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ABSTRACT

Motivation: Approximately 9334 (37%) of Human genes have
no publications documenting their function and, for those that
are published, the number of publications per gene is highly
skewed. Furthermore, for reasons not clear, the entry of new gene
names into the literature has slowed in recent years. If we are
to better understand human/mammalian biology and complete the
catalog of human gene function, it is important to finish predicting
putative functions for these genes based upon existing experimental
evidence.
Results: A global meta-analysis (GMA) of all publicly available
GEO two-channel human microarray datasets (3551 experiments
total) was conducted to identify genes with recurrent, reproducible
patterns of co-regulation across different conditions. Patterns of
co-expression were divided into parallel (i.e. genes are up and down-
regulated together) and anti-parallel. Several ranking methods to
predict a gene’s function based on its top 20 co-expressed gene
pairs were compared. In the best method, 34% of predicted Gene
Ontology (GO) categories matched exactly with the known GO
categories for ∼5000 genes analyzed versus only 3% for random
gene sets. Only 2.4% of co-expressed gene pairs were found as
co-occurring gene pairs in MEDLINE.
Conclusions: Via a GO enrichment analysis, genes co-expressed
in parallel with the query gene were frequently associated with
the same GO categories, whereas anti-parallel genes were not.
Combining parallel and anti-parallel genes for analysis resulted in
fewer significant GO categories, suggesting they are best analyzed
separately. Expression databases contain much unexpected genetic
knowledge that has not yet been reported in the literature. A total
of 1642 Human genes with unknown function were differentially
expressed in at least 30 experiments.
Availability: Data matrix available upon request.
Contact: jdwren@gmail.com
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
The Human Genome Project has helped pinpoint the locations
of every known human gene, but many remain functionally
uncharacterized. And while some gene names may appear within
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one or two published papers, some of these papers are reports of
high-throughput experiments and either merely mention the gene or
contain only superficial details (e.g. Camargo et al., 2001; Lander
et al., 2001). Some gene functions can be guessed by analysis of
conserved protein domains (e.g. zinc finger domains suggest DNA
binding, coiled-coil domains suggest protein–protein interactions,
transmembrane domains suggest the protein is localized to a cellular
or organelle membrane, etc.) and, although certainly helpful in those
cases where these conserved domains are present, experimentation
to test function requires knowing a bit more about the biological
context. Since most genes are conditionally expressed, the biological
role of a gene is strongly tied to the circumstances under which it is
expressed.

Microarray technology has enabled a global view of the
transcriptome and created an abundance of data. Most of the
analysis tools and methods to date have focused on experiment-
centric analysis. Yet, documented within this growing body of
experimental microarray datasets is the behavior of individual genes
responding under multiple circumstances, with strength of numbers
to reinforce confidence in observed patterns of behavior. Thus, a
lot of experimental data are available regarding the behavior of
individual genes, gene pairs and groups of genes.

1.1 Comparability of microarray experiments
Microarrays are a powerful technology for understanding biology,
and it was recognized early on that there was even more potential
for discovery from combining the results of individual experiments
(Khan et al., 1999). Combining datasets from different groups,
platforms and with different normalization/pre-processing steps
can be challenging (Cahan et al., 2007; Choi et al., 2007; Suarez-
Farinas and Magnasco, 2007), and were first highlighted by Ghosh
et al. (2003) who originally proposed a regression-based method
(LASSO) to deal with the variation. Given the amount of noise
present even in replicates of microarray experiments along with a
relatively high degree of variability in individual gene expression
(Pritchard et al., 2001; Dozmorov et al., 2004; Pritchard et al., 2006),
it was not initially clear whether or not a large amount of microarray
data could be combined in a meaningful way. But later studies
reported that combining different gene expression datasets could
yield reliable information, even those based upon different measure-
ment technologies such as SAGE, even though there was less concord-
ance among technologies than within technologies (Huminiecki
et al., 2003; Jarvinen et al., 2004; Bammler et al., 2005).
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For analysis of multiple datasets, multi-dimensional reduction
methods such as principle component analysis (PCA) and multi-
dimensional data reduction (MDR) have been useful on datasets
from the same platform, but when analyzing heterogeneous datasets,
many experiments are missing gene-expression values, which render
these methods unsuitable. So other methods of meta-analysis of
microarray data have been developed, some being used to increase
sample size for the study of specific diseases (Rhodes et al., 2002;
Choi et al., 2004; Wang et al., 2004;Alexe et al., 2005; Yang and Sun,
2007), which tends to be heterogeneous in its clinical presentation
and in strong need of cross-study comparisons (Rhodes et al.,
2004; O’Sullivan et al., 2005; Fishel et al., 2007). Meta-analysis
has also been used as a means of enhancing statistical sensitivity
for determining the significance and/or robustness of expression
changes (Stevens and Doerge, 2005; DeConde et al., 2006; Yoon
et al., 2006; Conlon et al., 2007). But most of the work so far
has been experiment-centric; focusing on gene sets (clusters) that
recur across experiments of identical or similar types. Combining
different experimental conditions would not make sense unless the
focus was gene-centric—observing the co-expression patterns of all
other genes while using one gene as a reference point.

