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ABSTRACT

Motivation: Pathway and gene set-based approaches for the
analysis of gene expression profiling experiments have become
increasingly popular for addressing problems associated with
individual gene analysis. Since most genes are not differently
expressed, existing gene set tests, which consider all the genes
within a gene set, are subject to considerable noise and power
loss, a concern exacerbated in studies in which the degree of
differential expression is moderate for truly differentially expressed
genes. For a significantly differentially expressed pathway, it is
also of substantial interest to select important genes that drive the
differential expression of the pathway.
Methods: We develop a unified framework to jointly test the
significance of a pathway and to select a subset of genes that drive
the significant pathway effect. To achieve dimension reduction and
gene selection, we decompose each gene pathway into a single
score by using a regularized form of linear discriminant analysis,
called sparse linear discriminant analysis (sLDA). Testing for the
significance of the pathway effect proceeds via permutation of the
sLDA score. The sLDA-based test is compared with competing
approaches with simulations and two applications: a study on the
effect of metal fume exposure on immune response and a study of
gene expression profiles among Type II Diabetes patients.
Results: Our results show that sLDA-based testing provides a
powerful approach to test for the significance of a differentially
expressed pathway and gene selection.
Availability: An implementation of the proposed sLDA-based
pathway test in the R statistical computing environment is available
at http://www.hsph.harvard.edu/∼mwu/software/
Contact: xlin@hsph.harvard.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
Traditional high-level analysis of gene expression microarrays
involves individual gene analysis: for each gene a statistic (e.g.
t-statistic) and an associated P-value are computed to measure the
difference in expression level between RNA samples from subjects
with different diseases, experimental conditions or exposures.
To account for multiple comparisons, procedures controlling the
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family-wise error rate or false discovery rate (FDR) (Benjamini and
Hochberg, 1995) are performed and genes that survive the correction
are considered differentially expressed. This usual mode of analysis
has been found to have several limitations. In particular, individual
gene analysis is often too conservative due to the need to control for a
large number of multiple comparisons and correlation among genes,
and results are subject to poor interpretability and reproducibility
(Subramanian et al., 2005).

An alternative approach is to incorporate prior biological
information. Specifically, it is known that biological phenomena
occur through the concerted expression of multiple genes. Thus,
we can use our prior knowledge of what genes belong to various
pathways to focus our analysis on groups of functionally related
genes called gene sets. We can, operationally, use the term
gene sets interchangeably with gene pathway despite important
differences. The logic behind this type of analysis is that several
functionally related genes demonstrating moderate differences
between experimental conditions may be more important than
a single, possibly spurious, highly significant gene. Instead of
considering individual genes, the pathway approach treats the gene
set as a single unit to be tested. This approach is becoming
increasingly popular as it addresses various issues associated with
individual gene analysis and provides more directly interpretable
and reproducible results.

A few methods focusing on analysis of entire gene sets and
pathways have been previously proposed. The most commonly
used approaches are based on overrepresentation analysis (Draghici
et al., 2003) and gene set enrichment analysis (GSEA) (Mootha
et al., 2003). Both of these methods are found to suffer
from methodological problems, and may provide misleading and
confusing results (Goeman and Buhlmann, 2007). Alternative
approaches are available, but most were developed in experimental
contexts where the signal is very high. However, in many practical
settings, only a small number of genes within a pathway are likely
to have differential expression. Since the existing gene set tests
place weights on all the genes within a gene set, they may be
subject to considerable noise and power loss due to contamination by
many null genes. This is particularly a concern for studies in which
the degree of the change in expression is relatively low for most
truly differentially expressed genes, e.g. studies considering milder
exposures or interstitial fluids rather than primary tissue sources.

In this article, we propose a new method for pathway-based gene
expression analysis. Our method summarizes each gene set with
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a composite expression value computed as a linear combination
of all the constituent genes’ expression values. The optimal
weights for the linear combination can be estimated using linear
discriminant analysis (LDA), which identifies weights that allow
for optimal separation between two groups. However, many genes
in a differentially regulated pathway are expected to have no effect
and the estimated LDA weights for these null genes are small but
non-zero. This implies that the use of the regular LDA weights is
likely to introduce substantial noises accumulated from the small
weights of these null genes which could result in considerable power
loss and mask true signals, especially when signals are moderate.
Therefore, it is desirable to use a data-driven method to eliminate
such noisy genes when constructing the composite expression.
Reduced noise will increase the power of the test and allow one
to identify important genes that drive the pathway effect.

