions of natural killer and antibody-
dependent cellular cytotoxicity have been observed in untreated
NHL patients. In addition, natural killer cell-mediated cytotoxicity
plays an important role in T-cell lymphomas (Neilan et al., 1983).
Our analysis suggests that it is also related to B-cell lymphomas.

Analysis II: in the second set of analysis, we consider
representative features generated with (R3), i.e. the expanded set
generated with the first 1–3 PCs. The numbers of differential
pathways identified are 3, 4 and 7, respectively. With three PCs
of the gene expressions and their second-order terms, the cell-cycle
pathway (81 genes) and the aminoacyl-tRNA biosynthesis pathway
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(11 genes) are identified as differential. Those two pathways are not
identified using only linear effects. The KEGG cell-cycle pathway
contains very important genes such as p53 and CDK1, which
are associated with the progression of several cancers, including
lymphomas. In addition, it has been suggested that cell-cycle
regulators carry independent prognostic value in various subsets
of lymphomas (Moller, 2003). It is very interesting that the cell-
cycle pathway is identified as differential with non-linear effects.
The implications of such a finding are worth further investigations.
Aminoacyl-tRNA is tRNA to which its cognated amino acid is
adhered. Its role is to deliver the amino acid to the ribosome where
it will be incorporated into the polypeptide chain that is being
produced. The specific linkage of the correct amino acid to each
tRNA is accomplished by aminoacyl-tRNA synthetases. Although
the aminoacyl-tRNA pathway has crucial biological functions in
general, its connection with DLBCL progression is still not clear at
this moment but is worth further biological investigations.

Loosely speaking, the feature sets used in the above analysis
of non-linear effects contain the features used in the analysis of
linear effects. However, with the second-order terms, the feature
sets in the non-linear analysis are much larger than those in the
linear analysis. Gene pathways contain noisy genes unrelated to the
clinical outcomes. With second-order terms and higher dimensions,
signals hidden in the features are further diluted, which makes it
even harder for the PCA to pick up the associations with the clinical
outcomes. This explains why fewer gene pathways are identified in
the non-linear effects analysis.

As shown above, analysis using different sets of representative
features may identify different sets of differential pathways.
Considering that a pathway can be represented with different
representative features, identification of differential pathways
amounts to a ‘two-dimensional’ selection: for a specific pathway,
selection of the representative features then can lead to the smallest
P-value; and selection of differential pathways using those smallest
P-values. Intuitively, this can be realized with a two-step procedure,
one across different representative features for each pathway and
one across multiple pathways, and two-step FDR control. In this
article, we consider a one-step selection by pooling and analyzing
P-values across multiple representative features for each pathway
and across multiple pathways. Given that the total number of
multiple comparisons to be accounted for remains the same with
the two-step or one-step procedures, they should generate the
same results. With the following analysis, we can determine not
only which pathways are differential, but also which representative
features reflect the differentiation. If only differential pathways are
of interest, our theoretical investigation suggests that the following
analysis may lead to slightly inflated false positive rates.

Analysis III: for each pathway, analysis using linear effects
generates c∗ sets of representative features, and hence c∗ P-values.
Non-linear analysis I also generates c∗ P-values for each pathway.
In this set of analysis, for the M pathways, we consider all the
(c∗+c∗)×M P-values together. Those P-values correspond to the
significance measurements for the M pathways using (c∗+c∗)
sets of representative features for each pathway. We use the FDR
approach to identify differential pathways. Such an analysis has
the advantage of revealing not only differential pathways, but also
corresponding representative features that best represent effects of
the pathways. We note that, with the FDR approach described
in Section 3.2, an arbitrary covariance structure of the P-values

is allowed. Given that each P-value is generated separately via
permutations, and hence is consistent, identification of differential
gene pathways in analysis III using FDR is valid. In this set of
analysis, the natural killer cell mediated cytotoxicity pathway (60
genes) is identified as differential with representative features (R2)
and #PC = 5. This pathway is missed by using linear effects only.

Of note, one potential drawback is that by considering multiple
representative features for each pathway and adjusting for more
multiple comparisons, we may have less power to identify
differential pathways.