1.2 Co-expression networks
Despite the technical problems inherent in combining co-expression
data, several groups have recognized that this is a potentially
valuable means of better understanding biology and found ways to
do it. Co-expression networks have been used to visualize regulatory
networks (Magwene and Kim, 2004; van Noort et al., 2004; Basso
et al., 2005; Zhang and Horvath, 2005), identify co-expression
modules (Yan et al., 2007), search for third party influences on
co-expression (Li, 2002), and study the properties of these scale-
free networks as a whole (Ucar et al., 2007; Yip and Horvath,
2007). Spellman et al (1998) were the among the first to use co-
expression studies in Yeast, while Lee et al. (2004) later used
co-expression studies to predict human gene function, but used
Pearson’s correlation coefficients to detect co-expression, which has
seen use in multiple meta-analytic microarray studies (Eisen et al.,
1998; Zhang and Horvath, 2005; Gustin et al., 2008; Han and Zhu,
2008). However, as shown in another study (Li et al., 2004) as well
as here, this seems to capture only a relatively small fraction of
informative co-expression patterns.

Some of the most interesting findings from these studies are that
co-expressed genes tend to be conserved across evolution (Stuart
et al., 2003; Oldham et al., 2006) and that the ‘hubs’ of these
networks (i.e. genes co-expressed with many other genes) tend to
evolve more slowly than the nodes on the sequence level (Jordan
et al., 2004). These hubs, then, represent genes that contribute more
towards the evolutionary fitness of an organism and alterations in
their sequence or expression level are likely to be more deleterious.
Yet, despite their relative biological importance, not all of these ‘hub’
genes have papers published describing their function.

Thus, we know that microarray experiments can be combined,
at least in principle, and that their co-expression clusters correlate
with gene interactions and biological function. What is not yet
known is whether the patterns of co-expressed genes are important
to predicting function, how many genes with no published function
might be amenable to having their function predicted by gene–gene
co-expression trends and how much information is derivable from

high-throughput data repositories like GEO that is not present in the
literature.

2 METHODS
Microarray datasets were downloaded from the Gene Expression
Omnibus (GEO) repository (Barrett et al., 2007), which is housed at the
National Center for Biotechnology Information (NCBI) on their FTP site
(ftp://ftp.ncbi.nih.gov/pub/geo/). Experiments came from a total of 127
datasets (i.e. datasets describe and often contain multiple experiments). To
focus specifically on the direction of the transcriptional response, human
two-color microarrays were analyzed. Data were obtained from the GDS
files in SOFT format. Two-color arrays were chosen for analysis to simplify
the detection of relative directional change for gene–gene pairs.