We propose to use sparse LDA (sLDA) to achieve the dual goals
of testing for the significance of a pathway and gene selection.
The sLDA regularizes the usual LDA loss function by adding
an L1 constraint on the weights. The L1 constraint causes some
of the weights for the discriminant direction to be estimated as
exactly zero (Tibshirani, 1996), thereby allowing for simultaneous
estimation of an optimal set of sparse weights that permits a high
degree of separation of two groups and selection of important
genes. We propose permutation test of the sLDA score to test for
the significance of the pathway effect. We compare the sLDA-
based test to competing approaches with two applications: a study
on the effect of metal fume exposure on immune response and a
study of gene expression profiles among Type II Diabetes patients.
The key advantage of this method is that it provides a unified
framework to simultaneously test for the significance of a pathway
with improved power and select a subset of genes in the pathway that
drive differential expressions of the pathway. We find that sLDA-
based testing provides a powerful approach for pathway-based gene
expression analysis.

2 METHODS
Pathway-based analysis borrows information from different but correlated
genes within the same pathway and hence provides results with improved
reproducibility and increased power, especially when individual gene effects
are moderate. Testing the significance of a gene pathway proceeds with
a two-step procedure: (i) compute a statistic that measures the degree of
overall differential expressions of genes within a pathway between the two
groups and (ii) evaluate the statistical significance of the observed statistic.
To accomplish the first step, we identify a sparse set of weights using sLDA
and use the estimated weights to calculate the composite expression for
the pathway. The degree of the sLDA-based composite pathway expression
can be compared using a two-sample t-statistic. We can use permutation
to generate the P-value for evaluating whether the pathway is significantly
differentially expressed. Gene selection occurs since some weights used in
computing the composite expression score are estimated as exactly zero
and hence the gene does not contribute. In this section, we describe each
step of the testing procedure in detail and then give the overall testing
algorithm.

2.1 Two-group sLDA
The defining feature of our approach is the application of sLDA, which
is a regularized form of LDA. LDA was originally proposed by Fisher
(1936) as a means for finding the linear combination of the predictors that
maximizes the between class variance relative to the within class variance,

the discriminant direction. LDA estimates the discriminant direction w by
maximizing the Rayleigh quotient:

ŵ = argmax
w

w′Sbw
w′Sww

(1)

where Sb is the between group covariance matrix and Sw is the within group
(pooled) covariance of the gene expression values. sLDA differs from LDA
in that sLDA finds w by solving (1) subject to an additional L1-constraint on
w. Using an L1-constraint ensures that some wj will be estimated as exactly
zero and the corresponding genes will not contribute to the discriminant
direction and the composite expression value.

In this section, we will consider the computation of w via sLDA. First,
however, we note that in the two-class setting, Sb is of rank 1 so (1) may be
simplified to

ŵ = argmin
w

L(w) s.t. g′w = 1,

where we define L(w) = w′Sww and g = x̄1 − x̄0 with x̄1 and x̄0 given as the
vectors of mean gene expression values corresponding to the two groups,
respectively. We will use this notation throughout.

As discussed earlier, genes in the gene set that are null merely introduce
extra noise. Filtration of these genes by variable selection improves the
power of the test, especially when the number of noise predictors is large.
To accomplish this, we place an L1-constraint on the vector w and define the
sLDA solution as

ŵ = argmin
w

L(w) s.t. g′w = 1,

p∑
j=1

|wj|≤τ (2)

for a fixed τ . The value of τ controls the degree of sparsity; when τ is small,
some of the wj will be estimated as exactly zero.

Although (2) may be found by standard quadratic programming (QP)
solvers for each value of τ , the high computational cost of permutation
renders QP impractical. We show in Wu et al. (2008) that (2) belongs to
a class of problems that have piecewise linear solution paths for w as a
function of τ and develop an efficient algorithm to find the entire regularized
solution path.

A final w is computed using the selected value of τ . In general, τ may be
selected by maximizing the cross-validated (CV) Rayleigh quotient, but in
our setting, we will choose to instead minimize the criterion:

BICτ = log
L(ŵτ )

n−rτ −1
+ rτ log(n)

n

where ŵτ is the estimate for w given a value of τ and rτ is the number of non-
zero components of ŵτ . This criterion is similar to the Bayesian information
criterion (BIC) (Schwarz, 1978). τ may be selected by computing BICτ

across a range of τ and selecting the τ that minimizes the BICτ . CV is
a possible alternative, but since we are using permutation to compute the
P-value, the additional computational expense is undesireable. Moreover,
given the limited sample size in most gene expression profiling studies, CV
is likely to be unstable since the outcome is discrete and the number of genes
exceeds the number of samples (Ahn et al., 2007).

