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ABSTRACT

Motivation: Receptor–ligand interactions play an important role in
controlling many biological systems. One prominent example is
the binding of peptides to the major histocompatibility complex
(MHC) molecules controlling the onset of cellular immune responses.
Thousands of MHC allelic versions exist, making determination of the
binding specificity for each variant experimentally infeasible. Here,
we present a method that can extrapolate from variants with known
binding specificity to those where no experimental data are available.
Results: For each position in the peptide ligand, we extracted
the polymorphic pocket residues in MHC molecules that are in
close proximity to the peptide residue. For MHC molecules with
known specificities, we established a library of pocket-residues
and corresponding binding specificities. The binding specificity
for a novel MHC molecule is calculated as the average of the
specificities of MHC molecules in this library weighted by the
similarity of their pocket-residues to the query. This PickPocket
method is demonstrated to accurately predict MHC-peptide binding
for a broad range of MHC alleles, including human and non-human
species. In contrast to neural network-based pan-specific methods,
PickPocket was shown to be robust both when data is scarce and
when the similarity to MHC molecules with characterized binding
specificity is low. A consensus method combining the PickPocket
and NetMHCpan methods was shown to achieve superior predictive
performance. This study demonstrates how integration of diverse
algorithmic approaches can lead to improved prediction. The method
may also be used for making ligand-binding predictions for other
types of receptors where many variants exist.
Contact: mniel@cbs.dtu.dk
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
Binding of peptides to receptors plays an important role in
many biological interactions. Examples include phosphorylation,
recognition of phosphorylated sites by SH2 domains, immune
recognition and peptide cleavage. A number of machine learning
methods such as artificial neural networks and hidden Markov
models have been proposed to predict the specificity of a receptor
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based on examples of peptide ligands (for review see, Lundegaard
et al., 2007). These methods have the ability to interpolate between
the training examples so that they can predict if a peptide is likely
to be a ligand even if it does not have any obvious similarity to any
peptide in the training set.

Some receptor families such as kinases and major histo-
compatibility complex (MHC) molecules are very large [more than
3000 different MHC molecules have for instance been identified
(Robinson and Marsh, 2007)]. It is hence with current technology
not feasible to generate enough experimental data for each of the
family members and thereby obtain a description of the specificities
for all of them. Recently a number of so-called pan-specific MHC
binding prediction methods have been proposed that allow not only
for interpolation between ligands but also between receptors (Jacob
and Vert, 2008; Jojic et al., 2006; Nielsen et al., 2007; Zhang et al.,
2005). These methods allow for prediction of the specificities for
MHC molecules where no ligands are known. The NetMHCpan
method by Nielsen et al. (2007) uses the sequence of the ligand
as well as the sequence of the MHC binding cleft as input data to
train a neural network ensemble, and this allows for predictions to be
made for other MHC molecules than those the method was trained
on. It has been experimentally validated that such methods allow
for accurate prediction even for MHC molecules where no ligands
have previously been described (Nielsen et al., 2007).

Similar approaches have earlier been used to develop the Tepitope
method for prediction of binding of peptides to human class II
(HLA) molecules (Sturniolo et al., 1999). Phage display techniques
were used to elucidate the peptide binding specificity of different
MHC class II molecules. The peptide binding groove of MHC
molecules has a number of pockets. The amino acids lining each of
the pockets mainly interact with one part of the peptide ligand. They
therefore generalized their results to make binding predictions for
MHC molecules for which they had no experimental knowledge by
combining the specificities of other MHC molecules with identical
pocket residues.

Generating accurate prediction methods for receptor–ligand
interaction using higher order regression methods like artificial
neural networks and hidden Markov models require large amount of
data being available characterizing the specificity of each receptor
(Yu et al., 2002). Likewise, pan-specific prediction approaches
rely on sufficient data being available characterizing the close
specificity neighborhood of a given receptor (Nielsen et al., 2007).
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These requirements for large amounts of data pose significant limits
to the applicability of the pan-specific algorithms to a broad range
of biological problems.