Official Entrez gene names, unique gene identifiers and their
associated probe (accession #) identifiers were also obtained from NCBI
(ftp://ftp.ncbi.nih.gov/repository/UniGene). Only matches to primary gene
names (as given by Entrez) were considered to reduce ambiguity. Among
the 25 183 primary names in Entrez, only three were not unique (MAG,
PTPRV and PRG2). Not all probe names were mapped to genes, but analysis
of the failed mappings showed that the most frequent were control features
(e.g. 3XSSC, Salmon sperm DNA, etc). Each microarray experiment was
processed to identify differentially expressed genes for the meta-analysis.
Since much of the information for pre-processing of the deposited raw
microarray data was not available, dataset processing was done with as few
assumptions as possible. Normalization was limited to regressing the mean of
all expression values to zero for each array and an adaptive fold-change cutoff
threshold was employed to reduce the experimental variability (Mariani et al.,
2003). A previous study of reported (non-microarray) fold changes in the
literature found that less than 5% of reported fold-changes were less than
2-fold, suggesting that this was a reasonable starting threshold (Wren and
Conway, 2006). But if the total fraction of responders per experiment was
above 5%, the 2-fold threshold was increased until the number of responders
was ≤5% of all genes on the microarray, the goal of this arbitrary adaptive
threshold being to increase stringency commensurate with noise level. Out of
3551 total microarray experiments processed, a total of 23 were discarded if
they contained a high degree of variability/noise (i.e. >50% of the genes
classified as differentially expressed once a 6-fold cutoff threshold has
been reached).

Determining the direction co-expression patterns for gene pairs was done
by first calculating the fraction of parallel patterns (P1P2 + N1N2/total) and
anti-parallel patterns (P1N2 + N1P2/total), and then taking the greater of the
two, where P is the positive fold change and N the negative fold change
for genes 1 and 2 in any given pair of genes detected as differentially
expressed. This fraction determines whether a gene–gene co-expression pair
has a parallel or anti-parallel pattern of co-expression (when >50%) and
also the ‘purity’ of either pattern. For example, if two genes are upregulated
together in 99% of the experiments examined and in the remaining 1% one
gene is up while the other is down, then the co-expression pattern is parallel
and the purity is 99%. Note that there are actually four different positive–
negative patterns of behavior, and detection of a parallel pattern may come
entirely from P1P2 or N1N2 pairs. Thus, this is an oversimplification of all
possible behavioral patterns that might be observed, but the goal here is to
see if there is a functional difference between genes that respond in similar
(either PP or NN) versus opposing (either PN or NP) directions.

Although the normalization method does not take into account several
factors (e.g. pin printing variability, physical microarray blemishes, etc.),
the large sample size and diversity of platforms minimizes the probability
that false–positive or false–negative effects from one microarray experiment,
series or even platform will significantly affect the overall results, except in
cases of rare or weak co-regulation.

For literature studies, a software package called IRIDESCENT (Wren,
2004; Wren et al., 2004; Wren and Garner, 2004) was used. Briefly,
IRIDESCENT uses a term thesaurus to recognize when biological ‘objects’
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(e.g. genes, diseases, phenotypes, chemicals, etc.) occur in text. The thesaurus
is constructed using popular and freely available sources for object names
(e.g. Entrez gene, OMIM, ChemID database, etc.) (Wren et al., 2004). For
each acronym in the database, ambiguity is assessed using an acronym
resolution routine (Wren and Garner, 2002) and only acronyms with less than
5% potential confusion rate are used verbatim without requiring acronym
resolution. Spelling variation is partially accounted for by aligning definitions
of identical acronyms (e.g. IL1 and IL-1). IRIDESCENT processes all
MEDLINE records to derive an object–object co-occurrence database, which
includes gene–gene co-occurrences. At the time of this study, the database
was constructed using 18 438 436 MEDLINE records, 10 096 105 (55%) of
which had abstracts.

Gene ontology (GO) records for the GO enrichment analysis were
downloaded from the GO website in April 2008, and GO enrichment tests
were performed using a chi-square test of significance. To calculate the
distance between a query gene’s GO categories and GO categories detected as
statistically significant for a set of genes, the minimum number of nodes (i.e.
categories) in the acyclic GO tree that had to be traversed to get from each
statistically significant node to any of the query gene nodes (not including
their inherited parent nodes) was calculated.

