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ABSTRACT

Motivation: Reproducibility analyses of biologically relevant
microarray studies have mostly focused on overlap of detected
biomarkers or correlation of differential expression evidences across
studies. For clinical utility, direct inter-study prediction (i.e. to
establish a prediction model in one study and apply to another)
for disease diagnosis or prognosis prediction is more important.
Normalization plays a key role for such a task. Traditionally,
sample-wise normalization has been a standard for inter-array and
inter-study normalization. For gene-wise normalization, it has been
implemented for intra-study or inter-study predictions in a few
papers while its rationale, strategy and effect remain unexplored.
Results: In this article, we investigate the effect of gene-wise
normalization in microarray inter-study prediction. Gene-specific
intensity discrepancies across studies are commonly found even
after proper sample-wise normalization. We explore the rationale
and necessity of gene-wise normalization. We also show that the
ratio of sample sizes in normal versus diseased groups can greatly
affect the performance of gene-wise normalization and an analytical
method is developed to adjust for the imbalanced ratio effect. Both
simulation results and applications to three lung cancer and two
prostate cancer data sets, considering both binary classification and
survival risk predictions, showed significant and robust improvement
of the new adjustment. A calibration scheme is developed to apply
the ratio-adjusted gene-wise normalization for prospective clinical
trials. The number of calibration samples needed is estimated from
existing studies and suggested for future applications. The result has
important implication to the translational research of microarray as a
practical disease diagnosis and prognosis prediction tool.

Contact: ctseng@pitt.edu

Availability: http://www.biostat.pitt.edu/bioinfo/

Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION

Microarray technology has been widely used in biomedical research,
for example, in prediction of cancer diagnosis (Golub et al., 1999), of
prognosis (van’t Veer et al., 2002) and of treatment outcome (Shipp
et al., 2002) using supervised machine-learning approaches. With an
increasing amount of microarray data sets available, reproducibility
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analysis of these independent experiments has gained more attention
and has been greatly improved in the past decade (Kuo et al.,
2006; Shi et al., 2006; Tan et al., 2003; Yauk and Berndt, 2007).
In the literature, most reproducibility analyses either compared and
validated the detected biomarkers independently found in each study
(Mitchell et al., 2004; Shi et al., 2006; Tan et al., 2003) or evaluated
inter-lab or inter-platform concordance by correlation (Parmigiani
et al., 2004). For direct clinical utilities, more attentions have been
focused on inter-study prediction (i.e. to establish a prediction model
from one data set and apply to another) recently (Shen er al., 2004;
Warnat et al., 2005; Xu et al., 2008). Such an issue is critical for
translating microarray technology to a practical diagnosis tool. For
example, a pilot study or clinical trial has been performed in an
old Affymetrix U95 platform and an effective prediction model
has been constructed. The test site of another medical center may
adopt another commercial system (such as Agilent or Illumina
platform) or even the original medical center may have transited
to a newer U133 system. The translational research of microarray
would not be successful if the prediction model cannot predict inter-
platform or inter-lab studies. The major difficulties for such direct
inter-study prediction may include: (i) different probe design and
sequence selection in different microarray platforms (Kuo et al.,
2006); (ii) different sample preparation and experimental protocols;
(iii) biological differences in the sample population across studies.
Different data preprocessing and incorrect gene matching across
studies have also been mentioned to have a great impact on such
an inter-study analysis and some practical guidelines have been
suggested (Bosotti et al., 2007).

Normalization is a key preprocessing step to adjust for biases
in different batches within a study or in different platforms
(and possibly different performance sites) across studies. In
the intra-study analysis, sample-wise normalization is commonly
practiced. Many mature sample-wise normalization methods have
been developed and implemented, including simple standardization
(standardize to zero mean and unit variance), loess normalization
(Yang et al., 2002), rank-invariant normalization (Tseng et al.,
2001), quantile normalization (Irizarry, et al., 2003) and median
rank score (MRS; Warnat et al., 2005) (see Irizarry et al., 2006, for
a comparative study). For inter-study prediction, similar sample-
wise normalization methods have also been evaluated (Jiang et al.,
2004; Warnat et al., 2005). To avoid the difficulty of normalization
across studies, non-parametric rank-based methods have been
proposed (DeConde et al., 2006; Liu et al., 2008; Xu et al., 2005).
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These methods, however, sacrifice information of exact intensity
values and usually only simple prediction rules can be utilized. It
is not clear whether the good performance can be maintained in
general complex data scenarios. Another direction of efforts has been
focused on statistical models for adjusting systematic microarray
data biases across studies such that multiple studies may be directly
pooled for analysis. Examples include singular value decomposition
(SVD) (Alter et al., 2000), distance weighted discrimination (DWD)
(Benito et al., 2004), cross-platform normalization (XPN) (Shabalin
et al., 2008) and Knorm correlation (Teng et al., 2008). These
methods involve more sophisticated modeling and have been
successfully tested in some applications. The complicated models,
however, have a major drawback that a larger test data set is required
for parameter estimation.