We have earlier shown that it is possible to derive position-
specific scoring matrices (PSSMs) from very limited datasets, which
accurately describe the MHC binding specificity (Lundegaard et al.,
2004). Here, we propose a likewise simple method PickPocket,
inspired by this work, Tepitope, and the pan-specific neural network
methods. For each residue in a peptide ligand, we use information
derived from similar protein structures to infer which residues in
the MHC molecule it may interact with. These residues we denote
as pocket residues. From a set of MHC molecules with known
ligands, we derive a library of the specificity matrices (PSSMs).
Each matrix in the library specifies the likelihood for that MHC
molecule to bind the different amino acids on each peptide position
in the ligand.

In order to construct a specificity scoring matrix for a given
query MHC molecule (potentially with no known ligand data), we
compare each pocket to the library of pockets from MHC molecules
with known specificities. The simplest implementation assumes that
the query molecule for each residue in the ligand will have the
same specificity as that of the most similar pocket and we therefore
pick the specificity of the closest pocket to represent the query. In
more advanced implementations, we calculate the specificity as a
weighted average based on pocket similarities of all specificities in
the database. In both cases, the predicted specificities for each pocket
are then combined to a specificity matrix for the query molecule.
This matrix can then in turn be used to predict new ligands for the
query MHC molecule.

We performed leave-one-out (LOO) experiments to assess the
generalization ability of the PickPocket algorithm and investigated
to what extent the PickPocket approach for small datasets, where
the pan-specific neural network approach fails, could provide an
accurate description of the binding specificity of uncharacterized
MHC molecules. The PickPocket approach was compared with the
performance of the NetMHCpan (Nielsen et al., 2007) method on
an extended dataset covering binding data for both human and non-
human MHC alleles. We analyzed how the predictive performance
of the two methods depended on the similarity to and the number
of ligand data available for MHC molecules with characterized
binding specificity. Further, the method was compared with two
other publicly available pan-specific MHC class I predictor; adaptive
double threading (ADT) (Jojic et al., 2006) and Kernel-based Inter-
allele peptide binding prediction SyStem (KISS) (Jacob and Vert,
2008).

2 METHODS

2.1 Datasets
Nonamer peptides associated with quantitative binding measurement were
retrieved from the IEDB (Sette et al., 2005). Peptide binding was measured
as IC50 values. We created three non-overlapping datasets.

EvaluationSet-1 contains a total of 29 336 peptide:HLA binding
measurements, covering 35 alleles. The dataset was taken from Peters
et al. (2006). EvaluationSet-2 contains 6553 data points covering 33 alleles
and was used for evaluation. This dataset was taken from Zhang et al.
(2008). EvaluationSet-3 contains data for 19 non-human MHC class I
alleles covering primates (Mamu and Patr) as well as mouse and was
downloaded from the IEDB (Sette et al., 2005). There is no overlap between

the three datasets. Supplementary Table 1 gives a summary of the three
datasets. All peptide IC50 values were log-transformed using the relation
1-log(IC50 nM)/log(50 000) to fall in the range between 0 and 1 as described
by Nielsen et al. (2003).

2.2 Performance measures
All predictive performance values in the article were measured in terms of
the Pearson correlation coefficient (PCC) unless otherwise stated.

2.3 Position-specific scoring matrices
We used the stabilized matrix method (SMM) algorithm to construct PSSM
for each MHC molecule. The SMM method (Peters and Sette, 2005) is a
matrix solution of a linear equation system that is solved by minimization of
the sum of squared errors with a positive penalty to insignificant parameters.
The penalty term balances accuracy and stability of parameters against
perturbation. In this work, a local implementation of this method was used
with a stabilizing penalty value of 0.01 and a combination of sparse and
Blosum sequence encoding of the peptides (Nielsen et al., 2003).

2.4 Pseudo-sequences for MHC:peptide binding
pockets

Many definitions of which residues in the MHC molecule makes contact
to which residues in the peptide ligand exist, and the contact patterns may
vary for different MHC molecules and different ligands. For simplicity, we
assumed that the contact pattern is conserved for all MHC:peptide pairs and
use the contact definition by Nielsen et al. (2007). This approach might not
be optimal for each group of MHC specificities (Brusic et al., 2002), but will
allow us to make predictions also for MHC molecules that are specificity-
wise uncharacterized to us. This contact definition includes MHC residues
that are polymorphic in one or more class I alleles and residing within 4.0 Å
of the peptide in any of a representative set of HLA-A and -B structures
with nonamer peptides. We define nine pockets each consisting of the MHC
residues that are in proximity with one of the nine residues in a nonamer
ligand, respectively. Note that this is not the standard definition of pockets
in MHC molecules and that a residue in the MHC molecule in this definition
can be part of more than one pocket. We refer to the MHC residues in
contact with a given peptide position as the MHC pocket pseudo-sequence.
The MHC pseudo-sequence is thus a sequentially ordered list of polymorphic
MHC residues in contact with one or more peptide residues. A table showing
the MHC pocket pseudo-sequence is given in Supplementary Table 2.