2.1 Calculating a mutual information measure (MIM)
The MIM takes into account the frequency of A–B co-expression relative to
their respective probabilities of individual expression as follows:

MIM(DE)= log

(
p(A,B)

p(A)∗p(B)

)
(1)

MIM(para)= log

((
p(Au,Bu)/p(Au)∗p(Bu)

)+(p(Ad,Bd)/p(Ad)∗p(Bd)
)

2

)

(2)

MIM(anti)= log

((
p(Au,Bd)/p(Au)∗p(Bd)

)+(p(Ad,Bu)/p(Ad)∗p(Bu)
)

2

)

(3)

In Equation (1), A and B are the probabilities of differential expression
(DE) for two genes. Alternatively, a MIM can be calculated for parallel
or anti-parallel patterns. In Equations (2) and (3), the subscripts u and d
represent the direction (up or down) of the expression of A or B.

2.2 Ranking co-expressed genes to identify functionally
similar groups

Genes were queried to select those with at least one annotated GO category.
This list was then narrowed to the query genes with at least 20 genes
co-expressed with them in 40 or more experiments, in both parallel and
anti-parallel patterns. It is possible that genes with only parallel or only
anti-parallel partners might have different properties than those with both,
but this was necessary to ensure equal numbers for analysis as well as a
balance of 10 parallel and 10 anti-patterns to test the effects of combining
genes with different response directions. Each batch of 20 genes co-expressed
with the query gene was then ranked using several different metrics. For each
co-expressed gene, a measure of the ‘purity’ of its direction relative to the
query gene was calculated (see ‘Methods’ section) and for every batch sent
for GO enrichment analysis (Stuart et al., 2003; Gustin et al., 2008), another
batch of 20 genes selected randomly was also sent. Only GO enrichment
was examined (i.e. not depletion) using a chi-square test of significance
(Rivals et al., 2007). A threshold was set to only report enrichment when four
or more of the 20 genes belonged to the same GO category with P<0.0001.
The results are shown in Table 1.

Table 1. Comparison of different methods for prioritizing the top co-
expressed genes to be sent for GO enrichment analysis and how reflective
those genes are of the query gene’s function

Avg. % dir
Method Parallel Anti Both Sig. # pred/# anal hits

R2 21 271 17 481 10 998 22.7 3748/4321 (87%) 34
Total 41 157 38 315 31 437 19.3 5012/5043 (99%) 24
MIM 12 449 13 275 6 887 13.9 4131/5043 (82%) 33
dMIM 17 281 17 045 9 822 18.1 4221/5035 (84%) 34
Purity 18 366 20 596 12 269 19.2 4451/5043 (88%) 29
T*P 42 278 39 098 29 982 22.6 4995/5043 (99%) 25
dM*P 18 691 17 319 10 192 18.9 4286/5035 (85%) 35
T*P2*dM 31 265 24 635 18 462 25.0 4833/5035 (96%) 32

T, Total; P, Purity; dM, directional mutual information measure (dMIM). Avg. Sig., the
average P-value of significant GO category enrichments, expressed as –log(P-value).
On average, 12.6 ± 0.6% of random gene batches sent for analysis yielded at least
one prediction. Average significance scores for random gene batches was 7.88 ± 0.37.
#pred/#anal is the ratio of significant GO category enrichment (functional predictions)
to the number of genes sent for analysis. The number of gene batches sent for analysis
are not necessarily equal due to the constraints of ensuring a balanced selection of genes
meeting minimal criteria for analysis. %dir hits is the number of significantly enriched
GO categories for the 20 genes analyzed that were identical to at least one of the query
gene’s GO categories (top level domains not included).

3 RESULTS
A total of 3551 microarray experiments were analyzed and of the
24 553 Human genes in the Entrez Gene database, 18 516 of them
(75%) were co-expressed with another gene in at least two experiments.
As observed in other studies, the distribution in the number of
co-expressed (CoX) genes followed a scale-free distribution, as did
the differential expression (DE) for individual genes, and the two
were correlated (Fig. S1, Supplementary Material).