Gene-wise normalization to enhance inter-study prediction has
been practiced in the literature while neither its rationale nor
the effectiveness has been systematically studied. It should be
noted that most sample-wise normalization methods implicitly
take advantage of the large number of thousands of genes to
work, while for gene-wise normalization, the size of samples may
only be dozens. As a result, methods like loess normalization,
rank-invariant normalization and quantile normalization are not
applicable to gene-wise normalization. Bloom et al. (2004) utilized
a common reference sample in both training and test studies to
implement gene-wise normalization while such a reference sample
is generally not available. Jiang et al. (2004) performed gene-
wise normalization by standardizing against the normal samples.
In practice, simple standardization to zero mean and unit variance
is probably most commonly used. In this article, we will discuss
and elucidate the rationale for gene-wise normalization to enhance
inter-study prediction. We will show that the ratios of sample sizes
between normal and diseased groups can affect the performance
of normalization and prediction accuracy in simple standardization.
We propose a ratio-adjusted gene-wise normalization in addition
to conventional sample-wise normalization. A calibration scheme
is further suggested for its application to a prospective clinical
trial to overcome the issue that class labels and sample size
ratio are generally unknown in the population of the test study.
Simulations and real data analysis of binary and survival risk
prediction are used to evaluate the performance of our proposed
method.

2 METHODS
2.1 Motivation

In this article, we investigate a commonly encountered situation that gene-
specific discrepancies in expression intensity across studies are found in
many predictive biomarkers even after proper sample-wise normalization
across studies. The gene-specific discrepancies often come from different
probe-sequence selections and experimental protocols that caused different
gene-specific hybridization efficiencies across studies. Figure 1 in Kuo et al.
(2006) demonstrated the issue that different array platforms adopt different
probe designs, which caused different hybridization efficiency and bias
in each platform when detecting the underlying true expression level. We
further illustrate this problem in Figure 1 here. EMP2 is an ideal predictive
biomarker that is down-regulated in the diseased group in the raw data
(data with intra-study normalization but without inter-study normalization)
of all three independent lung cancer studies (details of the data sets will
be introduced in Section 2.5). The intensity values in the three studies are,
however, at very different levels. Direct applications of prediction models
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Fig. 1. An example of predictive biomarker (EMP2) with gene-specific
discrepancies across studies in expression intensity. (A) Raw data
with intra-study normalization but without inter-study normalization.
(B) Inter-study sample-wise normalization by standard normalization
(SN_std). (C) Inter-study sample-wise normalization by median rank scores
(SN_MRYS). (D) Inter-study sample-wise normalization and then gene-wise
normalization with standard normalization (SN_std+GN_std). (‘Plus’ sign
denotes tumor group; ‘minus’ sign denotes normal group; means and error
bars of expression intensities are scaled and represented on the y-axis.)

across studies using this biomarker will perform poorly in this case. For
example, applying the prediction model obtained from the Bh study to the
Ga study will predict almost all subjects as adenocarcinoma patients, and the
poor performance naturally calls for the need of sample normalization. In
Figure 1B and C, standard normalization (std) and MRS are applied for inter-
study sample-wise normalization (SN_std and SN_MRS). It is clearly seen
that the expression levels of EMP2 are still not comparable across studies
and that the three pairs of direct inter-study prediction (Bh versus Ga, Ga
versus Be and Bh versus Be) will fail with an average accuracy rate of 73%
for SN_std and 61% for SN_MRS. In Figure 1D, sample-wise and then gene-
wise normalization by simple standardization to zero mean and unit variance
(SN_std+GN_std) scales the expression intensities to a comparable range
across three studies and an average accuracy of 94% has been reached in the
three pairs of inter-study predictions, a magnitude similar to the accuracy
reported in each individual paper. The result strongly argues the necessity of
gene-wise normalization for a successful inter-study prediction.