Figure 1 visualizes the pseudo-sequence on the MHC molecule. The
residues on the MHC in contact with the peptide are highlighted. It is noted
that not all MHC residues in proximity to the peptide are taken into the pocket
pseudo-sequence. Those residues conserved across the HLA-A/B alleles are
left out. Non-interacting or non-polymorphic residue are displayed in gray.
MHC residues that interact with multiple peptide positions are colored in
purple. Other contacting residues on the MHC are shown with a different
color for each pocket, and the peptide is shown in the same color as the
pocket it interacts with.

To formulate a binding specificity vector (i.e. a row in the PSSM scoring
matrix) for a pocket in the query MHC molecule, we derived the pocket
pseudo-sequence and then used a combination of the vectors representing
the same peptide position in the pocket library to construct a virtual vector
for the query pocket.

For a given query MHC molecule q, a binding specificity vector
−→
vq

k can

be defined for each of the k positions in a ligand. The 20 elements of
−→
vq

k

corresponds to the binding propensity scores for each of the amino acids.
−→
vq

k
is calculated as the weighted sum of the specificities in the pocket library

−→
vq

k =
∑

i

wi ·
−→
vi

k (1)
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Fig. 1. HLA molecule with bound peptide. HLA-A*0201 complexed with
a nonameric peptide (LLFGYPVYV) (Khan et al., 2000). The peptide is
shown with side-chains in colored sticks, the contacting residues on the
MHC are displayed as colored regions, the pockets are distinguished by
colors (purple for residues interacting with multiple peptide positions), the
rest non-interacting or non-polymorphism residues are displayed in gray.

The weight wi is related to the normalized similarity between the pseudo-
sequences of the query sq and target si pockets. This similarity is calculated as

Sim(sq,si)= S(sq,si)√
S(sq,sq) ·S(si,si)

, (2)

where S(sq,si) is the Blosum62 (Henikoff and Henikoff, 1992) similarity
score between the two sequences sq and si. The sequence similarity score is
1 for identical sequences, and can be negative for highly dissimilar sequences.
If the similarity score is negative its value is set to zero.

The weight between query pocket with pseudo-sequence sq, and a pocket
in the library, with pseudo-sequence si is calculated as

wi =w(si|sq)= (Sim(sq,si))α∑
l

(Sim(sq,sl))α
, (3)

where l denotes a sum over the entire pocket library. α is a positive parameter
that determines the range of similarity scores that give high weights.

3 RESULTS
A schematic overview of the PickPocket strategy is shown in
Figure 2. Basically the processes of the approach are organized
into two parts: construction of a pocket specificity library and
construction of the PSSM for the query allele. For each MHC
molecule, which is characterized with peptide binding data, a PSSM
is derived, and a pocket library is constructed linking these PSSMs to
the pocket pseudo-sequences. Next, the ‘virtual’ PSSM for a query
MHC is constructed as the average of all library pocket PSSMs
weighted by the sequence similarity to the query.

3.1 Optimal weight function
We performed a LOO experiment to simulate the performance
of the PickPocket method with uncharacterized MHC receptors.
In the LOO experiment, all but one target alleles were included
in the PSSM pocket library, which was then used to test against
the excluded allele. By rotating the target across the 35 alleles in
the EvaluationSet-1, we calculated the mean LOO performance.

Fig. 2. Flowchart of PickPocket algorithm. (1) Construct PSSMs from
ligands data. (2) Extract pseudo-sequences for the pockets based on the
crystal structure of the MHC molecules. (3) Extract the position-specific
vectors from the PSSMs in association with pseudo-sequence to construct a
pocket library. Each pocket library entry is characterized by nine pairs, where
each pair consists of a list of pocket amino acids and a specificity vector.
(4 and 5) Input a query MHC, the algorithm retrieves the position-specific
vectors and calculates mean vectors weighted by pseudo-sequence similarity.
(6) The algorithm constructs a virtual PSSM for the allele in query. A full
size version of this figure is available in Supplementary Material Figure S1.