Gustin et al. (2008) recently proposed using Pearson’s coefficient
to further refine the patterns of gene–gene co-expression as
positive, negative or a balance of both depending upon sign.
Although examples of these linear trends can certainly be seen in
the data (Fig. 1), genes are also conditionally co-regulated. Thus,
for genes under the same regulators we would expect that their
expression levels should vary together in a linear manner, although
not necessarily at equal expression levels, which can be detected by
calculating Pearson’s R2 for all experiments in which the two genes
were present. But for two genes whose regulatory elements differ,
we would expect the R2 value to be less sensitive in detecting
co-regulation as the overlap in their conditional regulatory elements
decreases. Conditional co-regulation, however, might be detectable
by employing a metric from Signal Theory, the mutual information
measure (MIM).

To see if MIM might be suitable to detect instances where
conditional co-regulation was taking place, first random gene sets
were identified where two genes (A and B) were detected as
co-expressed. Since the genes were selected only on the basis
of exceeding an expression threshold, the set is expected to
contain a mixture of genes that are both globally and conditionally
co-expressed. For genes that are co-expressed 100% of the time,
it is expected that they should have relatively high MIM and R2.
For genes that are never co-expressed together, it is expected they
should have very low scores in both categories. The analysis should
tell us how rapidly both scores move from their highest to their

1696



[18:08 15/6/2009 Bioinformatics-btp290.tex] Page: 1697 1694–1701

Global meta-analysis of microarray expression data

Fig. 1. Co-expression patterns for the gene DKFZp762E1312 (DKFZ, thick blue line), with values sorted from lowest fold-change (left) to highest (right).
(a) Raw data from GEO files for experiments where DKFZ and CCNA2 are both expressed (R2 =0.56). (b) Same data, but normalized to the mean intensity
of all values and converted to log2 value (R2 =0.70). The curve does not appear smooth because some experiments reported values as ‘log ratio’ but did not
specify the base. The default in these cases is to assume log10, but the value distributions suggest some were log2 instead. Note that this affects accuracy in
estimating the magnitude of the response, but not the direction or detection of co-expression. (c) Random genes were examined to ensure these patterns were
not an artifact of normalization or data processing. Shown is an example of one of the random genes, PCCA (R2 =0.08). (d) Normalized data for DKFZ and
COX7A1, showing an anti pattern of co-expression (Pearson’s = −0.55, R2 =0.30).

lowest levels as gene pairs become progressively less linked in their
frequency of co-expression.

A random sampling of genes (A) was taken and an average MIM
and R2 was calculated for each of the co-expressed genes (B1..n).
Each metric was normalized so that it could be expressed in terms of
the relative overlap of B with respect to A (i.e. the number of times B
was differentially expressed when A was) and compared. A total of
98 949 co-expression samples were taken, 1000 for each percentile
of overlap (the higher percentile overlaps, however, were less
represented than the lower in the dataset and not all percentiles had
1000 examples even after all genes were processed). Figure 2 shows
that many genes have a high degree of mutual information even
with their R2 is low. This suggests that conditional co-regulation
is occurring and present within the datasets, and that estimating
co-regulation based upon an R2 cutoff may miss this subset of
conditionally co-expressed genes in heterogeneous datasets.

3.1 Selecting a subset of genes co-expressed specifically
and consistently with a query gene correlates with
gene function

For each DE gene, there are many other genes co-expressed
with it under different circumstances, with differing frequencies
and patterns of co-expression. It is hypothesized that for most
genes, their co-expressed genes whose ‘behavior’ across many

Fig. 2. Comparison of mutual information measures (MIM) versus R2 for
co-expressed genes to see if informative patterns are present even after linear
correlations decline. When gene pairs are co-expressed 100% of the time,
R2 values are highest, as expected, and as the fraction drops, so does the
average R2. MIM, however, remains at relatively high levels longer than R2.

different experimental conditions is most similar to their own
would be involved in the same functions, processes and/or cellular
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components. Several different methods of ranking gene sets were
compared to identify which metric best corresponds to this similar
behavior.