Although we have proposed a straightforward formulation of the sparse
LDA problem, we note that Fung and Ng (2007) also attempted to address
the sLDA problem, though with a significantly different approach. Their
approach is based on the method of Feng et al. (2003) which, instead of
regularizing the Rayleigh quotient, changes the problem into a simple linear
regression and then adds an L1 and an L2 penalty to achieve sparsity. The
relationship between maximizing the Rayleigh quotient (LDA) and linear
regression is well known, but as soon as penalties are added, then the
problems become different. Although this is motivated by LDA and achieves
sparsity, it is unclear whether it can still obtain the optimality guaranteed by
LDA.

2.1.1 Additional L2-constraint In the linear regression setting, it was
shown that addition of an L2 (ridge) penalty improved prediction
and variable selection in cases where predictors are highly correlated
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(Zou and Hastie, 2005). We can also add an L2 penalty to (2) as a Lagrangian
term. In this case, the discriminant directions given by

ŵ = argmin
w

w′(Sw +ϑI)w s.t.g′w = 1,

p∑
j=1

|wj|≤τ

where ϑ is a Lagrangian term corresponding to an additional L2-constraint.
For each fixed ϑ , we add ϑ to the diagonal terms of Sw, and as in the
sLDA case, we can use QP to compute ŵ with the modified Sw. Empirically,
however, the power appears somewhat robust to the specific value of ϑ

(data not shown). Including ϑ appears to stabilize the algorithm, so we set
ϑ = 2log(p)/n when we apply sLDA to pathway testing.

One may see that if a large value of ϑ is applied, then the regularized
within class covariance matrix essentially mimics the identity matrix and
the procedure approaches the shrunken centroid method (Tibshirani et al.,
2002).

2.2 sLDA-based pathway testing
Throughout this section, we assume that we are interested in comparing
gene expression profiles for exactly two groups. In order to test a pathway
for differential activity, we can decompose the testing procedure into two
steps: (i) summarize the pathway’s differential activity with a single relevant
statistic; and (ii) determine whether the computed statistic is statistically
significant.

Our proposed sLDA-based testing approach begins by reducing each gene
set to a composite expression value computed as a linear combination of the
constituent genes. Let X be an n×p matrix of gene expression values with
(i,j) component equal to the gene expression value of the j-th gene in the
gene set for the i-th subject (array), such that n is the number of arrays
(samples) and p is the number of genes in the gene set. Then for the i-th
subject, set the composite expression value zi = w′Xi, where w is a vector of
weights for each gene in the gene set computed using sLDA. The differential
activity is then summarized by T , the t-statistic comparing the zi for cases
versus controls (or exposed with non-exposed subjects). Note that this value
is equal to the square root of the Rayleigh quotient: T = √

w′Sbw/w′Sww.
sLDA is a supervised approach so using a parametric P-value for T , i.e.

comparing T to a classical/usual t-distribution, would give biased results.
As an alternative, we propose to use permutation to evaluate significance.
Specifically, we consider the use of the following procedure:

Algorithm 1. sLDA-based Pathway test

1. Estimate the pathway statistic T by: (i) find sparse w via sLDA;
(ii) estimate z = w′X; (iii) estimate T .

2. Permute the class labels, and repeat Step 1 with the permuted data to
compute T∗.

3. Repeat Step 2 B times to obtain {T∗(b),b = 1,...,B}, for some large
number B. A new τ must be re-selected for each permutation.

4. Compute the p-value for significance as

p = B−1
B∑

b=1

I{|T∗(b)|≥|T |}.

5. If the pathway is differentially expressed, examine the individual wj

to identify important driver genes.

The last step of Algorithm 1 is a direct result of using sLDA to estimate
w, where some weights are estimated exactly as 0 by sLDA. Genes such that
wj = 0 do not contribute to the estimation of z or T . In other words, only
non-zero wj contribute to a differentially expressed pathway’s significant
result. We consider those genes with non-zero or large wj ‘important’ or
‘informative’ in driving differential pathway activity.