Analysis IV: following a similar strategy as in analysis III, we
consider the representative features generated using linear effects
and using (R3). We combine and analyze the (c∗+d∗)×M P-values
generated in Section 4.1.1 and analysis II. We identify the cell-
cycle pathway (81 genes) and the aminoacyl-tRNA biosynthesis
pathway (11 genes) as differential with representative features (R3)
and #PC = 3. These two pathways are not identified using linear
effects only.

We note that, it is possible to follow analyses III and IV and
consider all the (c∗+c∗+d∗) sets of representative features for each
pathway. However, we note that (R2) and (R3) are two different ways
of accounting for non-linear effects. In addition, by considering more
representative features, we may lose more power. Thus, analysis with
all the (c∗+c∗+d∗) sets of representative features is not pursued.

4.2 MCL data
Rosenwald et al. (2003) reported a study using microarray
expression analysis in mantle cell lymphoma (MCL). Among 101
untreated patients with no history of lymphoma, 92 were classified
as having MCL. Survival times of 64 patients were available and
28 patients were censored. The median survival time was 2.8 years
(range 0.02–14.05 years). Lymphochip DNA microarrays were used
to quantify mRNA expression in the lymphoma samples from the
92 patients. Gene expression data that contains expression values
of 8810 cDNA elements is available at http://llmpp.nih.gov/MCL.
Among the 8810 genes, 2011 belong to 176 known KEGG pathways.
The pathways have sizes ranging from 1 to 259, with median size
14. Out of the 176 pathways, 134 have at least five genes.

4.2.1 Pathway identification using linear gene effects We first
consider linear effects only and generate representative features with
(R1). With FDR = 0.2 and the number of PCs equal to 1...5, the
numbers of identified differential pathways are 36, 43, 40, 47 and
50, respectively. Using five PCs identifies the largest number of
differential pathways. In the Supplementary Material, we provide
detailed information on pathways identified with # PC = 5.

Analysis of sensitivity to noises: we conduct the same sensitivity
analysis as in Section 4.1.1. With 10%,20% and 30% additional
noises, the proposed approach identifies 55, 50 and 57 differential
pathways. The numbers of overlaps with pathways identified without
noises are 43, 48 and 44, respectively, which again suggests relative
insensitivity to noises of the proposed approach.

Comparisons with alternative approaches: we consider
comparisons with the following alternative approaches and
show the results in Table 1: (i) the GSEA, which identifies 69
pathways as differential. Thirty-one pathways are identified by both
the proposed approach and the GSEA; (ii) the maxmean approach,
which identifies two pathways as differential, both of which are
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identified by the proposed approach; and (c) the global test, which
identifies 68 differential pathways, 46 of which are also identified
by the proposed approach.

4.2.2 Pathway identification using both linear and non-linear gene
effects We conduct the same analysis of non-linear gene effects as
in Section 4.1.2.

Analysis I: with FDR = 0.2, no gene pathway is identified as
differential.

Analysis II: the numbers of differential pathways identified are 2,
3 and 5, respectively. The glycine, serine and threonine metabolism
pathway, composed of 12 genes, is identified with # PC = 3. This
pathway is not identified using only linear effects. This pathway
contains gene ALAS1, which has been identified as a lymphoma
susceptibility gene in animal models (Shin et al., 2004). Genes
GCAT and GLDC have been identified as susceptibility genes for
cancers in general, and can be potentially linked with lymphoma
progression.

Analysis III: no new gene pathway is identified beyond analysis
using linear effects. This is caused by the large P-values obtained
in analysis I.

Analysis IV: in this set of analysis, the Notch signaling pathway
(40 genes), the metabolism of xenobiotics by cytochrome P450
pathway (30 genes), the galactose metabolism pathway (7 genes),
and the glycine, serine and threonine metabolism pathway (12
genes), are identified as differential beyond analysis using linear
effects. The Notch signaling pathway is a highly conserved cell
signaling system present in most multicellular organisms. Notch
signaling is dysregulated in many cancers, and faulty Notch
signaling has been implicated in many diseases including T-
cell acute lymphoblastic leukemia, cerebral autosomal dominant
arteriopathy with sub-cortical infarcts and leukoencephalopathy,
multiple sclerosis, tetralogy of fallot, alagille syndrome and myriad
other disease states. The reactions in xenobiotics metabolism
pathways are of particular interest in medicine as part of drug
metabolism and as a factor contributing to multidrug resistance in
infectious diseases and cancer chemotherapy. Induction of some
P450s is a risk factor in several cancers since these enzymes can
convert procarcinogens to carcinogens. P450 enzymes play a major
role in drug interactions.