2.2 Simulation to demonstrate necessity of
ratio adjustment

Although SN_std+GN_std in Figure 1D results in good performance, the
differential sample-size ratios of normal and diseased groups among studies
can potentially deteriorate the normalization and prediction. We performed
two simulations below with identical ratios and with different imbalanced
ratios across studies to investigate the issue. In scenario 1, we simulated a
ratio-balanced univariate gene scenario for the training data and test data.
Expression intensities for 100 normal samples were simulated from N(3.5,
1) and 100 tumor samples from N(6.5,1). In the test data, we assumed that
the hybridization efficiency was doubled and the expression intensities of
100 normal samples were simulated from N (7,2%) and 100 tumor samples
were simulated from N(13,22) (see Figure 3A). In scenario 2, a ratio-
imbalanced scenario, the distributions remained the same but the training data
contained 150 normal and 50 tumor samples while the test data contained
50 normal and 150 tumor samples. A univariate (one marker) prediction
model was constructed from the training data using linear discriminant
analysis (LDA) and then was evaluated in the test data. The simulation
was performed 1000 times and the average error rate was reported. The
prediction performance of no gene-wise normalization (Fig. 3A and B),
gene-wise standard normalization (GN_std; Fig. 3C and D), ratio-adjusted
gene-wise standard normalization (rGN_std; Fig. 3E and F) and the optimal
Bayes error were evaluated. The Bayes error rates based on the Bayes
optimal classifier given the underlying simulation model can be analytically
calculated for both scenarios. Specifically, Errorgayes(X,Y,Px,Py)=Px-
Siosfxdt+Py - [,_, fy()dt where we assume E(X) < E(Y), X and Y are
normal and diseased populations, fxy and fy are the densities of simulated
Gaussian distributions, A is the solution of Py -fx(A)=Py -fy(}), and Px and
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Py are the proportions of normal and diseased populations in the test data.
In scenario 1, Px =Py =0.5; in scenario 2, Px =0.25 and Py =0.75.

2.3 Ratio-adjusted gene-wise normalization

Intuitively, GN_std is sensitive to the sample ratio between normal and
diseased groups in a study. We propose the following analytical approach
for ratio adjustment by assuming an equal mixture model below.

For a given gene g, we omit the subscript g and consider
observed intensities (X1,...,Xu;,Y1,...,Yn,) after sample-wise intra-study
normalization, where the first ny samples are from normal group and the
next ny samples are from diseased group. Suppose (xi,...,X,,) are ii.d.
from distribution X and (y1, ..., yn,) are from Y with E(X)=ux, Var(X) =0')%,
E(Y)=uy and Var(Y) :o%. GN_std standardizes gene vector to zero mean
and unit standard deviation by two parameters agy_sq and by _saq:

(GN_std) Xi —AGN_std (GN_std)  Yi —AGN_std
X; =———andy, =
bGN _sud bGN _std

(n1-lix +np-ity) = (ny-ux +ny-uy)

ny+ny ny+ny

1
Q_i—agy_sa’*+Y_(yi—aon_ua)’)

where agn s =

2 _
and bgy q=

n+n—1
=16+ —1)-6y+ L (i —ity)?
ni+ny—1
2 2 : 2
- (ni—1)-ox+(ma—1)-0y+ ,f]lf,fz (ux —uy) m
ni+ny—1

where fix =311, x; /n1,63 =311, (x;— fix)? /(n; — 1) and similarly for fiy
and 6%. It is clearly seen from Equation (1) that the results of GN_std greatly
depend on the sample sizes n; and n;.

