
[18:17 15/6/2009 Bioinformatics-btp275.tex] Page: 1609 1609–1616

BIOINFORMATICS ORIGINAL PAPER Vol. 25 no. 13 2009, pages 1609–1616
doi:10.1093/bioinformatics/btp275

Sequence analysis

A practical algorithm for finding maximal exact matches in large
sequence datasets using sparse suffix arrays
Zia Khan1,2,∗, Joshua S. Bloom2,3, Leonid Kruglyak2,4,5 and Mona Singh1,2,∗
1Department of Computer Science, 2Lewis-Sigler Institute for Integrative Genomics, 3Department of Molecular
Biology, 4Department of Ecology and Evoluationary Biology and 5Howard Hughes Medical Institute, Princeton
University, Princeton, New Jersey 08544, USA

Received on January 28, 2009; revised on March 3, 2009; accepted on April 19, 2009

Advance Access publication April 23, 2009

Associate Editor: John Quackenbush

ABSTRACT

Motivation: High-throughput sequencing technologies place
ever increasing demands on existing algorithms for sequence
analysis. Algorithms for computing maximal exact matches (MEMs)
between sequences appear in two contexts where high-throughput
sequencing will vastly increase the volume of sequence data: (i)
seeding alignments of high-throughput reads for genome assembly
and (ii) designating anchor points for genome–genome comparisons.
Results: We introduce a new algorithm for finding MEMs. The
algorithm leverages a sparse suffix array (SA), a text index that stores
every K-th position of the text. In contrast to a full text index that
stores every position of the text, a sparse SA occupies much less
memory. Even though we use a sparse index, the output of our
algorithm is the same as a full text index algorithm as long as the
space between the indexed suffixes is not greater than a minimum
length of a MEM. By relying on partial matches and additional text
scanning between indexed positions, the algorithm trades memory
for extra computation. The reduced memory usage makes it possible
to determine MEMs between significantly longer sequences.
Availability: Source code for the algorithm is available under a BSD
open source license at http://compbio.cs.princeton.edu/mems. The
implementation can serve as a drop-in replacement for the MEMs
algorithm in MUMmer 3.
Contact: zkhan@cs.princeton.edu; mona@cs.princeton.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
With the advent of high-throughput sequencing technologies, the
possibility that genome sequencing and re-sequencing will become
a routine experiment in a genetics lab is increasingly becoming a
reality. These new sequencing technologies place ever increasing
demands on existing algorithms for sequence analysis. The demands
originate from sheer sequence output due to relatively inexpensive
short read sequencing technologies and the growing number of
relatively similar sequenced genomes (Pop and Salzberg, 2008).
Further computational challenges are expected from experimental
sequencing technologies that promise read lengths that are thousands
of base pairs in length within a decade (Eid et al., 2009).Assembly of

∗To whom correspondence should be addressed.

genomes using these technologies and comparison of the resulting
closely related genomes will be critical for new discovering new
biology, from uncovering genes, regulatory elements and large-scale
genomic reorganization to identifying variations between related
species and individuals.

Maximal exact matches (MEMs) are exact matches between
two strings that cannot be extended in either direction towards
the beginning or end of two strings without allowing for a
mismatch. Algorithms for computing MEMs between sequences
appear in two contexts where high-throughput sequencing will
vastly increase the volume of sequence data: (i) seeding alignments
of high-throughput sequencing reads for genome assembly and
(ii) designating anchor points for genome–genome comparisons
when the two genomes are relatively similar. These two tasks
may be performed in a variety of ways, with different strategies
preferred for different situations. Putative alignments between reads
for genome assembly are typically found using a seed, typically
a short, fixed-length exact match (Myers et al., 2000). MEMs
become computationally advantageous seeds when reads share long
subsequences; alignments seeded using fixed-length exact matches
will process many seeds from these subsequences and run relatively
slower. In genome comparison, the prevailing strategy for comparing
similar genomes involves finding anchor points containing stretches
of exact or near exact matches between the two genomes (Bray and
Pachter, 2004; Choi et al., 2005; Istrail et al., 2004; Kurtz et al.,
2004; Schwartz et al., 2003). Algorithms differ in the type of anchor
points they use and how they process these anchor points. Their
performances vary depending on the genome comparison task at
hand. MEMs are one type of anchor point that is best suited for
comparing closely related genomes (Bray and Pachter, 2004; Choi
et al., 2005; Kurtz et al., 2004).

The classical approach to finding MEMs between sequences S and
P involves creating a concatenated sequence S#P, indexing the
resulting string in a suffix tree, and searching for maximal repeats
that span the special character # (Gusfield, 1997). Indexing both
strings is costly in terms of space because of the large amount of
memory occupied by the suffix tree. As a result, this approach has
given way to a technique that involves indexing only one reference
sequence in a suffix tree (Abouelhoda et al., 2004, 2006; Kurtz et al.,
2004). Even though indexing is only the smaller of the two sequences
in a suffix tree saves a considerable amount of memory, the size of the
index still remains a significant problem. Practical implementations

© The Author 2009. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org 1609

http://compbio.cs.princeton.edu/mems


[18:17 15/6/2009 Bioinformatics-btp275.tex] Page: 1610 1609–1616

Z.Khan et al.

use highly engineered suffix trees to save even more memory (Kurtz,
1999; Kurtz et al., 2004).

Recent work has focused on using the SA, a space-efficient
alternative to the suffix tree, to further decrease the memory occupied
by the index (Manber and Myers, 1993). Augmented with additional
information, the ‘enhanced’ suffix array (ESA) provides the same
functionality as the suffix tree and can be used to find MEMs
between sequences (Abouelhoda et al., 2004). The ESA can be used
to find MEMs using the classical approach in which both sequences
are indexed (Höhl et al., 2002) or by indexing only a reference
sequence (Abouelhoda et al., 2006). However, even the ESArequires
a significant amount of engineering in order to limit the size of the
index (Abouelhoda et al., 2004).