3 RESULTS

3.1 Metal particulate exposure data
Our research was motivated by a gene-environment study evaluating
whether metal particulate exposure causes systemic inflammation
and whether evidence of this could be found in gene expression
profiling of peripheral blood. Briefly, the study was conducted
as follows: after a wash-out period of at least 5 days, nine
healthy, non-smoking subjects were exposed to metal fumes and
airborne particulate matter (≈5 h) from shielded metal arc welding,
gas tungsten arc welding and plasma arc cutting at a welding
apprentice school. On the same day, seven other subjects were
assigned as controls and performed bookwork and office tasks at
an office in the same welding school. All subjects wore monitors
to measure exposure to fine particulate matter (particulate matter
with a mass median aerodynamic diameter ≤ 2.5µm, PM2.5). Cases
were found to have a median PM2.5 exposure of 0.948 mg/m3,
while the median PM2.5 for controls was 0.021 mg/m3. For all
subjects, complete blood samples were collected at baseline (at
the beginning of the day) and post-exposure (6 h later). Gene
expression profiling of each collected blood sample was performed
using Affymetrix Human Genome U133A GeneChips with 22 215
probe sets. Following preprocessing using the dChip software (Li
and Wong, 2001) and filtration of unexpressed genes, 5543 genes
(probes) were available for analysis. For each probe set on each
subject, the (log) baseline expression level was subtracted from the
(log) post-exposure expression level.

A traditional individual gene analysis using two-sample t-tests
was initially attempted to identify genes which showed a different
degree of change from pre- to post-exposure between welders and
controls. However, after controlling for the FDR, no genes were
significantly differentially expressed. This result was not surprising
because our experimental conditions involved an environmental
exposure rather than a stronger disease phenotype and because we
used blood rather than a primary tissue.

3.2 The candidate pathway approach with application
to the metal particulate exposure data: pathway
significance test and gene selection

When specific biology-driven hypotheses are of interest, as was the
case in the motivating study, analysis of candidate pathways rather
than a large-scale screen of many pathways may be more effective
and powerful. For the metal particulate data, 35 gene sets involving
biological processes related to inflammation and immune response
were distilled from the gene ontology (GO) database (Ashburner
et al., 2000). Each gene set from the GO database is a group of
genes known to have common function. After filtering the gene sets
to remove genes on the basis of electronic annotation information,
we applied sLDA to each gene set. We performed 1000 permutations
to generate the P-value for significance of each gene set. Of the 35
pathways, 15 pathways were differentially expressed at the nominal
α = 0.05 level. Controlling for the FDR at 5%, 13 pathways were
found to be significantly differentially expressed. The significant
pathways, the number of genes in each pathway, the number of
selected informative genes and the corresponding sLDA-based test
P-values are given in Table 1. Among the 15 pathways presented
in Table 1, the number of genes per pathway varies from 4 to 154.
The number of selected informative genes per pathway by sLDA
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varies from 2 to 8, suggesting that sLDA has a strong ability to filter
out a large number of noisy genes and select a subset of informative
genes that drive the pathway effects. A total of 39 unique genes were
selected among the 15 pathways as informative for the exposure
effects on the pathway expressions. This provides a parsimonious
list of genes for possible further analyses.

For comparison purposes, we also applied several other gene
pathway methods to the metal particulate data. Specifically, we
used the global test (Goeman et al., 2004), the singular value
decomposition (SVD) approach (Tomfohr et al., 2005), SigPath
(Tian et al., 2005) and GSEA (Mootha et al., 2003), to test
the 35 pathways related to the immune response process. The
global test, SVD and SigPath failed to identify any pathways as
significantly differentially expressed at the nominal α = 0.05 level
or the FDR = 0.20 level. GSEA, which tests a competitive null
hypothesis, identified only the activation of MAPK activity pathway
as differentially expressed at the nominal level (P = 0.047), but this
was no longer significant after controlling the FDR at 20%. These
approaches were developed under the classical microarray setting
and appear to require stronger effects to be detected than sLDA.
Further, they do not perform gene selection. Hence, accumulation
of the noises from a large number of null genes are likely to mask the
effects when the pathway effects are moderate. Overrepresentation
analysis was not applied due to major methodological issues that

suggest the null hypothesis is of entirely tangential interest to the
investigators (Goeman and Buhlmann, 2007).