We propose below a ratio-adjusted gene-wise normalization (rGN_std)
method. The empirical distributions obtained from (xi,...,x,;) and
(V1,.--,¥n,) are denoted by X' and Y. In other words, the cumulative

ni
distribution function (CDF) of X' is Fy/(f)= % > I(x; <t) and, similarly,
i=1

ny

F y’(f):é > I(yi<t). Consider Z' the equal mixture distribution of X’
i=1

and Y’ such that Fz(t)=0.5-Fx/(t)+0.5-Fy/(t). Our goal is to find

,
alization f: 2 . 2 —arGN _sid y _
normalization factors a,gn s¢ and erNJM such that E( e )=0

7' —a,q, . . A
and Var(#):l. It is easily seen that a,Gy_gq=(itx +ity)/2~

(ux +uy)/2 and

Var(X')+Var(Y')  ux—iy

2 2
erNf:td = Var(z/) = 2 2 )
2 2
oy +oy ux —uy o
~ = 2
5 +( 3 ) 2)

where, by definition, Var(X')= Z:’;l (i — fix)? /n1 and Var(Y)=
Z:’i] (yi— ;ly)z / ny. From Equation (2), the two ratio-adjusted scaling
parameters are now invariant to n; and ny. We note that a,Gy_gq =aGN sid
and b,GN_sia ¥ bGN_sia When n =ny. The minimum sample size required to
estimate (a,GN_sid,brGN _sia) 1S n1 =na =1 since the variance estimators in
Equation (2) under the mixture distribution framework are MLE estimators,
instead of unbiased estimators in Equation (1).

This analytic approach for ratio adjustment could be easily extended when
there are more than two groups in the data. Suppose K groups are available,
we can generate Z' to be the mixture of K groups with equal weights:

1 K
Fz(=2) Fx®
k=1

The scaling parameters can be derived similarly:
1& [
- S 72 A2
@GN _std = 1 Z”Xk and by g = X Zaxk
k=1 k=1

K
1 N N
+ E ;(”Xk _arGNixtd)2~

2.4 Calibration scheme for prospective clinical trial

An immediate issue from rGN is that the gene-wise normalization in the test
data requires knowledge of the class labels to calculate the normalization
factors. This is infeasible in general prospective clinical trials. In Figure 2, we
describe a calibration scheme for applying the proposed SN+rGN method to
construct a prediction model from an existing training study and to perform
prediction in a prospective test study (clinical trial). SN_std+rGN_std is
performed in the training study and a classification model is obtained. In
the prospective test study, a small set of calibration samples with known
disease labels is acquired and SN_std+rGN_std is similarly applied to
the calibration set to estimate the normalization factors. In practice, the
calibration data set can be obtained by applying selected mRNA samples
from the training study and new array data are generated using the new
platform or experimental protocol in the test study. Finally, the normalization
factors obtained from the calibration set and the classification model
obtained from the training study are applied to all prospective test samples
to predict disease status. In biological experiments, similar calibration
procedures are common when the experiment is to be conducted in a
new performance site or under a new protocol. An immediate advantage
of using the calibration scheme with SN_std+rGN_std is that predictions
can be generated sequentially whenever the test samples are collected day
by day. In contrast, most sophisticated normalization methods, such as
XPN, DWD and Knorm, requires the entire data matrix in test study for
normalization.

2.5 Data sets, preprocessing and gene matching

The raw data of the three lung cancer studies: Bh (Bhattacharjee et al.,
2001), Be (Beer et al, 2002) and Ga (Garber et al., 2001) were
downloaded from the public Internet domain (http://www.camda.duke.edu/
camda03/datasets/). Intra-study sample normalization for Bh and Be was
carried out in dChip using the rank-invariant normalization. Standard
normalization, which standardizes each sample to zero mean and unit
variance, was applied to the cDNA data. Genes with low average intensities
or small variabilities were filtered out based on the criteria developed
in the original studies. Detailed information is listed in Supplementary
Table 1.

For gene matching across studies, Entrez IDs were used as the common
identifiers. In this article, R package ‘annotate’ was used to retrieve the Entrez
IDs for the two Affymetrix data sets and MatchMiner (Bussey et al., 2003)
was used for the cDNA data. Averaged values were taken for multiple probes
sharing an identical Entrez ID. There were 2493 genes that overlapped in
the Bh and Be data sets, 1493 genes in the Bh and Ga data sets and 1594
genes in the Be and Ga data sets. They were used for the analysis of direct

A calibration scheme for
prospective study

training study. ~ prospective test study

1 small i, .
original subset small prospective
training calibration testing

data set data
u-a,:m,lsu-o-rGN SN"GNLV'“wfhy/'l""r"
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normalized iwadl | =
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data data o

N

classification estimated
model | error rate

Fig. 2. Calibration scheme for predicting prospective studies.
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inter-study prediction in this article. There were 81, 86 and 22 tumor samples,
respectively, in the Bh, Be and Ga data sets with available survival follow-up
information. These samples were used in the survival risk prediction analysis.
We note that averaged values were used when multiple probes match to the
same Entrez ID in this article. We tested two other popular approaches for
the multi-probe matching issue: (i) select the probe with largest inter-quartile
range (IQR); (ii) select the probe with largest Pearson correlation to the 0—1
disease phenotype vector. The results are almost identical to the averaging
approach (Supplementary Fig. 1).