One of the key features of MEMs is the absence of a constraint
on the cardinality of the match. We observe that the lack of this
constraint allows the use of a sparse index. In contrast to a full-text
index, a sparse index stores only a subset of positions of the text,
saving a significant amount of memory. If the subset of positions
indexed is not ‘too’sparse, a sparse index can act like a full-text index
(Kärkkäinen and Ukkonen, 1996). By sifting through and confirming
partial matches, an algorithm that uses a sparse index trades memory
for additional computation.

Our main contribution is an algorithm for finding MEMs using
a sparse SA. Our approach adapts several existing ESA techniques
to find MEMs using sparse SAs and introduces a new technique
that helps simplify the algorithm (Abouelhoda et al., 2004, 2006;
Kurtz et al., 2004). Instead of storing precomputed suffix links as
typically done on suffix trees and ESAs, our second contribution
is a practical method for simulating suffix links in the sparse
SA. Suffix links play a key role in accelerating algorithms for
locating MEMs. Our third contribution is a new technique for
parallelizing the computation of MEMs that uses properties specific
to a sparse SA. We show how this new technique can be used to
offset the additional computational cost associated with the sparse
index. We compare our parallel sparse suffix array algorithm with
MUMmer (Kurtz et al., 2004), which finds MEMs using suffix
trees, and vmatch (Abouelhoda et al., 2004), which finds MEMs
using an ESA. By finding MEMs between sequences ranging
in length from 5 Mb to 3 Gb, we show that it is possible to

use sparse SAs to obtain MEMs between significantly longer
sequences.

2 PRELIMINARIES
We assume the reference string S[0,...,n−1] of size n over
an alphabet �={

$,A,C,G,T
}

(e.g. DNA) has a termination
character S[n−1]=$ that occurs nowhere else in the string and
is lexicographically less than all the characters that occur in the
alphabet. The suffixes of the reference string are zero indexed by
their position in the original string (Fig. 1, left). The SA is an array
of these suffix positions where the corresponding suffixes have been
ordered by a suffix sorting algorithm (Fig. 1, middle). That is, SA[i]
gives the suffix specified by position which is i-th in lexicographical
ordering.

Because the prefix of any suffix is the occurrence of a substring
match in the original reference string, SAs accelerate searches for
exact matches. Binary search locates the right and left interval
containing the matching suffix and hence the positions of substring
occurrences. We use a top-down approach to SA searching. For a
query string (or genome) P[0,...,m−1] of length m, top- down
search starts from some character position p in the query P advancing
one character at a time to successively narrow down an interval [s..e]
with start index s and end index e in the suffix array. The interval
contains the positions of these exact matches in the original reference
string. We use the 3-tuple d : [s..e] to record the next position p+d
to match in the query P and current interval [s..e] in the SA. Note d
corresponds to the length of the match starting from position p. As
matches grow by calls to binary search, d increases and the interval
[s..e] becomes smaller.

An example of top-down search for the query P= iss at p=0 is
shown in Figure 1 (right). The initial interval is always the entire
SA 0:[0..11]. Binary search for the first character ‘i’ in the query
narrows the interval to 1:[1..4] and the search for ‘ss’ leads to the
interval 3:[3..4], which gives the positions 4 and 1 of P= iss in the
original reference string.

Top-down search requires two key elements: binary search for left
and right ends of intervals (Supplementary Fig. 1). Binary search
relies on a single character comparison of the d-th character of the

Index

0

1

2

3

4

5

6

7

8

9

10

11

Suffix Suffix Text

0 mississippi$

1 ississippi$

2 ssissippi$

3 sissippi$

4 issippi$

5 ssippi$

6 sippi$

7 ippi$

8 ppi$

9 pi$

10 i$

11 $

SA LCP ISA Sorted Suffix

11 -1 5 $

10 0 4 i$

7 1 11 ippi$

4 1 9 issippi$

1 4 3 ississippi$

0 0 10 mississippi$

9 0 8 pi$

8 1 2 ppi$

6 0 7 sippi$

3 2 6 sissippi$

5 1 1 ssippi$

2 3 0 ssissippi$

0:[0..11] 1:[1..4] 2:[3..4] 3:[3..4]

11 “i”

10 10

7 7 “s” “s”

4 4 4 4

1 1 1 1

0

9

8

6

3

5

2

Fig. 1. The suffix indexes of the reference text S = mississippi$ listed in order (left). The SA is an array of integers where these indices are listed in
lexicographical order. LCP and ISA designate the longest common prefix (LCP) array and inverse SA, respectively (see text) (middle). Search for the
occurrences of P= iss in the SA by a top-down search one character at a time (right).

1610



[18:17 15/6/2009 Bioinformatics-btp275.tex] Page: 1611 1609–1616

Maximal exact matches using sparse suffix arrays

middle suffix S[SA[(s+e)/2]+d] with the P[p+d] character of the
query. Successive calls to the binary search for left and right interval
ends allow the algorithm to narrow down the interval containing the
query. If the current character P[p+d] in the query does not occur
in the next interval, a null ⊥ value is returned to designate that the
query is not found. We opt for this approach because it requires no
additional information, other than the SA itself and the input string,
and enables matching a query up until a mismatch is found, a key
operation in searching for MEMs.