4.3 Leukemia data
The leukemia data contains gene expressions of two types of acute
leukemia: acute lymphoblastic leukemia (ALL) and acute myeloid
leukemia (AML) (Golub et al., 1999). Expression levels of 6817
genes were measured using Affymetrix oligonucleotide arrays. The
data consists of 47 cases of ALL and 25 cases of AML, and is
available at http://www.genome.wi.mit.edu/MPR. Among the 6817
genes, 1565 belong to 193 KEGG pathways. Pathway sizes range
from 1 to 134, with median size 13. Out of the 193 pathways, 146
have sizes at least five.

4.3.1 Pathway identification using linear gene effects With (R1)
and number of PCs equal to 1...5, 3, 9, 24, 42 and 50 pathways
are identified as differential. Using five PCs identifies the most
differential pathways. Detailed information on identified pathways
is in the Supplementary Material.

Analysis of sensitivity to noises: with 10%,20% and 30%
additional noises, the proposed approach identifies 41, 37 and 41

differential pathways, respectively. There are 39, 36 and 39 pathways
identified both with and without noises, respectively.

Comparisons with alternative approaches: we also analyze the
Leukemia data using the following alternative approaches and show
the results in Table 1: (i) The GSEA identifies one differential
pathway, which is also identified with the proposed approach; (ii)
the maxmean approach identifies two pathways, which are identified
with the proposed approach; (iii) the global test, which identifies no
pathway as differential; and (iv) the approach in Kong et al. (2006),
which employs the PCA and Hotelling’s test to define significance.
With number of PCs equal to 1...5, the same two pathways are
identified, both of which are identified with the proposed approach.

4.3.2 Pathway identification using both linear and non-linear
effects We now consider the non-linear effects.

Analysis I: with (R2) and number of PCs equal to 1...5, 2, 0, 0,
0, 0 pathways are identified as differential. The tyrosine metabolism
pathway is identified as differential beyond analysis using linear
effects. Significance of the tyrosine metabolism in leukemia has
been recognized for a long time (Ivanova and Kaverzneva, 1971).

Analysis II: in this set of analysis, the number of identified
differential pathways are 0, 0 and 2, respectively, with no new
pathway identified beyond analysis using linear effects only.

Analysis III: The tyrosine metabolism pathway is identified as
differential beyond analysis using linear effects.

Analysis IV: no new gene pathway is identified beyond analysis
using linear effects.

5 DISCUSSION

5.1 Using PCA in pathway identification
PCA has been considered for identification of differential pathways.
In this study, we advance from Kong et al. (2006), Chen et al.
(2008) and other PCA studies by considering possible contributions
from PCs other than the first one, and/or contributions from non-
linear effects. Analysis of three datasets suggests that, with the
proposed approach, we are able to identify a reasonable number
of differential pathways. For identified pathways, we can conclude
that genes in those pathways are significantly associated with the
clinical outcomes. In addition, such associations can be attributed
to the linear combinations of genes and/or their transformations
that explain relatively larger amount of variations. One possible
drawback of the proposed approach is that PCs are used, which
are linear combinations of all genes in pathways. Thus, biological
interpretation of the identification results can be less lucid: we are
able to conclude significance of pathways; however, conclusions on
individual genes within pathways can only be based on their loadings
in the PCs and are difficult to draw.

5.2 How many PCs will be needed?
In several previous studies, ad hoc arguments have suggested that
the first one or two PCs may satisfactorily capture properties of gene
expressions. Our numerical studies in Section 4 suggest that more
PCs may be needed for identification of differential pathways. In
this study, we consider at most five PCs. If more PCs are considered,
further restrictions on the size of the pathways will be needed. Of
note, in other contexts of gene expression data analysis such as
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clustering, it has been suggested that PCs beyond the first one or
two are needed (Yeung and Ruzzo, 2001).