The two prostate cancer data sets, We (Welsh et al., 2001) in Affymetrix
U95 and Dh (Dhanasekaran et al., 2001) in cDNA were publicly available.
The We data set contains 9 normal and 25 cancer samples while the Dh has 19
and 14 samples, respectively. Since these two data sets were preprocessed
with the Unigene ID provided, they were merged by Unigene ID. There
were 3078 overlapping genes left, which were the basis of the inter-study
prediction analysis used in our project.

2.6 Classification methods and evaluation

To assess the performance of our proposed normalization method regarding
binary classification (the prediction of normal versus diseased samples), we
examined three popular classification methods in microarray analysis: LDA,
K-nearest neighbor (KNN) and prediction analysis of microarrays (PAM).
For ease of evaluation, comparisons of different normalization methods were
performed with identical parameters (number of genes used in LDA, PAM
and KNN) and the results were verified by varying parameters over a certain
range.

Opverall prediction accuracy has been widely used as the evaluation index
in many publications. It is, however, often a misleading measure, especially
when the data set contains unbalanced sample sizes in groups. For example,
the accuracy in the Be data set can be as high as 89.6% (86/96), even if
the classification rule predicts all samples to be adenocarcinoma. A standard
alternative to this situation may be the AUC (area under ROC curve) index by
varying the classification threshold in the classification rule. This measure is,
however, usually unstable for small-sample-size situations and is not readily
available for classical methods like KNN. In this article, we applied a simple
yet robust prediction performance index, Youden index (Youden, 1950) that
is defined as:

Youden index =1— (false positive rate+false negative rate)
=sensitivity + specificity — 1

To evaluate the risk prediction of survival, supervised principle
components (SuperPC) (Bair and Tibshirani, 2004) method was used to cross
predict the survival risks of the three lung cancer data sets. The coefficients
of univariate Cox model fitting the expression intensities to the survival
was calculated for each gene. The most significant 50 genes were kept,
and singular value decomposition (SVD) was applied to select the top three
principal components for fitting the Cox linear model. The risk index is
defined as the linear term in the Cox model, and the median risk index value
of all the training samples is used as the threshold for deciding high- or low-
risk groups. Under this criterion, about half of the patients will be classified
as the high-risk group and the other half will be classified as the low-risk
group. We adopt two evaluation criteria in this article. For the first criterion,
the performance of risk prediction is determined by the separation of survival
curves of high- and low-risk groups, which is evaluated by the P-value
of log-rank test comparing the two Kaplan—Meier curves from predicted
high- and low-risk groups. For the second criterion, C-index (Harrel ef al.,
1982) that correlates the rank of predicted risk indexes and observed survival
information is used.

To compare with existing methods for both binary and survival prediction,
we first compare SN_std, SN_std+GN_std and SN_std+rGN_std. We then
compare SN_std+rGN_std to XPN (software obtained from https://genome.
unc.edu/xpn/) and DWD (software obtained from https:/genome.unc.edu/
pubsup/dwd/).

3 RESULTS

Figures in this section (Figs 3—7) are available in color and with
higher resolution in the Supplementary Material.

3.1 Simulations to validate ratio-adjusted procedure

Following the simulation model described in Section 2.2, the raw and
normalized data from simulations under both scenarios are displayed
in Figure 3. Comparing Figure 3C and D, GN_std normalization
obtained a near optimal prediction accuracy under scenario 1
(ratio-balanced), but not under scenario 2 (ratio-imbalanced). The
ratio-imbalanced situation was corrected by rGN_std (Fig. 3F).
Table 1 lists the mean error rate of constructing a prediction model
from the training data and predicting the test data (by LDA) using
raw data, and data after applying either the GN_std or rGN_std
methods based on 1000 simulations. In scenario 1, the error rates
of applying GN_std and rGN_std are identical and very close to
the Bayes error rate. In scenario 2, GN_std does not perform well
due to the imbalanced sample ratios and applying rGN_std greatly
improves GN_std.