MEMs require two additional arrays, namely the inverse SA (ISA)
and the LCP array. The is a mapping from a particular suffix index
to its position in the SA (Fig. 1, middle); that is, ISA[i] gives
the lexicographically ordered position of the i-th suffix. The ISA
can be constructed in linear time by scanning the SA along each
position j=0,...,n−1 and storing in the ISA the corresponding
position ISA[SA[j]]= j. The LCP array contains the length of the
LCP between successive sorted suffixes in the SA (i.e. LCP[i] is the
length of the LCP shared between SA[i] and SA[i−1] and if i=0,
it is set to −1 (Fig. 1, middle). The LCP array can be computed in
O(n) time (Kasai et al., 2001).

3 SPARSE SA
In contrast to full-text SAs, sparse SAs store every K-th suffix
of the text. Even though the idea of sparse suffix tree is over
a decade old, only recently have simple, practical algorithms
been introduced constructing sparse SAs (Ferragina and Fischer,
2007; Kärkkäinen and Ukkonen, 1996). We review the techniques
presented in Ferragina and Fischer (2007) for constructing sparse
SAs here: (i) Use America flag sort, a type of radix sort, to sort each
suffix up to the K-th character (McIlroy et al., 1993). (ii) Construct a
new reference text of length n/K, where each character is the bucket
number obtained by American flag sort. (iii) Build a SA, intSA,
of the new text using an algorithm that handles integer alphabets
(Larsson and Sadakane, 2007). (iv) Convert the SA into the sparse
SA of the original reference string S by multiplying each value in
the computed SA by K for i=0,...,n/K −1 (i.e. SA[i]=intSA[i]·K).

For all positions j=0,...,n/K −1, one can also construct
an inverse SA ISA[SA[j]/K]= j and, using a modified LCP
construction algorithm, the corresponding LCP array (Ferragina and
Fischer, 2007). An example of a sparse SA and the corresponding
ISA and LCP arrays are shown in Figure 2. In total, the sparse SA
index and the text will occupy 12n/K +n bytes, assuming integers
take 4 bit and text takes 1 byte. Even though they index every K-th
suffix in the text, we show in the remainder of the article that sparse
SAs can be used to find MEMs between two strings.

4 MEMS
MEMs are exact matches between two sequences that cannot be
extended in either direction toward the end or the beginning of
the sequences without introducing a mismatch (Abouelhoda et al.,
2006; Kurtz et al., 2004). The only constraint on MEMs is a
minimum length L. Without this constraint, a large number of
matches consisting of a small number of characters will be returned.
To find MEMs between a query string P and the reference string
S, the algorithm advances through each character position p in the
query string and attempts to find MEMs of sufficient length that
begin at p in the query string.

In order to find MEMs using sparse SAs, we adapt several existing
techniques for finding MEMs in full-text SAs. Specifically, we use
an approach where MEMs are found by maintaining two intervals
(Abouelhoda et al., 2006). These intervals are obtained by top-
down binary search at position p in the query string P. The first
interval d : [s..e] is found by matching at most L−(K −1) characters
(Supplementary Algorithm 1). For this interval, d is the length of
the current match, s is the start of the interval in the SA and e is
the end of the interval in the SA. By allowing for matches that are
K −1 characters <L in length, the entire match can be recovered by
scanning regions in between the sparsely indexed suffix positions
(Fig. 3a). The second interval q : [l..r] is found by matching as many
characters as possible, the longest possible match. For this interval,
q is the length of the current match, l is the start of the interval in
the SA and r is the end of the interval in the SA. Note that q : [l..r]
is a subinterval of d : [s..e], i.e. s≤ l, r ≤e, and q≥d.

If there are at least d ≥L−(K −1) matched characters at position
p in the query P, the algorithm uses both intervals to scan for MEMs
of length L. The use of these intervals is based on the observation
that every suffix corresponding to the first interval d : [s..e] has a
prefix of length L−(K −1) which matches the query string P at
position p. To determine whether each of these prefixes corresponds
to a MEM of length L, we need to find its left and right maximal
boundaries.

In order to find these MEMs, we use an approach that differs
from the maintenance of a stack and reliance on the structure of
the suffix tree present in traditional approaches for finding MEMs
(Abouelhoda et al., 2006; Kurtz et al., 2004). Using both intervals,
d : [s..e] and q : [l..r], we determine the length and position of right
MEMs. Right MEMs are matches between S and P that cannot be
extended any further towards the end of the strings.

The algorithm finds these right MEMs by ‘unmatching’characters
in the maximum length match using LCP values at the start LCP[l]
and end LCP[r+1] of the interval (Supplementary Algorithm 3;
Fig. 3b). The first-right MEMs of length q are obtained directly

Index

0

1

2

3

4

5

Suffix Suffix Text

0 mississippi$

2 ssissippi$

4 issippi$

6 sippi$

8 ppi$

10 i$

SA LCP ISA Sorted Suffix

10 –1 2 i$

4 1 5 issippi$

0 0 1 mississippi$

8 0 4 ppi$

6 0 3 sippi$

2 1 0 ssissippi$

0:[0..5] 1:[1..1] 2:[1..1] 3:[1..1]

10 ’i’ ’s’ ’s’

4 4 4 4

0

8

6

2

Fig. 2. Sparse SA example. The sparse suffix indexes for K =2 of the reference text S = mississippi$ listed in order (left). Compare to Figure 1. The
corresponding sparse SA, ISA and LCP arrays (middle). Search for the occurrences of P= iss in the sparse SA locates only one string match (right).