We use the activation of MAPK activity pathway to illustrate
the gene selection feature of our method. Seven genes were in the
gene set and also expressed on our chip. Five of the seven were
selected using sLDA. Since their sLDA weights were estimated as
non-zero and they contributed to the composite pathway expression
score, these five genes were potentially important in driving the
significant test result. Two genes were considered noise and removed
in calculating the composite pathway expression score, as their
sLDA weights were estimated as zero. The five selected genes and
their sLDA weights are given in Table 2. For comparison, we also
present the t-statistics gene analysis. Although only a single gene
is individually differentially expressed, their linear combination
is highly significant (P= 0.005). This occurs because the genes
are correlated (range = [−0.09, 0.85]), allowing sLDA to borrow
information across genes.

3.3 Reanalysis of Type II Diabetes data
To explore the pathway significance test and gene selection
properties of sLDA on a better studied phenotype than metal
particulate exposure, we applied the sLDA-based testing procedure
approach to a previously analyzed dataset that considered Type II

Table 1. The 15 significant differentially expressed gene pathways using sLDA at the nominal α = 0.05 level (FDR < 0.11) for the metal
particulate exposure data

Pathway No. of genes No. of selected genes P-value Q-value

Response to external biotic stimulus 153 7 <0.001 0.02
Response to pest, pathogen or parasite 149 7 0.001 0.02
Inflammatory response 54 5 0.003 0.04
Activation of MAPK activity 7 5 0.005 0.04
Response to biotic stimulus 198 7 0.005 0.04
Taxis 32 3 0.006 0.04
Response to external stimulus 56 4 0.007 0.04
Chemotaxis 32 3 0.008 0.04
Oxygen and reactive oxygen species metabolism 5 2 0.011 0.04
Superoxide metabolism 5 2 0.011 0.04
Immune response 69 6 0.018 0.05
Monocyte differentiation 4 3 0.018 0.05
Positive regulation of I-kappaB kinase/NF-kappaB cascade 24 8 0.020 0.05
DNA damage response, signal transduction 5 5 0.035 0.09
Response to oxidative stress 13 4 0.048 0.11

Table 2. The five genes (out of an original seven) in the activation of MAPK activity pathway selected as driving the significant pathway
test result

Gene Gene Description sLDA weights t-statistic P-value

CD81 CD81 molecule −0.511 1.498 0.156
TRIB3 Tribbles homolog 3 0.436 −2.166 0.048
ADRB2 Adrenergic, beta-2-, receptor, surface 0.194 −0.217 0.831
C5AR1 Complement component 5a receptor 1 0.172 −1.379 0.190
FPR1 Formyl peptide receptor 1 0.143 −0.908 0.379

The two unselected genes, SHC1 and PIK3CB, had sLDA weights estimated as zero and were considered null genes. The t-statistic and P-values are from the
original individual gene analysis.
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Diabetes gene expression profiles. This dataset was presented in
Mootha et al. (2003) and was originally analyzed using GSEA.
We restricted our analysis to the subset of the data consisting of
17 patients with normal glucose tolerance and 18 patients with
Type II Diabetes. The goal was to identify gene sets differentially
expressed between normal and diabetic patients. After preprocessing
as described in the original paper, we applied the sLDA-based
pathway test to 124 of the 149 gene sets used in the original
paper. Twenty-five gene sets were omitted after we limited the
minimum number of probes per gene set to be four. The number
of pathways deemed differentially expressed at the nominal level
by sLDA and its competitors are given in Table 3. Our proposed
method again identifies more gene sets as differentially expressed
than the competitors.

For illustration, we examined the gene selection properties of
sLDA by studying the individual genes found to be important in
the carbon fixation pathway, which was statistically significant at
the α = 0.05 level (P = 0.015). The previous study by Mootha et al.
(2003) defined the carbon fixation pathway to contain 27 genes,
of which 18 remained after the preprocessing procedure. Nine
genes had non-zero weights in the estimated composite pathway
expression score and were deemed by sLDA potentially important
for the significant effect of the carbon fixation pathway on Type
II Diabetes. These genes and their sLDA weights are provided in
Table 4. The magnitudes of the weights give the relative importance
of each gene. We also provide in Table 4 individual t-statistics
and P-values for comparison purpose. Although only the two most
heavily weighted genes are individually statistically significant, all
nine genes have been previously postulated to play a role in diabetes

Table 3. Results from the analysis of 125 gene sets from the diabetes dataset
using the sLDA-based test and four competitors.

sLDA Global Test SigPath SVD GSEA

sLDA 9 1 1 0 1
Global Test 4 3 0 1
SigPath 5 2 3
SVD 2 2
GSEA 4

Each cell gives the over-lapping number of gene sets called differentially expressed at
the nominal 0.05 level by the methods shown in the corresponding column and row.