Two functions determining the virtual PSSM for the query allele
were attempted. In the simplest implementation, the query receptor
for each residue in the ligand was assumed to have the specificity
of the most similar library pocket and we therefore picked the top
one highest scoring library pocket according to Equation (2) to
represent the query receptor. This approach had an averaged LOO
performance value for the 35 alleles of 0.50. In the more advanced
implementation, the specificity for the query was calculated as the
weighted sum based on pocket similarities of all specificities in the
database [see Equation (3)]. We performed a study on an independent
dataset to determine the optimal value for the exponential damping
factor α in Equation (3). This dataset consists of more than 8000
peptide:MHC pairs with IC50 binding values covering 28 HLA-
A and -B alleles with no overlap to any other dataset included in
the article. The LOO performance for this dataset reached at a peak
when α was close to 10. This advanced weighting function increased
the performance to 0.60. This difference between the two pocket
assembly methods is statistically significant (P < 0.01, binomial
test).

3.2 Construction of virtual vectors for a query allele
The top one approach did perform much poorer than the weighted
sum approach for some particular alleles such as HLA-A*3001.
Here, the top one approach achieved a performance of 0.25, whereas
the weighted sum approach achieved a performance of 0.51. In the
top one approach, the query specificity at the two primary anchor
positions P2 and P9 is defined by the HLA-A*3002 allele. In spite
of the large similarity in the pocket residues of these two HLA
molecules [they share all but one amino acid in their P9 pseudo-
sequences (Nielsen et al., 2007)], these two alleles have highly
different C terminal binding specificities. The HLA-A*3001 has
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Fig. 3. PickPocket PSSM assembly for HLA-A*3001. Shown here are P9
pocket pseudo-sequences of HLA-A*3001, HLA-A*3002, HLA-A*0301
and HLA-A*1101, respectively. HLA-A*3002, HLA-A*0301 and HLA-
A*1101 are the top ranking library alleles with similarity to HLA-A*3001
at the pocket. The variation of amino acids at the pocket is highlighted
with underline. The binding specificity is represented with sequence logos
(Schneider and Stephens, 1990) with vertical scale in 2 bits. The Sim score
gives the amino acid similarity score as defined by Equation (3), and Weight
gives the relative weight of library PSSM.

a preference for the basic amino acid K, and HLA-A*3002 has
a preference for Y. This difference is not captured by the top one
approach.

An example to illustrate the reconstruction procedure adopted
in the PickPocket algorithm is shown in Figure 3, where a pocket
library was constructed including all alleles in the EvaluationSet-1
except HLA-A*3001. The PickPocket procedure was next applied
to construct the binding specificity of the HLA-A*3001 query allele
based on similarity between the query and library pocket sequences
using Equation (3).

At position 9 the query pocket sequence is DDTLYIIHYTW
for HLA-A*3001, and this sequence is compared with all library
entries of position 9 pocket sequences. It is noted that although
the pocket pseudo-sequence for HLA-A*3002 is ranking top
most against HLA-A*3001 at position 9, and weights 23% of
the synthesized vector, the next two pockets from HLA-A*0301
and HLA-A*1101, respectively, accounts for 15% each. After
averaging by weight of similarity, the preferential list of amino
acids is altered, and Lys (K) shows up as the most preferred
amino acid in the constructed specificity vector in accordance
with the known P9 binding preference of HLA-A*3001 (Lamberth
et al., 2008; Sidney et al., 2008). By adapting the ensemble
of multiple pockets, the PickPocket algorithm reduces the bias
towards one specific neighborhood pocket and is thus capable
of capturing subtle difference in binding specificity between
neighboring alleles.

Fig. 4. Comparison of the NetMHCpan and PickPocket performances as
a function of the number of ligand training data. Prediction methods were
trained with 5 ligands, 10 ligands and complete datasets for each allele,
respectively. The LOO performance values are average values over the 35
alleles in the EvaluationSet-1, and the Eval performance values are average
values over the 33 alleles from the EvaluationSet-2.