3.2 Inter-study prediction in binary classification

We compared inter-study performance using raw data, as well as data
normalized by the following methods: SN_std, SN_std+GN_std and
SN_std+rGN_std to three lung cancer data sets: Bh, Be and Ga. The

A Scenerio 1 raw c Scenerio 1 GN_std E Scenerio1 rGN_std
LR | %° &
Training Test Training®, ” of Test §o % 0o v Trainingg %0° | Test ¢ o o
A 28 ""’5 2 ogh] ©30%, 09
BE S 8,°®
-1 4 B i e
%5,
s, o S vd
BN ¥ IR ol
A’g‘ TRk
7 7% A
v A
. I I P
" LS IR %o
.
L T T T T 7 T T T T
0 100 200 300 400 o 100 200 00 400
D Scenerio2 GN_std F Scenerio2 rGN_std
=
Training ~ Training @8 Test® < Training & | Teste

;{f-’“;" %

Fig. 3. Prediction in raw and normalized data from simulation:
(A) scenariol, raw data; (B) scenario2, raw data; (C) scenariol, GN_std;
(D) scenario2, GN_std; (E) scenariol, rGN_std; (F) scenario2, rGN_std.
Solid dots: normal samples; circles: tumor samples; solid horizontal line:
prediction threshold from the training set, used to predict the test set (x-axis:
index for 400 samples; y-axis: original and normalized intensity).

Table 1. Mean error rate of 1000 simulations

Training => Test

Error rate
Scenario 1 (%)  Scenario 2 (%)
Raw 42.0 21.0
GN_std 6.7 37.5
rGN_std 6.7 6.6
Bayes error 6.7 5.5
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with-in study prediction in each individual study had nearly perfect
performance by either SN_Std or SN_std+GN_std, confirming
previous reports. We tested three prediction methods: PAM, LDA
and KNN. The results were slightly different but similar, so we only
report PAM results in Figure 4. The results by LDA and KNN are
presented in Supplementary Figures 2 and 3. Figure 4 shows Youden
indexes of all three pair-wise inter-study predictions with 5, 10, 50,
100, 200 and 500 genes used in the training set. The four lines 1, 2,
3 and 4 (in Fig. 4A, C, E, G, I and K) stand for raw data, SN_std,
SN_std+GN_std and SN_std+rGN_std, respectively. Without any
inter-study normalization (Raw), all the inter-study predictions
performed poorly with Youden Indexes around 0, which is a result
of almost all the samples being predicted into one group (similar to
the univariate situation in Fig. 1A). SN_std dramatically improved
the inter-platform prediction between Bh and Be, two Affymetrix
data sets (Fig. 4A and C). It also improved in Figure 4E and I
but not in Figure 4G and K. Overall, SN_std+GN_std improved
SN_std, and the results after applying SN_std+rGN_std performed
the best for inter-study prediction. For example, in Figure 4G and
K, SN_std+rGN_std was the only normalization method which
produced satisfying inter-study prediction. We note that the gene-
wise normalization in SN_std+rGN_std has utilized class label
information in the test data, it poses potential risk of overfitting.
However, since the class label information from test data is used
only for normalization instead of for model construction, we expect
the potential bias to be very minimal.

We performed the same comparison for two prostate cancer
studies: We and Dh (Fig. 5A and C). Inter-study predictions based on
the raw data had the worst performance and all other normalization
methods provided some improvement. Overall, SN_std+rGN_std
has the best prediction accuracy rate and it achieves a 100% accuracy
rate when in Dh => We, shown by line 4 in Figure 5C. Similar

Bh =>Be B Bh=>Be C Be=>Bh D

40488

I~ Raw =T SN_std+GN_std [ Raw

== SN_std - DwD -2 SN_std

5= SN_std+GN_std - PN =8~ SN_std+GN_std
[ SN

[ SN_std+GN_std |_std+GN_std

Be => Bh
—3—8—3—4—3

=T SN_std+1GN_std
- DwD
== XPN

|

0 02 04 06 08 1 >

B e ———

10 50 100 200 500

i ———

o

Bh=>Ga F  Bh=>Ga Ga => Bh

T? % 51
1
| | Raw |~ SN_std+GN_std l— Raw SN_std+GN_std
= SN_std —= DwD l=— SN st DWD
| |5~ SN stdGN std == PN |5~ SN std+GN_std XPN
|=#— SN_std+rGN_std | N \‘

G Ga=>Bh

[~ SN_std+rGN_std

0 02 04 06 08 1m
af}

results of this inter-study evaluation by LDA and KNN are presented
in Supplementary Figures 4 and 5.