(Hittel et al., 2005; Lemieux et al., 1984; Maniratanachote et al.,
2005; Marcus and Hosey, 1980; Morral et al., 2007; Nakanishi et al.,
2004; Oh et al., 2005; Park and Drake, 1982; Yang et al., 2002). Their
joint effects drive the pathway to be significantly expressed.

3.4 Simulation study
To compare the performance of sLDA-based testing to existing
approaches under controlled settings, we conducted simulations to
study the power of our proposed test.

For each configuration described below, we generated the gene
expression values from a gene set containing p genes for n
‘cases’ and n ‘controls’. Each of the cases were generated from
a multivariate normal distribution with mean µ(1) and covariance
�, while each of the controls were simulated from a multivariate
normal with mean µ(2) and covariance �.

• Setting 1: we let n = 10, p = 100, and µ(2) = 0. µ(1) was

a vector with µ
(1)
1 = µ

(1)
25 = µ

(1)
75 = µ

(1)
100 = 1, µ

(1)
10 = µ

(1)
50 =

µ
(1)
90 = −1, and all other components equal to zero. The

covariance matrix, � was estimated using the empirical
covariance between the first 100 genes in the ‘c0_133 probes’
gene set from the diabetes dataset.

• Setting 2: this setting was identical to Setting 1 except we
increased the sample size to n = 15.

• Setting 3: this setting was identical to Setting 1 except we
increased the sample size to n = 20.

• Setting 4: We let n = 10, p = 50 : and µ(2) = 0. µ(1) was a vector

with µ
(1)
1 = µ

(1)
20 =µ

(1)
30 =µ

(1)
49 = 1, µ

(1)
5 = µ

(1)
45 = −1 and all

other components equal to zero. We allowed an autoregressive
correlation structure such that �i,j = 0.85|i−j|.

• Setting 5: this setting was identical to Setting 4 except we
increased the sample size to n = 20.

We also considered generating the data from a logistic regression
model. For both of the following configurations, we generated n
cases and n controls from the model: logit pi = x′

iβ, where pi is the
probability the i-th subject is a case and xi ∼N(0,�) is the vector
of expression values of genes in the gene set.

• Setting 6: we set n = 15 and p = 100. β was a vector with
β1 = ··· = β5 = 1 and all other components equal to zero.

Table 4. The nine genes in the carbon fixation pathway selected from the original 28 genes by sLDA as potentially important for driving
the significant pathway test

Gene Gene Description sLDA weights t-statistic P-value

ME3 Malic enzyme 3 −0.415 2.098 0.044
GOT2 Glutamic-oxaloacetic transaminase 2 0.401 −2.358 0.025
FBP1 Fructose-1,6-bisphosphatase 1 −0.281 1.097 0.281
ALDOA Aldolase A 0.264 −1.505 0.142
MDH2 Malate dehydrogenase 2 −0.171 1.063 0.296
ALDOB Aldolase B −0.170 0.975 0.337
ME1 Malic enzyme 1 0.105 −0.459 0.650
PKM2 Pyruvate kinase 0.060 −1.234 0.226
ALDOC Aldolase C −0.041 0.832 0.411

The t-statistic and P-values are from the original individual gene analysis.
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Table 5. Comparison of the empirical power of sLDA and competing
methods across seven simulation settings

Setting sLDA L2LDA sPCA Global test SVD SigPath

1 0.202 0.212 0.206 0.064 0.084 0.118
2 0.380 0.298 0.164 0.048 0.062 0.068
3 0.660 0.574 0.190 0.100 0.044 0.110
4 0.672 0.916 0.326 0.192 0.086 0.166
5 1.000 1.000 0.506 0.582 0.114 0.320
6 0.988 0.550 0.972 0.856 0.282 0.766
7 0.856 0.404 0.896 0.596 0.292 0.596

We again allowed the same autoregressive correlation structure
as in Setting 4.

• Setting 7: this setting was identical to Setting 6 except we
increased the same size to n = 20.