There are several ways success could be measured. The first
and perhaps strongest would be the fraction of co-expressed genes
belonging to the same category as the query gene beyond the number
of random sets that do. This would confirm how reasonable the
guilt-by-association assumption is in predicting function. However,
since GO annotation is perpetually a work-in-progress in keeping
up with the literature, which itself is far from complete, we could
not necessarily say the genes with different categories were false-
positives (e.g. they may just not be annotated). So another metric
would be the number of significant GO categories found over
the number predicted from random sets, since this would reflect
how much functional information is returned—the more, the better.
A third could be the average (or median) statistical strength of
categories predicted, since this would reflect the efficiency of
prioritization methods in grouping genes by their similarity. It is not
obvious how much importance should be placed on each of these
three means of evaluation, but in terms of predicting function, the
criteria are listed in order of their relative importance.

Table 1 shows that genes ranked by R2 receive some of the higher
average statistical scores from the GO enrichment analysis, but
have a lower number of predictions as well as fewer gene batches
that meet minimal criteria for analysis (≥40 co-expressed genes
with R2 >0.01). Calculating mutual information measure (MIM)
of differential expression performed worse by all measures than
calculating MIM of directional expression (dMIM), which is
consistent with the loss of information apparent in each ranking
scheme when parallel and anti patterns are combined, and consistent
with the improvement seen when incorporating ‘purity’ into the score.
Interestingly, just ranking genes by the total number of times they
are co-expressed with the query gene yielded the most significant
predictions. However, it also yielded the lowest fraction of direct hits.

In terms of single metrics, prioritizing by R2 is most successful
at identifying gene sets with the most functionally overlapping
categories, but as shown in the table and also suggested by Figure 2,
it is less sensitive at detecting functionally related groups when
co-expression is conditional (i.e. fewer gene sets had minimal R2

scores for analysis). dMIM alone enables analysis of more genes,
but yields fewer total enriched GO categories. After noticing that
different metrics tended to have different strengths and weaknesses,
this motivated exploration of combinations to see if the strengths
of one could offset the weaknesses of another. A combination of
the total number of observed co-expression instances, purity of co-
expression patterns and dMIM seems to provide the best balance
between the three measures of success for functional prediction (i.e.
relatively good functional overlap of co-expressed genes with the
query gene, and more total significant GO categories returned with
higher average P-values).

To control for the possibility that R2 might be high due to highly
similar experiments in each dataset, the analysis was also performed
only using the first two experiments in each dataset. The results were
not significantly different (data not shown).

3.2 Directionality of co-expression impacts functional
predictions

In Table 1, the fraction of ‘direct hits’ was calculated using only the
parallel genes. This is because in all the scoring schemes examined,

(a)

(b)

Fig. 3. Validating the assumption that consistently co-expressed genes tend
to have similar functions using a GO enrichment analysis. Distance is
calculated as the minimum number of GO categories that need to be traversed
to get from each significant GO category (P < 0.0001) associated with
the 20 co-expressed genes to the nearest GO category associated with the
query gene. Zero distance indicates identical categories. (a) Distribution of
significant GO categories for co-expressed genes by their distance from the
nearest GO category of the query gene. (b) Similarity of co-expressed gene
categories to nearest query gene category.

the parallel genes’ functional category correlated with the query
gene’s functional category far more often than the anti-parallel.
Shown in Figure 3a is the distribution in distances between the
co-expressed gene’s GO categories in the acyclic hierarchical GO
tree to the nearest GO category for the query gene. That is, it shows
how many nodes must be traversed to go from the GO category
of the co-expressed genes to the nearest GO category of the query
gene. In this figure, the ranking method (total * purity2 * dMIM)
that offered a relatively balanced performance among the criteria
mentioned was used. Because the GO tree is not of uniform breadth
or depth, distances are unequally distributed, as can be seen in the
graph. To reduce this effect, we also used an information-theoretic
method of measuring the similarity of each GO category (Lord
et al, 2003; Resnik, 1995) (Fig. 3b). Here, we see that the parallel
genes tend to have higher similarity in their GO categories than the
anti-parallel genes.

Figure 3 shows that genes expressed in parallel tend to be closer
in direct function as compared to anti-expressed genes, and that
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lumping both anti and parallel categories together tends to produce
slightly fewer statistically relevant GO commonalities than either
one alone.