For a side-by-side comparison, we added XPN and DWD
for comparison in the lung and prostate cancer data. In four
of the six lung cancer inter-study prediction pairs (Fig. 4B,
D, F and J), XPN, DWD and SN_std+rGN_std performed
similarly. In the other two prediction pairs (Fig. 4H and
L), DWD performed poorly and XPN slightly outperformed
SN_std+rGN_std. For Dh => We prediction in prostate cancer
(Fig. 5C), DWD continued to perform poorly while SN_std+GN_std
outperformed XPN.

Following the calibration scheme discussed in Section 2.4 and
Figure 2, we randomly selected a few samples from the test set to
use as a calibration to perform SN_std+rGN_std for inter-study
prediction of the three lung cancer studies. The numbers of the
samples in the calibration are 1:1 (1 normal and 1 adenocarcinoma),
2:2 and 3:3 shown by line 1, 2 and 3 in Figure 6, respectively
(using PAM). The prediction results were based on an average of ten
random draws of calibration samples. In general, larger numbers of
calibration samples provide better estimate of normalization factors.
The improvement from 1:1 to 2:2 was significant while, surprisingly,
not much improvement was gained from 2:2 to 3:3. The result argues
that a calibration set as small as four samples (two normal and
two diseased) is enough for ratio-adjusted gene-wise normalization.
The same analyses are performed by using LDA and KNN, and
similar results are obtained in Supplementary Figures 6 and 7. To
be conservative, we suggest a calibration set of 5-6 normal and
diseased samples in general when designing a serious prospective
clinical trial under a different protocol, in an independent medical
center or in a different array platform. Note that since the disease
or survival information of the test samples is usually not available,
a simple solution is to obtain biological samples from the training
study and rerun the arrays in the new experimental setting to serve
as the calibration set (see Fig. 2).

3.3 Inter-study prediction in survival risk prediction

Finally, we performed inter-study prediction for patient survival risk
in the three lung cancer studies. We compared raw data, and data
after applying either the SN_std or SN_std4+GN_std methods. We
omitted the prediction based on the raw data because it performed
poorly as expected. There was only slight improvement from SN_std
to SN_std+GN_std in Bh versus Be and Bh versus Ga (presented
in Supplementary Fig. 8). The more significant improvement
happened in Be versus Ga and is shown in Figure 7. Inter-study
predictions after SN_std are displayed on the first column and
inter-study predictions after SN_std+GN_std are displayed on
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Fig. 4. Inter-study prediction of lung cancer data by PAM. (A) and (B) Bh
=> Be, using Bh study as training data to predict Be study. (4C—4L) Similar
notations are used for the other five inter-study predictions (x-axis: number
of genes used in the prediction models; y-axis: Youden index).

5 10 50 100 200 500

Fig. 5. Inter-study prediction of prostate cancer data by PAM. (A) and
(B) We => Dh. (C) and (D) Dh => We (x-axis: number of genes used
in the prediction models; y-axis: Youden index).
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the second column. SN_std produced confusing results (Fig. 7A
and F), where samples predicted as low-risk had worse survival
outcomes than the high-risk group. Applying SN_std+GN_std
(Fig. 7B and G), although still not statistically significant, corrected
the problem and provided more reasonable predictions. Applying
DWD and XPN does not improve survival prediction in Be versus
Ga comparison (see Fig. 7D and I for XPN and Fig. 7E and J
for DWD). In the other two comparisons (Bh versus Be and Bh
versus Ga in Supplementary Fig. 8), we surprisingly found that
predictions of DWD and XPN occasionally generated low-risk
groups with worse survival outcomes than high-risk groups
(Supplementary Fig. 8A4, B4, B5 and D4). In conclusion, even
though all of the survival predictions are not statistically significant,
the result supports the necessity of gene-wise normalization
in addition to sample-wise normalization (SN_std+GN_std)
and finds no advantage for sophisticated modeling in
DWD and XPN.