For each of the settings, we ran 500 simulations. In each
simulation, the data were generated as described and then sLDA-
based testing, the global test, SVD and SigPath were applied
to test for a differential expression between cases and controls.
We also considered testing via two supervised dimension reduction
techniques other than sLDA: (non-sparse) L2-constrained LDA
(L2LDA) and supervised PCA (sPCA) (Bair et al., 2006). Testing
using these two methods proceeded by substituting L2 LDA or sPCA
for sLDA in Algorithm 1. For each setting and testing method,
the power was estimated as the proportion of P-values less than
α = 0.05. The results are given in Table 5.

The results indicate that when the data were generated under a
shifted-mean multivariate normal setup (Settings 1–5), sLDA and
L2LDA had improved power over the competing approaches. sLDA
was more powerful in the Settings 2 and 3 when the majority
of genes did not contribute to differentiating cases from controls.
In Settings 1, sLDA and L2LDA performed similarly since the signal
was very low. Similarly, when the signal was high, both sLDA and
L2 DA showed excellent power in Setting 5. In Setting 4, the degree
of sparsity was lower and, as expected, in such a setting L2LDA
outperformed sLDA. Under the logistic regression model (Settings
6 and 7), sLDA had higher power than L2LDA, the global test and
SVD, but the supervised PCA approach was comparable to sLDA.

4 DISCUSSION
This article considers the use of sLDA for pathway-based analysis of
gene expression profiling experiments. This method is particularly
attractive in settings where the signal is moderate, i.e. a few genes are
moderately differentially expressed while most show little change
relative to the noisiness of the data. Our method simultaneously tests
for differential pathway activity and selects informative genes within
a pathway that drive the effects. By eliminating non-informative
genes from our composite pathway expression score, we reduce
noise and increase power. The same method can be applied to study
proteomic and metabalomic pathways.

We illustrate the powerful results of sLDA for detecting pathway
effects and gene selection within pathways using simulations and
two data examples: the metal particulate exposure data and the Type
II Diabetes data. Our results show that pathway analysis can be more
powerful for detecting differential expression signals. Few genes

selected within significantly differentially expressed pathways were
called individually differentially expressed at the nominal α-level.
By accounting for correlations among them, methods such as sLDA
can detect the pathway genes composite effects, suggesting that
marginal analyses of individual genes have limited power. Similarly,
our simulations demonstrated that sLDA had improved power over
several alternatives, particularly when the majority of genes are not
differentially expressed.

An important aspect of our approach is that—as well as SVD, the
global test and SigPath—it tests a self-contained null hypothesis.
As noted in Goeman and Buhlmann (2007) and Tian et al. (2005),
such a test considers the global null hypothesis. This is in contrast to
GSEA which tests a competitive null hypothesis. The difference is
that a self-contained null hypothesis is rejected if any of the genes in
the gene set are truly differentially expressed whereas a competitive
null hypothesis is rejected when the relative degree of differential
expression of the genes in the gene set is higher when compared
with other genes on the chip. Thus, because large pathways are
more likely to contain some truly differentially expressed genes,
self-contained tests are more likely to consider large pathways as
truly differentially expressed. In practice, however, large pathways
may not be more likely to be statistically significant because they
may also contain more noise: if a small pathway contains a few
differentially expressed genes and a larger pathway contains the
same number of differentially expressed genes, the excess noise in
the large pathway may decrease power. Further discussion on the
differences in hypotheses may be found in Goeman and Buhlmann
(2007), in which self-contained tests are advocated over competitive
tests due to important issues in interpretability of results, loss of
power and difficulty in adjusting for multiple comparisons.

The principal biological contribution of this work is in the analysis
of the metal fume exposure data. These results are interesting from
an environmental health perspective for two separate reasons. First,
this study has demonstrated that use of peripheral blood, rather
than primary tissue, is sufficient for studying changes in gene
expression. This is promising since blood is readily obtainable and
is one of the few options available when considering environmental
exposures. Second, this work verifies the hypothesis that gene
expression signatures indicate a systemic immune response to metal
particulate exposure. All subjects appeared healthy after exposure
and no obvious exposure effect could be discerned based on readily
available phenotype. Nevertheless, at the molecular level, the body
was responding as if it were in a distressed state. This suggests
that in between healthy and diseased phenotypes, there exists an
intermediate stage at which exposure effects may be seen only at
the molecular level. Moreover, gene pathway expression appears to
better capture the effect than individual genes. Therefore, molecular
pathway responses in blood plasma may be a more sensitive
method for assessing the effects of ambient air pollution or other
environmental exposures.
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