1611



[18:17 15/6/2009 Bioinformatics-btp275.tex] Page: 1612 1609–1616

Z.Khan et al.

mississippi$

* * * * * *

0 iss
1 ss
2
3
4 iss
5 ss
6

right maximal length 6,
position 1

SA LCP Suffix

1 4 ississippi$
0

right maximal length 4,
position 4

SA LCP Suffix

4 issippi$
1 4 ississippi$

0
)b()a(

Fig. 3. (a) Partial matches at successive locations in the query P= issxiss
and K =2 sparsely indexed string S = mississippi$. The asterisk indicates
an indexed position and the numbers in the left column designate positions
in the query P. A match of ‘ss’ can be used to recover the MEM ‘iss’ by
scanning left of the match and checking for left maximality. (b) Here, we
consider another query P= ississ to find MEMs of length ≥4 in the full text
K =1 SA. At the initial position in the query p=0, the interval of a right
maximal match of length 6 at position 1 in the reference is found by top-down
search. Examining neighboring LCP values, the algorithm ‘unmatches’ the
characters ‘iss’ to find a second right maximal match ‘issi’ of length 4.

from the interval q : [l..r]. Observe that the LCP of the set of suffixes
indexed between l and r corresponds to the maximum length q, and
that both LCP[l] and LCP[r+1] must be less than this value, or
otherwise the interval corresponding to the maximum length match
could be expanded. Thus, q′=max(LCP[l], LCP[r+1]) is the length
of the next longest match and the minimum LCP value of the interval
with characters unmatched.

Using the new LCP value, the interval can be expanded to the
left l= l−1 until LCP[l|<q′ and the right r =r+1 until LCP[r+
1]<q′. Each array index visited as these intervals are expanded has a
corresponding suffix position in the SA, and each of these suffixes in
the SA must be right maximal matches of length q′. This expansion
process continues as long as q′ ≥d the length of the right maximal
matches collected are greater than the minimum-length match.

Once a right maximal match and its corresponding length is found,
the algorithm determines left maximality by scanning to the left of
the right maximal match (Supplementary Algorithm 4). Because,
the reference string S is indexed at every K-th suffix position, the
algorithm must scan up to K characters to the left of the match. The
scan is stopped at a mismatch or at the beginning of either string.
The resulting left maximal match is stored only if it meets the length
constraint ≥L.

Approaches that rely on the structure of the suffix tree, such as
the ESA approach in Abouelhoda et al. (2006), have complexity
O(m+R), where m is the length of matched query sub-string and R
is the number of right maximal matches. In contrast, our approach
has complexity O(mlogn+Q) where Q is the number of length m=
L−(K −1) matches of a query sub-string in the sparse SA.

At this point, the algorithm can advance to the next position p+1
of the query P and reset the minimum length interval d : [s..e] and
the maximum length interval q : [l..r] both to be 0 : [0..n/K −1] the
maximum- and minimum-length intervals, and match again from
this new query string prefix. However, this naive algorithm will
repeat all the work required to obtain the d−1 and q−1 characters

Index SA Suffix

0 11

1 10

2 7

3 4 issippi$

4 1 ississippi$

5 0

6 9

7 8

8 6

9 3

10 5

11 2

ISA Suffix

5

4

11

9

3

10

8

2

7

6

1 ssippi$

0 ssissippi$

LCP Suffix

–1

0

1

1

4

0

0

1

0 sippi$

2 sissippi$

1 ssippi$

3 ssissippi$

Fig. 4. Suffix link simulation for the full text K =1, example in Figure 1.
Top-down binary search for the query P= ‘is’ narrows down the interval
[3..4] (left). From [3..4], we can use the ISA for K =1 to compute
a new interval l=ISA[SA[l]+1]=10 and r=ISA[SA[r]+1]=11(middle).
However, the interval does not correspond to the interval [8..11], obtained
by top-down search of the single character P= ‘s’ query. The interval is
obtained by expanding the left side of the interval using values ≥1 (in bold)
in the LCP array (right).

of the minimum- and maximum-length matches, respectively. Suffix
links offer a way of avoiding the additional work of matching these
characters again. In the next section, we describe an approach that
does not rely on having pre-computed and stored suffix links, but
instead uncovers them with extra computation.

5 SIMULATING SUFFIX LINKS
Suffix links are explicitly represented in a suffix tree. A suffix link,
along with some counting information, allows any algorithm to jump
from the node in the suffix tree that is reached by matching P[p...p+
d] to the node in the suffix tree is reached by the match P[p+1...(p+
1)+(d−1)], completely eliminating the O(d) time required to re-
match starting from position p+1. Suffix links are by-products of
classical algorithms for suffix tree construction, and they are key to
accelerating algorithms for finding MEMs (Gusfield, 1997).

In contrast to the suffix tree, an SA does not contain any explicit
suffix link information. In order to address this limitation, the
approach used by the ESA attempts to mimic the structure of the
suffix tree to recover suffix link information (Abouelhoda et al.,
2004). By augmenting intervals in the SA with child and sibling
data, the ESA mimics the structure of nodes and edges of a suffix
tree. This allows top-down traversal of the underlying suffix tree
structure and forms the basis computing the equivalent of suffix
links (Abouelhoda et al., 2004); Section 7.1). Unfortunately, storing
this additional information without ballooning the size of the index
requires a complex scheme that relies on the storage of small
numbers and bucketed positions along the SA [see end of Section 6.1
and Section 8.1 in Abouelhoda et al. (2004)].

Instead of mimicking the structure of a suffix tree, we use an
alternate approach to simulating suffix links in the SA. The approach
we adopt is much simpler than the techniques used by the ESA.
We assume we have a next match query position and interval d :
[l..r] having matched from query position P[p]. We use the ISA to
compute the left l=ISA[SA[l]/K +1] and right r=ISA[SA[r]/K +1]

1612



[18:17 15/6/2009 Bioinformatics-btp275.tex] Page: 1613 1609–1616

Maximal exact matches using sparse suffix arrays

ends of a new interval in the SA. Using the ISA, the algorithm
obtains the position in the SA corresponding to the suffix with the
first K characters of the matched part of the query removed. The key
problem with using the ISA is that the new interval q : [l ...r] where
q=d−K may not correspond to the same interval obtained by top-
down search with the P[p+K ...(p+K)+(d−K)]. In particular, this
interval q : [l..r] is only guaranteed to be a contained in the interval
obtained by the top-down search.