3.3 PickPocket is more robust when data are scarce
To investigate the robustness of the PickPocket method compared
with that of the artificial neural network-based methods such as the
NetMHCpan method, we constructed two sets of pocket libraries,
using a reduced number of only 5 or 10 ligands, respectively, for
each of the 35 alleles in the EvaluationSet-1. Likewise, we trained
LOO versions of the NetMHCpan method using 5, or 10 ligands for
each of the 35 alleles in the EvaluationSet-1. Since the performance
of neural networks depends crucially on the presence of negative
data, we added 100 randomly chosen natural peptides as negatives
for each of the 35 alleles.

The reduced datasets were also used to construct virtual PSSMs
for the alleles in the EvaluationSet-2. Here, a virtual PSSM was
constructed for the target allele as weighted sum of all members
(including the allele in question if present) in the library according
to Equation (3). The NetMHCpan method was likewise trained on
the reduced set of ligands including all allelic data. Figure 4 (LOO
bars) shows that the PickPocket method significantly outperformed
the neural network-based NetMHCpan when the methods were
trained on small datasets (P < 0.01, binomial test). NetMHCpan
only outperformed PickPocket if the methods were trained on the
complete set of data in EvaluationSet-1. A similar pattern was seen
when the methods were evaluated on the data in EvaluationSet-2
(Eval).

3.4 Comparison of performances of PickPocket, ADT,
KISS and NetMHCpan methods

A 5-fold cross-validated training on the EvaluationSet-1 was
conducted using the data partitioning of Peters et al. (2006), for
the PickPocket, ADT (Jojic et al., 2006), KISS (Jacob and Vert,
2008) and NetMHCpan (Nielsen et al., 2007). The performance
values for the ADT and KISS methods are taken from the paper
by Jacob and Vert (2008) and are given in terms of the average
area under the receiver operating characteristic (ROC) curve (AUC)
using a classification threshold of 500 nM. Likewise we here give
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Fig. 5. Average predictive performance values in terms of the AUC for the
35 alleles in the Peters et al. benchmark. ADT and KISS performances were
taken from (Jacob and Vert, 2008).

the performance of the PickPocket and NetMHCpan methods in
terms of the average AUC values over the 35 alleles in the
benchmark. We further include a Consensus method defined as the
average of the output values from the PickPocket and NetMHCpan
methods, respectively. The result of the 5-fold cross-validation
benchmark is shown in Figure 5. The figure shows that the
PickPocket method performs comparably with the other pan-specific
prediction methods. It significantly outperforms the ADT method
(P < 0.005, binomial test), and performs comparably with KISS
(P = 0.5, binomial test). NetMHCpan significantly outperforms the
three other methods.

Next, a LOO experiment was performed for the 35 alleles in
the EvaluationSet-1 comparing the predictive performance of the
PickPocket method to that of the NetMHCpan (Nielsen et al.,
2007) method. In this comparison, both methods were trained and
evaluated on identical datasets. The predictive performance for
the PickPocket method on the data in the EvaluationSet-2 and
EvaluationSet-3 was estimated using the complete library of the 35
alleles from EvaluationSet-1. For the EvaluationSet-2 a comparison
to the pan-specific MHC class I binding prediction methods ADT
(Jojic et al., 2006) and KISS (Jacob and Vert, 2008) is included.
The ADT method was also trained on the EvaluationSet1 data,
so the predictive performance should be directly comparable. The
predictive performance values for the two latter methods were taken
from (Zhang et al., 2008). Note, that all prediction methods were
trained on human MHC binding data only.

Figure 6 shows that the PickPocket and NetMHCpan methods
perform better than the ADT and KISS methods when evaluated
on the 33 alleles in the EvaluationSet-2. The NetMHCpan method
outperforms the PickPocket method on human MHC data (LOO
and Eval). The Consensus method achieved superior or comparable
predictive performance to either of the two methods in all five
experiments. Both the PickPocket and NetMHCpan methods show a
significant though decreased predictive performance for non-human
data. This decrease is most likely due to the weaker similarities
between these MHC molecules represented by the pseudo-sequences
and the MHC molecules forming the pocket library. However,
it is striking to observe that the PickPocket method outperforms
NetMHCpan on all three non-human datasets. The pan-specific
method depends on learning the binding specificity by leveraging
information from neighboring MHC molecules. In the PickPocket
method, this leveraging is determined from amino acid similarities

Fig. 6. Performance of PickPocket, NetMHCpan, Consensus,ADT and KISS
methods on a large-scale benchmark experiment covering 35 human and
19 non-human primate and mice HLA class I alleles. LOO refers to the
LOO experiment for the 35 alleles in the EvaluationSet-1. Eval refers to
the 33 alleles in the EvalationSet-2. Patr, Mamu and mouse refer to the
eight Chimpanzee (Patr), five Macaque (Manu) and six mouse alleles in
the EvaluationSet-3. ADT and KISS performances were taken from (Zhang
et al., 2008).