3.3 One example of correctly predicting unknown gene
function

Figure 3 shows the efficacy of the method in general, but
also included in the Supplementary Material is an analysis of
10 genes (five known and five uncharacterized), and here a
specific example will be described in detail. Initially, the most
frequently differentially expressed gene without any publications
was DKFZp762E1312 (382 experiments). The top 20 genes
co-expressed in parallel with DKFZp762E1312 (DKFZ hereafter for
short) suggested it was involved in the cell cycle, by GO enrichment
analysis. Among the most significant GO associations were mitosis
(13 genes, P = 4.5 × 10−127), regulation of cell cycle (13 genes,
P = 1.2 × 10−57) and negative regulation of DNA replication (seven
genes, P = 2.2 × 10−79).

Figure 1a–c shows some of the global co-expression trends for
DKFZ and a control (Fig. 1d). The data are noisy, but improved
by normalization and co-regulation is evident for these genes as
judged by both MIM and R2 values. Involvement of of DKFZ
in the cell cycle is independently suggested by cross-referencing
with Cyclebase (http://www.cyclebase.org) (Gauthier et al., 2008),
a database of time-series cell-cycle microarray experiments (Fig. S2,
Supplementary Material). DKFZ is cyclically expressed during the
cell cycle, peaking at the G2–M transition and bottoming out
at the G1–S transition. (see also the example of PRR11 in the
Supplementary Material).

Not too long after the initial analysis, two groups independently
confirmed the involvement of DKFZ in the cell cycle (Kato et al.,
2007; Luhn et al., 2007). It has since been renamed Holiday-junction
recognizing protein (HJURP).

3.4 The data-literature information divide
The IRIDESCENT software was used (see ‘Methods’ section) to
gain a rough approximation of the number and extent of genes
characterized in the literature. This is done with the caveat that
some genes may have function documented under a name not listed
among the official synonyms. However, the converse is also true—a
gene name may be mentioned in an abstract without any function
described at all. Thus, this is an imperfect means of answering this
question, but should provide a reliable approximation.

Figure 4 graphically summarizes the results—existing studies are
heavily skewed towards a small fraction of the total genes (e.g. TNF-
alpha, insulin, angiotensin, IL-2, etc.) and ∼37% of human genes
have yet to be mentioned in a MEDLINE abstract. Although some
of these genes may be mentioned within the full-text, their absence
from the abstracts suggests they have not played a prominent role in
the studies conducted to date. These results are not that surprising
when considering that Yeast, one of the best studied experimental
organisms, still has an estimated 21% of its genes uncharacterized
as of 20 March 2007 (Pena-Castillo and Hughes, 2007).

For these unknown and uncharacterized genes, co-regulated genes
might provide the best indication of their function, especially in
the absence of informative structural or sequence-based predictive
methods (e.g. conserved functional domains or TF-binding sites).
To get an idea of how much information might be available from

Fig. 4. An approximation of the number of times each human gene
(including synonyms) has been mentioned in MEDLINE abstracts or titles.
The graph is truncated on the y-axis at 5000 to prevent distortion (393 genes
were above this cutoff). Out of 25 311 Human gene name searches, 15 977
(63%) were found at least once (gene counts differ slightly from the number
of Entrez genes because the searched database not only includes miRNAs as
human genes, but also incorporates HGNC and GDB human gene names).
The arrow marks where the number of counts reaches zero.

the GMA to contribute towards characterizing gene function overall,
the number of times a gene was differentially expressed (DE) was
plotted and contrasted with the amount of literature available for the
same gene (Fig. 5). There is a correlation between the frequency
of DE and frequency of publication. The most interesting feature
of this analysis is that there is a set of genes for which there are
no papers (marked by arrow ‘a’), yet many of these unknown or
poorly known genes have sufficient co-expression data to predict
their function. There is also a group of genes for which no papers and
no expression data exists (arrow ‘b’)—sort of an ‘information desert’
whereby neither literature nor co-expression data are available.