In order to solve this problem, we expand the interval by a
process we call LCP expansion (Fig. 4). The approach preserves
q=d−K characters that have been matched already in the query P.
We advance the left l= l−1 and right r =r+1 ends of the interval
until the end of the array is reached or until a value <q is reached at
the left LCP[l] and right LCP[r+1] end of the interval. In addition,
we limit this process to 2qlogn steps to assure the algorithm runs in
O(m2 logn) time where m is the length of the query and n is the length
of the reference (i.e. no worse than the naive algorithm for finding
MEMs using top-down binary search). Inspite of its poor worst case
performance, we found this simple approach to simulating suffix
links works much faster in practice.

6 NEW PARALLELIZATION TECHNIQUE
The sequential version of the algorithm, as presented above, trades
extra computation for memory. The index occupies much less
memory since only a subset of the suffixes are stored. The extra
computation primarily originates from the additional scanning
required to locate left maximal matches after right maximal matches
are found and from the number of matches of length L−(K −1) that
must be examined for right and left maximality. By decreasing the
threshold on the length of these matches, a much larger number of
these matches must be processed with increasing values of K .

The primary way to offset this additional computation is to use
parallel processing. If there are multiple query sequences, one clean
and simple way to apply parallel processing is to distribute the
computation of each query sequence to individual processors. In fact,
the recent implementation MUMmerGPU uses such a parallelization
scheme to take advantage of the many specialized CPUs on modern
graphics processors (Schatz et al., 2007). Our algorithm, including
other approaches such as MUMmer and vmatch, can also be
parallelized by assigning query sequences to multiple CPUs on a
multi-core machine or, with the requisite modifications, a graphics
processor.

When there is only one query sequence, one can try to split the
query sequence and assign each part to a processor. Unfortunately,
this approach has the property that it will miss MEMs that span this
split. In the case of genomic sequences, this data may be split by
chromosome; however single choromosomes as long as 1 GB are
known (Paux et al., 2008). To better deal with longer sequences,
we introduce a simple parallelization technique that exploits how
suffix links are applied in sparse SAs. Specifically, we focus on
the first set of positions p=0,...,(K −1) in the query P that must
be matched. For values K >1, the acceleration provided by the
suffix link simulation technique advances the algorithm p=p+K
characters in the query string. If the algorithm starts at p=0, then
it must advance to p=K , skipping all of K −1 initial positions of
the query P. Consequently, the algorithm must be run for all of the
initial positions p=0,...,K −1 in the query string P. This leads to
a simple way to design a parallel version of the algorithm: run an

independent process for each value initial prefix p=0,...,(K −1)
and combine the results.

This parallelization technique works best for small values of K
because of diminishing returns from the suffix link acceleration. The
simulated suffix link advances K characters at every step, but it also
requires at least K characters to be matched before the suffix link
acceleration can be applied. If a region of the query P contains few
short matches with the reference sequence S, this acceleration will
rarely be applied.

7 EXPERIMENTAL RESULTS

7.1 Genome comparison anchor points
We now describe how our approach performs in uncovering MEMs
in a wide range of genome comparison scenarios. We compare the
parallel version of our sparse SA implementation for K =2,3,4,
using 2, 3 and 4 processors, respectively, against our sequential,
full SA implementation (K =1). We compare these approaches to
two sequential algorithms for computing MEMs: MUMmer which
is based on suffix trees, and vmatch which is based on an ESA. For
K =2,3,4, we use the parallel version of our algorithm in order to
demonstrate that our new parallelization technique can effectively
use multiple CPUs to offset the additional computation required
by the sparse SA. Our experiments show how close these parallel
version can come to the upper bound provided by the sequential
full-text algorithms.

For our approach, we implemented the algorithm described above
with just three additional optimizations: (i) We stored the LCP array
in just over 1 byte, storing values ≥255 in an index sorted array.
The large values in the sorted array were accessed by binary search
(Abouelhoda et al., 2004). (ii) We used a modified top-down search
that saves the information from binary search for the left interval to
speed up search of the right interval (Ferragina and Fischer, 2007).
In addition, the parallelization was implemented using the POSIX
threads library.

We compared our approach with the open-source MUMmer
version 3.20 and the closed-source vmatch version 2.0. We used
the following command line for MUMmer 3.20: mummer -b -l L -
maxmatch -n ref.fasta query.fasta > output for reference genome and
query fasta files, respectively. We used the following two commands
for vmatch 2.0: mkvtree -db ref.fasta -allout -v -pl -dna -indexname
index; vmatch -qspeedup 2 -l L -d -p -q query.fasta index > output.
We used the 32 bit version of vmatch to ensure vmatch would use
4 bit integers for storing suffix positions. The commands assured
that MEMs of length L, including reverse complement MEMs,
were computed by both implementations. All methods were run on
a 4-core Intel Xeon 2 GHz machine with 16 GB of RAM. Total
run time was measured using the GNU time command. The peak
memory was measured by calling ps to determine resident memory
usage every second during the program’s execution. In order to
assure fair comparison, our implementation used 1 byte characters
for sequence data. We did not make the additional optimization of
encoding DNA sequences using 2 bit per base.

First, we considered the genomes present in the original MUMmer
3 paper (Kurtz et al., 2004). We selected a minimum MEM length
L so that the run time was not dominated by writing the MEM
positions to disk. The timing and memory results are shown in
Table 1. Furthermore, as a sanity check, we confirmed that the same

1613



[18:17 15/6/2009 Bioinformatics-btp275.tex] Page: 1614 1609–1616

Z.Khan et al.