It is not our intention to suggest that five PCs will be sufficient for
all practical data analysis. Rather, we intend to raise the awareness
of the extra information brought by PCs beyond the first one or
two. In practical data analysis, we suggest that researchers explore
different numbers of PCs, and select the proper number based on,
for example, biological implications and predictive power of the set
of identified differential pathways.

5.3 Comparisons with alternative approaches
Beyond comparisons conducted in Section 4, we have also
considered a univariate approach suggested by one reviewer. We first
compute the statistic T for each gene. Then within each pathway, the
most significant T is selected as the statistic for the significance of the
pathway. P-values are then obtained using permutation and the FDR
is used for pathway identification. With this univariate approach,
we identify 1, 77 and 33 differential pathways for the DLBCL,
MCL and Leukemia data, respectively. The numbers of overlaps
with pathways identified with the proposed approach using linear
effects of genes are 1, 46 and 19, respectively. We note that, although
univariate approaches may identify meaningful pathways for certain
data, they are not the common practice of pathway analysis.

In Section 4, we conduct comparisons with alternatives including
the GSEA, maxmean, global test and the approach in Kong
et al. (2006). We are aware that there exist other approaches for
identification of differential pathways. However, since they are less
extensively adopted, we do not pursue comparisons with them.
From Table 1, it is clear that the proposed approach can identify
pathways significantly different from using existing approaches, and
can provide a valuable alternative. Similarities of identified pathway
sets using different approaches vary across different datasets. Such
discrepancies have been noted in studies such as Sneddon (2004) and
Tintle et al. (2008). We conducted comparisons using real datasets,
instead of simulated data, since simulated gene expressions can be
considerably different from those observed in practice. Analysis
of real data has satisfactorily demonstrated the main properties
of the proposed approach. Thus, we defer simulations, which can
provide additional insights beyond real data analysis, to future
studies.

With the DLBCL and Leukemia data, alternative approaches
identify very small number of pathways. This is partly caused
by the relatively conservative FDR control. If we ignore the
possible correlations among P-values, then alternative approaches
can identify many more pathways and generate results more similar
to those using the proposed approach.

We note that it is possible to modify alternative approaches to
make them more comparable with the proposed one. For example,
as pointed out by one reviewer, instead of using gene expressions,
it is possible to use the PCs in the global test. However, such
modifications have not been seriously investigated in the literature
and will not be further pursued here.

5.4 Non-linear effects in pathway analysis
In this study, we focus on gene pathways. The pathway sizes ranges
from less than 10 to a few hundreds, which is considerably smaller
than the total number of genes in a typical microarray study. The
relatively smaller sizes of the pathways make it possible to consider

second-order terms. In particular, most commercial software have
efficient functions to compute singular value decomposition and
hence the PCs. Thus, the computational cost with the proposed
analysis of non-linear effects is quite affordable.

Our numerical studies suggest that using second-order terms may
introduce a small number of differential pathways that are missed by
using the first-order terms only. These pathways can have important
pathological implications and suggest important new directions for
further biomedical research.

We propose two possible ways of introducing the second-order
terms. We expect their relative performance to be dependent on the
underlying data and models. In practice, we suggest that researchers
carefully consider both possibilities. We note that there are many
other ways of introducing non-linear effects. The proposed approach
is simply one of many possibilities. More refined comparison of
different ways of defining non-linearity is beyond the scope of this
article.

6 CONCLUSIONS
In this study, we propose identifying differential gene pathways
by assessing significance of their representative features, which are
defined as PCs and/or their transformations. Our numerical studies
suggest that (i) the proposed approach can effectively identify
differential gene pathways; (ii) PCs that explain a small proportion
of the variations may bear significant associations with the clinical
outcome; and (iii) non-linear effects need to be considered for
identifying a small number of key pathways.

In this study, the representative features are selected using an
unsupervised method. In recent studies such as Chen et al. (2008),
it has been suggested that supervised selection methods may out
perform unsupervised methods. The unsupervised method is adopted
in this article since it is computationally easy and is still the
common practice. Performance of the proposed approach may need
to be further investigated and validated using independent studies.
Specifically, the sets of identified differential pathways need to be
confirmed with independent studies, which are not available at this
moment.
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