Next, all gene–gene pairs found in the literature were contrasted
with gene–gene pairs identified by the GMA as co-expressed in at
least 50 experiments (Fig. 6). Here there is also a correlation—
the more highly connected genes in experimental databases also
tend to be studied in the literature, but even as a gene’s literature
connectivity approaches zero (i.e. little information on gene–gene
associations), the co-expression data for the same genes contains
more information. Out of 562 933 gene–gene pairs from the GMA,
13 553 (2.4%) could be found in the literature. Conversely, there
were 428 472 unique gene–gene pairs in the literature, 21 266 of
which were also in the GMA dataset (5% overlap). The former is
relatively surprising that so many consistently co-expressed genes
do not have publications documenting any relationship between
them. The latter is somewhat less surprising since the co-occurrence
of genes within publications can be of many different types (e.g.
protein–protein interactions, chromosome co-localization, etc.),
whereas the GMA data is co-expression only.

4 DISCUSSION AND CONCLUSION
Despite the wide variety of experimental conditions deposited in
the GEO database, this study is nonetheless affected and limited
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Fig. 5. Comparison of expression data and literature abundance for all
human genes. Values are normalized to range between 0 and 1 to enable
direct comparison. For each human gene, the frequency of publications
per gene (top half) correlates with the frequency of differential expression
(bottom half). Arrow ‘a’ marks where publications per gene reaches zero,
yet co-expression data exists for the gene. Arrow ‘b’ marks where neither
co-expression data nor literature is available. 25 390 loci were analyzed,
which includes the 24 553 genes used previously plus microRNAs and
putative genes.

Fig. 6. Frequently co-expressed genes are more likely to co-occur in
publications. If co-expression data can be used to predict gene function,
then enough data exists to help analyze many genes without much published
information.

by the type of experiments conducted (e.g. many cancer samples
and cultured cells). For example, some genes were simply not
differentially expressed under the conditions studied and it is not

yet known how they would behave if they were. Thresholding was
used to define differentially expressed genes for mutual information
calculations, but any threshold is arbitrary and variations such as
weighted mutual information might improve detection of subtle
gene–gene co-expression.

Although measuring gene expression with microarray technology
has been documented as noisy, raising concerns regarding whether
or not highly heterogeneous datasets could be combined in a
meaningful manner, this study finds that co-expression patterns
tend to recur across datasets and strengthen associations. Figure S3
(Supplementary Material) shows that as the number of co-expressed
genes increases, so does the average P-value of GO category
enrichment analysis.

We find that the genes co-expressed in parallel tend to be much
more functionally related than those that are expressed in anti-
parallel directions, even though anti-parallel genes tend to have a
similar number of significantly enriched GO categories. This seems
biologically reasonable considering most genes do not act alone
in effecting their biological functions. In prokaryotes, for example,
operons link a common promoter to the expression of several genes
located one after the other. In eukaryotes operons are rare and
regulation is more complex, but the general need for coordinated
gene expression remains. Thus, genes whose expression levels rise
and fall together, especially across heterogeneous conditions, tend
to be those induced or repressed for similar functional reasons. But
while a set of genes may be upregulated for a specific biological
purpose, the genes downregulated at the same time are likely a
mixture of genes that are actively repressed because their function
interferes with the newly induced function (e.g. cell migration and
adhesion are related activities, yet opposing functions—a cell cannot
migrate if it is adhering to another) and those whose function does
not conflict with the newly induced function but is merely no
longer needed. For example, a differentiating cell may need new
surface receptors to create a new function, but some of the existing
receptors may degrade not because they interfere, but because there
is no need to renew them (and which receptors decay may vary
with cell type). This analysis specifically suggests that from an
experimental standpoint, gene sets co-expressed with any given
gene in both parallel and anti-parallel directions are enriched for
significant biological functions, but only gene sets co-expressed
in parallel tend to have the same function as the gene they are
expressed with.

The parallel and anti co-expression patterns shown in this report
are probably the most straightforward types, but only reflect general
trends, whereby more complex patterns not described here are
certainly possible (e.g. downregulated together but not upregulated
together). It is this consistency of co-expression under multiple
different conditions (experimental, microarray platform, research
group, etc) that supports the notion of an informative co-regulatory
relationship between genes.
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