Table 1. Total run time in seconds on a 4-core 2 GHz Intel Xeon CPU on the DNA sequences benchmarked in Kurtz et al. (2004) [panel (a)] and memory
usage in megabytes on the same sequences [panel (b)]

Reference Size Query Size L MUMmer vmatch K =1 K =2 K =3 K =4

Panel (a) Run time in seconds (K-core/1-core)
Escherichia coliK12 4.6 Mbp E.coliO157:H7 5.5 Mbp 20 13.75 9.86 10.54 7.72/15.86 9.83/31.46 14.98/53.88
Aspergillus fumigatus 28.0 Mbp A.nidulans 30.1 Mbp 20 109.72 75.71 82.17 61.93/119.06 79.48/184.89 177.90/272.01
Saccharomyces cerevisiae 13.0 Mbp S.pombe 13.8 Mbp 20 38.58 31.85 30.93 24.15/35.90 32.27/91.63 54.10/162.98
Drosophila melanogaster2L 22.2 Gbp D.pseudoobscura 150.0 Gbp 25 400.42 360.89 337.14 266.31/525.87 402.70/879.34 774.03/2090.30
Homo sapiens21 44.7 Gbp Mus musculus16 99.2 Gbp 50 316.08 244.22 267.72 166.91/354.17 239.78/703.02 479.04/1305.70

Panel (b) Memory usage in megabytes
Escherichia coliK12 4.6 Mbp E.coliO157:H7 5.5 Mbp 20 77.38 44.78 59.84 39.21 32.46 29.07
Aspergillus fumigatus 28.0 Mbp A.nidulans 30.1 Mbp 20 478.88 259.38 312.23 176.64 130.88 108.98
Saccharomyces cerevisiae 13.0 Mbp S.pombe 13.8 Mbp 20 200.03 116.31 153.24 95.39 76.97 67.70
Drosophila melanogaster2L 22.2 Gbp D.pseudoobscura 150.0 Gbp 25 502.67 460.62 299.67 188.82 153.26 136.27
Homo sapiens21 44.7 Gbp M.musculus16 99.2 Gbp 50 639.28 452.87 431.45 278.93 196.22 170.84

The minimum length L of the MEM is indicated in the corresponding column. K =1 corresponds to a full text SA. K >1 designates the use of a sparse SA that samples every Kth
position. Mbp denotes million base pairs. For K =2,3,4 the respective 2, 3, and 4 CPU core run time is paired with the single core run time (i.e. K-core/1-core).

Table 2. Total run time 4-core 2 GHz Intel Xeon CPU on full genomes [panel (a)] and memory usage in gigabytes on the same genomes [panel (b)]

Reference Size Query Size L MUMmer vmatch K =1 K =2 K =3 K =4

Panel (a) Run time
Drosophila simulans 139 Mbp D.sechellia 168 Mbp 50 10m1s 9m2s 8m0s 6m39s 8m37s 17m40s
Drosophila melanogaster 170 Mbp D.sechellia 168 Mbp 50 9m32s 10m8s 9m56s 8m14s 12m27s 23m14
Drosophila melanogaster 170 Mbp D.yakuba 167 Mbp 50 13m11s 11m56s 9m26s 8m29s 12m45s 28m15s
Mouse 2.6 Gbp Human 3.1 Gbp 100 F F F F 3h46m51s 9h1m38s
Human 3.1 Gbp Chimp 3.4 Gbp 100 F F F F 3h15m3s 6h41m36s

Panel (b) Memory usage in gigabytes
Drosophila simulans 139 Mbp D.sechellia 168 Mbp 50 2.19 1.30 1.44 0.79 0.57 0.47
Drosophila melanogaster 170 Mbp D.sechellia 168 Mbp 50 2.68 1.59 1.77 0.97 0.69 0.56
Drosophila melanogaster 170 Mbp D.yakuba 167 Mbp 50 2.68 1.60 1.81 0.98 0.70 0.57
Mouse 2.6 Gbp Human 3.1 Gbp 100 F F F F 11.09 9.10
Human 3.1 Gbp Chimp 3.4 Gbp 100 F F F F 12.97 10.47

F designates the program failed to run on the inputs. h, m, s designate hours, minutes and seconds, respectively. Mbp denotes million base pairs and Gbp denotes billion base pairs.
K =2,3,4, use 2, 3 and 4 cores, respectively.

exact MEMs were found by all of the algorithms tested. For K =1, a
sequential full SA, our approach is faster than open source MUMmer
while using considerably less memory, and is competitive with the
closed-source vmatch. Modifications to our open-source software
may enable further optimizations to the full SA option. For values
of K =2 and 3, the sparse MEM algorithm uses significantly less
memory than the full-text approaches; while the sparse SA approach
relies on extra computation, part of this computation can be offset
using the parallelization scheme described above. For K =4, we no
longer are able to offset the extra computation using parallelism,
with the run time becoming almost twice slower than MUMmer.
However, the memory used by our approach is a factor of 4 less
than the memory used by MUMmer.

Second, we tested our algorithm on four full genomes from
the Drosophila 12 genomes project (Table 2) (Drosophila 12
Genomes Consortium, 2007). We selected the genomes based on
their increasing evolutionary distance to examine any effects on run
time and memory usage that might be caused by decreasing sequence
similarity. As expected, the closest test case between D.simulans

and D.sechellia had the fastest run time using our algorithm. Again,
for values of K =2 and 3, the parallel version of the sparse MEM
algorithm achieved the same performance in run time as the full-text
sequential algorithms while using significantly less memory. For the
algorithm that used the least memory (K =4), we observed a factor
of 3 decrease in memory with an almost factor of 3 increase in run
time from the full text K =1 version. As before, we confirmed that
the same exact MEMs were found by all of the algorithms tested,
providing a sanity check of the results.