It should be noted that survival risk predictions, unlike binary
classification, have no known binary sample labels. The ratio-
adjustment and the calibration scheme cannot be directly applied.
We tested an idea of taking the three most extremely high- and low-
survival samples as the calibration set (named SN_std+-eGN_std;
gene-wise normalization by extreme samples). The result shows
similar or worse (Fig. 7C and Supplementary Fig. 8C3) performance
than SN_std+GN_std without ratio adjustment. More investigations
are needed for future research especially when the survival
distributions of samples in two studies greatly differ.

4 DISCUSSION AND CONCLUSIONS

In this article, we investigated the normalization issue for enhancing
inter-study disease prediction, a critical issue for microarray
translational research. Instead of developing more sophisticated
sample-wise normalization methods (SN), we observed that gene-
wise discrepancies of expression levels across studies were often
significant, which impeded successful inter-study prediction. As a
result, the addition of gene-wise normalization (GN) is necessary.
We further found that differential-sample-size ratios of diseased
and normal groups greatly deteriorate the gene-wise standardization
procedure. An analytical method with equal mixture assumption was
proposed for ratio-adjusted gene-wise normalization (rGN). Finally,
since the sample labels are needed to perform rGN, we developed
a practical calibration scheme for the design of a prospective
clinical trial.

Figure 1 shows that inter-study normalization is necessary before
being able to perform inter-study prediction (Fig. 1A) and sample-
wise normalization across studies is not sufficient to correct the
bias (Fig. 1B and C). There are several potential explanations for
such gene-specific intensity discrepancies. The major cause comes
from the different probe designs in different array manufacturers.
For example, the probes from Affymetrix GeneChip are short
25-mer oligos with multiple probes (11-16 probes) representing
one gene. For cDNA microarray, the probes are cDNA fragments
that are usually hundreds of bases long. As a result, probes
meant to measure an identical gene always have different target
sequences for hybridization in different platforms, which, in turn,
introduces differential probe efficiency and affects the final intensity
levels. Even if comparing studies of the same array platform,
different sample preparations, as well as labeling and hybridization
protocols, can possibly introduce such gene-specific intensity
discrepancies.

Preprocessing by GN_std has been widely applied in gene
clustering as well as particular classification methods (SVM, KNN,
etc.) and dimension reduction (MDS and PCA) to obtain better scale
invariant property. It is well-known that by performing GN_std, the
Euclidian distance of two genes can be expressed by the correlation
coefficient. In general, d(x',y")=/2(n—1)(1—r(x’,y’)) where x’
and y' are two standardized gene vectors and n is vector length.
Sample-wise normalization (SN) is a routine preprocessing step
in microarray analysis, while GN_std is seldom discussed in the
literature. However, GN could be a critical step when dramatic
gene-specific differences exist between different platforms and none
of the SN methods is expected to bring the expression values to
the same level for all genes. As we have shown in this article,
implementation of SN+GN is fast and a significant improvement
is often obtained compared to SN only. We conclude that GN
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should be applied in the analyses to directly carry prediction
models from one study to another and ratio-adjusted GN should
be used because GN is sensitive to the ratio of normal and disease
groups.

To further investigate the cause of improvement in GN, we
conducted a principal component analysis (PCA) on the three
individual lung cancer data sets based on the top 50 genes,
comparing normalization by SN_std and SN_std+GN_std. It is
clearly shown in Supplementary Figure 9 that the PCA is heavily
dominated by the first component after applying SN_std for all three
studies. By additional GN_std, proportions of information after the
second principal component are increased and can be better utilized
to construct the prediction model. This explains why additional GN
improves the prediction performance.

Calibration of experimental instruments iS a common practice
when operating in a new lab or by a new technician. It is especially
necessary when preparing for a large survey or screen test. Our
proposed SN_std+rGN_std method requires knowledge of sample
labels in the test set and, as a result, a calibration scheme was
developed for application to a prospective clinical trial. In our
analysis of the three lung cancer data sets, a small calibration
set of two to three normal and diseased samples respectively was
sufficient. Since experimental quality and genetic variation may vary
in other studies of different diseases, we conservatively suggest
five to six normal and diseased samples for a serious prospective
clinical trial.
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