Fig. 7. Performance versus the distance to the nearest neighbor of PickPocket
and NetMHCpan methods, respectively. The distance to nearest neighbor
is estimated from the MHC pseudo-sequence as described in Nielsen
et al. (2007). For each HLA-A and HLA-B the predictive performance
was calculated using the LOO setup, and for the non-human alleles the
performance was estimated using method trained on HLA receptor data only.
The solid line gives the least square fit for the PickPocket data, and the dotted
line the least square fit for the NetMHCpan data. The insert to figure displays
a binned histogram of the performance versus the distance to the nearest
neighbor of PickPocket, NetMHCpan and Consensus methods. A full size
version of this figure is available in Supplementary Material Figure S2.

between the binding pocket amino acids as defined by the Blosum
substitution scoring matrix. For the NetMHCpan method, this
similarity measure between MHC molecules is inherent to the
method, and is learned from the training data implicitly by the
neural network. A very large fraction of the alleles in the training
set has close distances to their nearest neighbors (Fig. 7). It is hence
likely that the NetMHCpan similarity measure is biased towards
learning these short distance similarities, and hence performs poorly

1297



[17:01 8/4/2009 Bioinformatics-btp137.tex] Page: 1298 1293–1299

H.Zhang et al.

for weaker similarities that are unknown to the methods. Details
of the performance values for the non-human alleles are given in
Supplementary Table 3.

The difference in predictive performance between the different
methods can further be quantified by investigating how the
predictive performance depends on the coverage of the neigh-
borhood surrounding each MHC molecule. It is apparent that both
the NetMHCpan and PickPocket methods depend crucially on the
ability to leverage from specificities of neighboring MHC molecules.
We have earlier demonstrated how the distance (as measured
in terms of amino acid similarity between pseudo-sequences) to
the nearest specificity-wise characterized MHC molecule relates
directly to the predictive performance of the NetMHCpan method
for uncharacterized MHC molecules (Nielsen et al., 2007). Figure 7
gives the results of a similar analysis carried out for the PickPocket
and NetMHCpan methods, respectively, for the 54 alleles included in
the benchmark. From the figure, the strong correlation between the
distance to the nearest neighbor and the predictive performance of
both the PickPocket and NetMHCpan method is apparent. For both
methods, the figure confirms a decreased predictive performance
as a function of the distance to the nearest neighbor. However,
the decrease appears to be stronger for the NetMHCpan method.
Comparing the average predictive performance for the two methods
for the set of alleles with a nearest neighbor allele distance >0.2, we
find that the PickPocket significantly outperforms the NetMHCpan
method (P < 0.01, binomial test). In the insert to Figure 7 is shown
the binned histogram of the performance of PickPocket, NetMHCpan
and Consensus methods, respectively, versus the distance to the
nearest neighbor. This figure demonstrates that the Consensus
method achieves superior or comparable predictive performance to
either of the two methods in all distance intervals.

In general, the performance of MHC peptide binding prediction
methods depend on sufficient numbers of binders being available
characterizing the MHC molecule in question (Yu et al., 2002). In the
extreme case where no binding data are available, conventional
allele-specific prediction methods will fail to provide meaningful
predictions. Pan-specific methods on the other hand can to a high
degree also in such cases make accurate predictions (Hoof et al.,
2008; Nielsen et al., 2007). Figure 8 illustrates how the performance
of the allele-specific and pan-specific methods depends on the
number of binding data being available for a given allele. Here,
the predictive performance of an allele-specific method is compared
with a series of pan-specific predictors as a function of the number
of binding data for the particular allele. In this analysis, the Self-
method was defined as the corresponding PSSM matrix from the
pocket library. The figure shows that for alleles characterized with
a large number of binding data (>200), the allele-specific Self-
method performs better than PickPocket. The Self-method on the
other hand fails to make any meaningful predictions for the HLA-
B*3901 allele, since the allele was not included in the training
dataset. For this allele, the PickPocket method maintains a high
performance of 0.37. The figure demonstrates that the PickPocket
method for allele characterized with less than 50 binders outperforms
the allele-specific Self-method. Moreover, the NetMHCpan method
is shown to outperform both the PickPocket method for alleles
characterized with 50 or more binders, thus confirming earlier
finding that artificial neural networks are superior to matrix-based
methods in characterizing MHC binding specificities where data are
abundant (Peters et al., 2006; Yu et al., 2002).