Finally, we scaled the inputs up to large mammalian genomes
(see also Table 2). We computed all MEMs of length L=100 or
greater for two test cases: (i) mouse genome (mm9) as the reference
and human genome (hg18) as the query; (ii) the human genome as
the reference (hg18) and the chimpanzee genome (panTro2) as the
query. We attempted to use MUMmer 3.20 and the 32 bit version
of vmatch 2.0 to compute MEMs, but both failed to load the entire
reference genomes, printing error messages. The 64 bit version of
vmatch attempted to build a full text index on the entire reference
genomes, but quickly ran out of memory in both cases. In contrast,

1614



[18:17 15/6/2009 Bioinformatics-btp275.tex] Page: 1615 1609–1616

Maximal exact matches using sparse suffix arrays

the parallel version our algorithm succeeded in computing MEMs
between these large sequences for K =3 and 4. Interestingly, the
algorithm ran in less time for the larger human and chimp inputs.
Because of the long stretches of sequence similarity known to exist
between these sequences, the suffix link acceleration was applied
more frequently.

7.2 High-throughput short read sequences
Using increasing values of K , we examined how memory usage
improved and run time increased when computing MEMs between
unpaired 454 reads from a 1000 Genomes Pilot Project and the
3.1 Gbp human genome (hg18) (Fig. 5). The computed MEMs
represent the first step of seeding alignments during assembly with
a reference genome and subsequent genotyping. The unpaired reads
were collected by the 454 contract sequencing center using a 454
GS FLX instrument, which generates reads on average of ∼ 500 bp
in length. The 1 330 318 reads were obtained from run SRR003636,
sample NA19240, population YRI_1.

With increasing values of K , we found that memory usage
diminished with the expected inverse of K pattern. The most
gains were provided at K =3 and diminished approaching K =10
(Fig. 5, left). In contrast, we were surprised to see that the time to
compute MEMs leveled off at K =7 (Fig. 5, right) . We believe
this occurred because the simulated suffix link requires at least
K characters to be matched before the MEMs algorithm uses the
link to advance in the query and ‘un-match’ K characters. Because
of this requirement, with increasing values of K , the suffix link
acceleration is applied less frequently. In effect, the algorithm was
approaching the performance of the naive O(m2 logn) algorithm for
computing MEMs. Interestingly, if the naive algorithm is fast enough
for the given application, the LCP array and the ISA arrays can be
eliminated entirely, saving a significant amount of space.

8 DISCUSSION
The algorithm presented in this work provides a computation versus
space trade-off to find MEMs between two or more sequences. We
show this trade off can be offset in part by introducing a parallel
version of the algorithm. Further, we emphasize that even though

we use a sparse index, the output of a full text index algorithm and
our sparse SA algorithm is the same as long as the index is not
‘too’ sparse L>K . In other words, the space between the indexed
suffixes is not greater than the minimum length L constraint on
MEMs. The sparse SA algorithm does not lose any MEMs because
it relies on partial matches and extra computation to recover all
of the MEMs.

In addition the length constraint L, several approaches have added
further restrictions on MEMs. Maximally unique matches add a
restrictive cardinality constraint (Kurtz et al., 2004). The MEM
must occur once in both the query and reference sequences, while
rare MEMs loosen this cardinality constraint slightly to find better
anchor points in genome comparison and EST alignment (Ohlebusch
and Kurtz, 2008). Enforcing cardinality constraints efficiently using
sparse SAs will be more computationally inefficient than enforcing it
using a full-text index since each partially matched position must be
checked to determine cardinality. In addition to cardinality, MEMs
have been restricted to occur at least once in all indexed genomes or
sequences, and again, full text indexing allows these to be discovered
more efficiently. We note that both of these filters, or even more
complex filters such as those used in Choi et al. (2005), can be
applied in a post-processing step after computing all MEMs.

The approach used by our algorithm is not the only approach
for trading memory for extra computation when the index on
the reference sequences occupies too much memory. Splitting
the reference sequence into parts and running an algorithm for
computing MEMs on each part one after the other is another way to
make this trade-off. This approach has two main downsides. First, it
assumes a way to split sequences that guarantees no MEM will span
the split. Second, it requries two or more separate large text indexes
to be loaded into memory one after the other in order to compute
MEMs for a single query sequence. This might be undesirable if
queries for MEMs are submitted one at a time or in small batches
(e.g. online database search or a client/server system). Each query
would require loading each half of the index when a sparse SA
could keep the entire index in memory. We emphasize that sparse
SA techniques presented in this work can also be combined with this
approach to enable the computation of MEMs in sequence datasets
even larger than those tested in this work.

4 6 8 10 12

6
8

10
12

K

m
em

or
y 

us
ag

e 
(g

ig
ab

yt
es

)

4 6 8 10 12

10
15

20
25

30
35

40
45

K

m
ill

is
ec

on
ds

 p
er

 re
ad

Fig. 5. Effect of increasing values of K on memory usage and MEM computation time using unpaired 454 reads from thae 1000 Genomes Project and the
3.1 Gbp human genome (hg18). For this evaluation L=100, we computed MEMs of length ≥100. Total memory usage in gigabytes on a 4-core 2 GHz Intel
Xeon CPU with 16 GB of RAM (left) and corresponding average per read computation time in milliseconds (right).

1615



[18:17 15/6/2009 Bioinformatics-btp275.tex] Page: 1616 1609–1616

Z.Khan et al.