Fig. 8. Histogram of the average predictive performance as a function of
the number of binding peptides in the training data for the same allele. Each
method was trained on the dataset defined in Peters et al. (2006) and evaluated
on the EvaluationSet-2 covering 33 human HLA class I alleles. Self: Self–
SMM matrix from pocket library. ADT performance values were taken from
Zhang et al. (2008). One allele HLA-B*3901 is characterized with zero
binding data in the training dataset.

4 DISCUSSION
We have here presented a simple yet powerful method that is
capable of generalizing from MHC molecules of known specificity
to MHC molecules with unknown specificity. Recently, a number
of pan-specific MHC:peptide binding predictive methods have
been proposed (Jacob and Vert, 2008; Jojic et al., 2006; Nielsen
et al., 2007; Zhang et al., 2005). These methods are all quite
complex, making it hard to understand the mechanism behind their
generalization abilities. Here, we demonstrate, through a powerful
though simple and intuitive algorithm, how pan-specific prediction
methods could work. This may help us interpreting the results
and make it possible for us to fine-tune and improve the more
advanced algorithms. In the context of MHC:peptide binding, we
demonstrate that, similar binding pockets share similar binding
specificities. From this observation, we are able to construct a library
of pockets. In the application of the library, one first formulates
the representative sequence of the pockets for the query allele,
then searches the library for sequence-similar pockets, and finally
reassembles the PSSM by merging the specificity vectors associated
with the pockets.

It has earlier been demonstrated that PSSMs in contrast to
artificial neural networks, can be constructed with high predictive
performance even if they were trained on very limited data
examples (Lundegaard et al., 2004; Yu et al., 2002). Here, this
result is generalized to pan-specific receptor binding methods.
Characterizing each receptor variant using PSSMs constructed
from limited amount of ligand data allows for generalization
to other receptor variants on which the method is not trained.
The performance is demonstrated high in contrast to artificial
neural network-based approaches trained on limited datasets.
When the number of peptide binders per allele in the training
set is 10 or less the accuracy of the neural network-based
method NetMHCpan decreased markedly, whereas PickPocket still

1298



[17:01 8/4/2009 Bioinformatics-btp137.tex] Page: 1299 1293–1299

PickPocket method for predicting binding specificities

maintained considerable accuracy. This shows that the PickPocket
algorithm, together with PSSM construction algorithms dealing
with limited data amounts is especially useful in often encountered
situations where there is not enough data available for conventional
data-driven approaches to succeed. This is for instance the situation
for most non-human species (chicken, cattle, pig, etc.) where very
limited amount of peptide binding data exists to characterize the
polymorphism of the MHC binding specificities.

To investigate the generalization ability of the PickPocket method,
we further used the algorithm to infer the binding specificity for
a large set of human and non-human alleles. In the benchmark,
we compared the performance of the PickPocket method with that
of NetMHCpan, and a consensus method defined in terms of a
simple average of the log-transformed binding affinity output values
from the PickPocket and NetMHCpan-1.0 methods, respectively.
This benchmark demonstrated that the PickPocket method achieved
significantly higher predictive performance values than NetMHCpan
for alleles that were distant to any MHC molecule with characterized
binding specificity. In particular, the benchmark with non-human
alleles, demonstrated that the PickPocket method achieved a higher
performance than a neural network-based method trained on the
same data. Further, the Consensus method was shown to achieve
superior or comparable predictive performance to either of the two
methods for all datasets, independently on the distance to the nearest
MHC molecule with characterized binding specificity. This places
great promises to future applications integrating the two approaches
to achieve higher predictive performance.

Even though we in this article have only used MHC receptors as
examples, the method is general in its nature and may be used in
many other contexts where large receptor families are found.
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