We also comment on two future research directions. The first
relates to the LCP expansion process used for simulating suffix
links. The process requires both the ISA and the LCP array. We
speculate that perhaps these two arrays can be replaced by a
single array that allows the computation of suffix links. We note
that using a modified version of the algorithm in Manzini (2004),
we can compute the LCP array directly from the SA, a process
requiring 8n/K +n bytes for the LCP array, text and SA. It might
be possible to convert the LCP array in-place into this new array
for computing suffix links, thereby reducing memory usage and
improving the speed of the algorithm. Second, one limitation of
compressed text indexes is that they lack suffix links, which are
key to accelerating the computation of MEMs (Ferragina et al.,
2009). If these compressed indexes can be augmented with suffix
links, sparse indexes and compressed indexes can be compared
directly.

Lastly, we contribute an open-source implementation of our
algorithm that can serve as a drop-in replacement for the suffix
tree based MEMs algorithm in the popular MUMmer 3 system
(Kurtz et al., 2004). MUMmer 3 provides fast alignment of large-
scale DNA and protein sequences for genome–genome comparison
and, more recently, genome assembly. We expect that our initial
code base for SAs and sparse SAs can be further optimized and
improved, either within the context of MUMmer or within other
systems.

ACKNOWLEDGEMENTS
The authors thank the anonymous reviewers for helpful suggestions
and comments.

Funding: National Science Foundation (grant CCF-0542187 to
M.S.); National Institutes of Health (NIH) (grant GM076275 to
M.S.); Quantitative and Computational Biology Program (NIH grant
T32 HG003284 to Z.K.); NIH (grant R37 MH059520 to L.K.);
James S. McDonnell Foundation Centennial Fellowship (to L.K.);
NIH Center of Excellence (grant P50 GM071508 to the Lewis-Sigler
Institute).

Conflict of Interest: none declared.

REFERENCES
Abouelhoda,M.I. et al. (2004) Replacing suffix trees with enhanced suffix arrays. J.

Discrete Algorithms, 2, 53–86.

Abouelhoda,M.I. et al. (2006) Enhanced suffix arrays and applications. Chapter 7.
In Aluru,S. (ed.), Handbook of Computational Molecular Biology. Chapman &
Hall/CRC Computer and Information Science Series, Boca Raton, FL, USA, pp.
7–28.

Bray,N. and Pachter,L. (2004) MAVID: Constrained ancestral alignment of multiple
sequences. Genome Res., 14, 693–699.

Choi,J.-H. et al. (2005) GAME: a simple and efficient whole genome alignment method
using maximal exact match filtering. Comp. Biol. Chem., 29, 244–253.

Drosophila 12 Genomes Consortium. (2007) Evolution of genes and genomes on the
Drosophila phylogeny. Nature, 450, 203–218.

Eid,J. et al. (2009) Real-time DNA sequencing from single polymerase molecules.
Science, 323, 133–138.

Ferragina,P. and Fischer,J. (2007) Suffix arrays on words. In Proceedings of the 18th
Annual Symposium on Combinatorial Pattern Matching (CPM’07). Vol. of Lecture
Notes in Computer Science, Springer, Berlin, Germany, pp. 328–339.

Ferragina,P. et al. (2009) Compressed text indexes: from theory to practice. ACM J.
Exp. Algorithmics (JEA), 13, Article No. 12.

Gusfield,D. (1997) Algorithms on Strings, Trees, and Sequences. Cambridge University
Press, New York.

Höhl,M. et al. (2002) Efficient multiple genome alignment. Bioinformatics, 18
(Suppl 1), S312–S320.

Istrail,S. et al. (2004) Whole-genome shotgun assembly and comparison of human
genome assemblies. Proc. Natl Acad. Sci. USA, 101, 1916–1921.

Kärkkäinen,J. and Ukkonen,E. (1996) Sparse suffix trees. In Cai,J.-Y. and Wong,C.K.
(eds), COCOON 1996. Vol. 1090 of Lecture Notes in Computer Science. Springer,
Heidelberg, pp. 219–230.

Kasai,T. et al. (2001) Linear-time longest-common-prefix computation in suffix arrays
and its applications. In Proceedings of the 12th Symposium on Combinatorial
Pattern Matching (CPM ’01). Vol. 2089 of Lecture Notes in Computer Science.
Springer, Berlin, Germany, pp. 181–192.

Kurtz,S. (1999) Reducing the space requirement of suffix trees. Soft. Pract. Exp., 29,
1149–1171.

Kurtz,S. et al. (2004) Versatile and open software for comparing large genomes. Genome
Biol., 5, R12.

Larsson,N.J. and Sadakane,K. (2007) Faster suffix sorting. Theor. Comp. Sci., 387,
258–272.

Manber,U. and Myers,G.W. (1993) Suffix arrays: a new method for on-line string
searches. SIAM J. Comput., 22, 935–948.

Manzini,G. (2004) Two space saving tricks for linear time LCP array computation. In
Hagerup,T. and Katajainen,J. (eds), SWAT 2004. Vol. 3111 of Lecture Notes in
Computer Science. Springer-Verlag, Berlin Heidelberg, pp. 372–383.

McIlroy,P.M. et al. (1993) Engineering radix sort. Comput. Syst., 6, 5–27.
Myers,E.W. et al. (2000) A whole-genome assembly of Drosophila. Science, 287,

2196–2204.
Ohlebusch,E. and Kurtz,S. (2008) Space efficient computation of rare maximal exact

matches between multiple sequences. J. Comput. Biol., 15, 357–377.
Paux,E. et al. (2008) A physical map of the 1-gigabase bread wheat chromosome 3B.

Science, 322, 101–104.
Pop,M. and Salzberg,S.L. (2008) Bioinformatics challenges of new sequencing

technology. Trends Genet., 24, 142–149.
Schatz,M.C. et al. (2007) High-throughput sequence alignment using graphics

processing units. BMC Bioinformatics, 8, 474.
Schwartz,S. et al. (2003) Human-mouse alignments with BLASTZ. Genome Res., 13,

103–107.

1616


