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ABSTRACT

Motivation: Chromatin immunoprecipitation (ChIP) experiments
followed by array hybridization, or ChIP-chip, is a powerful approach
for identifying transcription factor binding sites (TFBS) and has
been widely used. Recently, massively parallel sequencing coupled
with ChIP experiments (ChIP-seq) has been increasingly used as
an alternative to ChIP-chip, offering cost-effective genome-wide
coverage and resolution up to a single base pair. For many well-
studied TFs, both ChIP-seq and ChIP-chip experiments have been
applied and their data are publicly available. Previous analyses have
revealed substantial technology-specific binding signals despite
strong correlation between the two sets of results. Therefore, it is
of interest to see whether the two data sources can be combined to
enhance the detection of TFBS.
Results: In this work, hierarchical hidden Markov model (HHMM)
is proposed for combining data from ChIP-seq and ChIP-chip. In
HHMM, inference results from individual HMMs in ChIP-seq and
ChIP-chip experiments are summarized by a higher level HMM.
Simulation studies show the advantage of HHMM when data from
both technologies co-exist. Analysis of two well-studied TFs, NRSF
and CCCTC-binding factor (CTCF), also suggests that HHMM
yields improved TFBS identification in comparison to analyses using
individual data sources or a simple merger of the two.
Availability: Source code for the software ChIPmeta is freely
available for download at http://www.umich.edu/∼hwchoi/
HHMMsoftware.zip, implemented in C and supported on linux.
Contact: ghoshd@psu.edu; qin@umich.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
Chromatin immunoprecipitation (ChIP) is a powerful method for
isolating a transcription factor (TF) bound to DNA sequences
in vivo (Orlando and Paro, 1993; Solomon et al., 1988). In
ChIP experiments, cells are first treated with reagents such as
formaldehyde inducing protein–DNA crosslinks, and DNA is
isolated and fragmented afterwards. An antibody specific to a TF
is added to precipitate the interacting pairs, and their crosslinks
are reversed. The resulting DNA fragments are direct evidence for

∗To whom corresponding should be addressed.

physical interactions between the TF and its target genes. These
DNA segments can be simultaneously mapped to the genome with
array-based hybridization, known as ChIP-chip (Iyer et al., 2001;
Ren et al., 2000). ChIP-chip has been widely used for identifying
TF binding sites (TFBS). Recently, ChIP experiment coupled with
massively parallel sequencing (Bentley et al., 2008), or ChIP-seq,
has been proposed as an alternative (Barski et al., 2007; Chen et al.,
2008; Johnson et al., 2007; Mikkelsen et al., 2007; Robertson et al.,
2007; Schones et al., 2008; Shivaswamy et al., 2008). ChIP-seq
offers genome-wide coverage in a single base pair resolution at low
cost (Park, 2008).

Although a number of previous studies have demonstrated the
power of ChIP-seq, it has also been shown that different mapping
strategies may identify mutually exclusive peak regions as candidate
binding sites. For instance, Robertson et al. (2007) reported that the
overlap between the ChIP-enriched regions identified by ChIP-seq
and ChIP-chip is around 60% in signal transducer and activator
of transcription protein 1 (STAT1) data. Euskirchen et al. (2007)
found that ChIP-chip and ChIP-PET (Loh et al., 2006; Wei et al.,
2006), a sequencing-based method, are frequently complementary
to each other in identifying validated targets when the signal is
not sufficiently strong. The evidence by Robertson et al. (2007)
suggests that massively parallel sequencing may not work well
for all DNA fragments uniformly. For example, the sequencing
can be biased toward certain parts of the genome due to the
complex chromatin structure of DNA molecules in their native
form. Also, sequence reads may also have reduced sensitivity in
the genomic regions where repeat sequences appear frequently. For
those DNA fragments, other mapping methods not relying on direct
sequencing, e.g. ChIP-chip, can be a valuable source to complement
the weakness of the sequencing technology.

For many of the existing ChIP-seq data, ChIP-chip experiments
have also been conducted and the data are publicly available. It is
desirable to take advantage of existing ChIP-chip datasets to assist
TFBS identification using ChIP-seq. While such a joint analysis has
a promise, it is a challenging task to account for the heterogeneity
of data from the ChIP-chip and ChIP-seq platforms. This is because
the two technologies show vastly different behavior in terms of
sensitivity and specificity. Specifically, the peaks identified by ChIP-
seq are expected to form regions that are much sharper than those
in ChIP-chip due to its superior resolution, whereas ChIP-chip
tends to report broader regions with moderate significance including
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Fig. 1. HHMM framework with the master process in the top layer and
the multiple individual processes in the bottom layer. The hidden states in
ChIP-seq and ChIP-chip data are considered as emission from the master
process.

potential false positives. Hence, the signals from the two data sources
have to be appropriately weighted in order to keep the overall false
positive rates low in the joint analysis.

To this end, hierarchical hidden Markov model (HHMM), a
collection of multiple individual-level HMMs governed by a
population or master-level HMM, is developed in this work. HMMs
have been frequently used to analyze ChIP-chip data in the literature
(Du et al., 2006; Huber et al., 2006; Humburg et al., 2008; Ji and
Wong, 2005; Li et al., 2005; Munch et al., 2006). The structure
of the HHMM model is illustrated in Figure 1. In this method,
individual-level HMMs function as de-noising filters that convert
the raw data into inferred binary hidden states representing ChIP-
enrichment and background noise, and the master-level HMM uses
individual-level hidden states as a basis to infer the underlying true
states. In this process, individual-level HMMs serve as a buffer to
reduce the heterogeneity present in raw ChIP-chip and ChIP-seq
data, and the master-level HMM summarizes their ChIP-enrichment
status to produce the final probability score.

Development of HHMMs has been proposed previously in the
literature (e.g. Bui et al. 2004; Fine et al. 1998). Recently, Shah et al.
(2007) used this class of models for accurately detecting boundary
points of copy number changes across multiple samples in genome-
wide array-comparative genomic hybridization (aCGH) data. In
their model, hidden states in the individual samples exchange mutual
feedback with the hidden state in the master level. In contrast, for
our problem, each data source is represented as an individual HMM,
whose inferred hidden states are then modeled as the bivariate
emission probabilities of the master-level HMM.

2 METHODS

2.1 Data
Data generated from ChIP-chip and ChIP-seq experiments are different.
ChIP-chip data are fluorescent intensity levels from microarrays reflecting
the amount of DNA fragments hybridized to the probes. Probes on tiling
arrays are usually 36–50 nt long. Elevated intensity levels from multiple
adjacent probes indicate ChIP-enrichment. In contrast, ChIP-seq data are

sequencing reads that map to the reference genome. Reads piled up at a tight
neighborhood indicate ChIP-enrichment.

Because a HMM framework was adopted, the data are first summarized
into fragment counts in units of windows of fixed size (25 nt in this study
and adjustable) along the genome. Dissecting chromosomes into windows of
equal length has been used previously in the ChIP-seq literature (Mikkelsen
et al., 2007). Since the start and end positions of ChIP-chip probes do
not exactly overlap with these windows, ChIP-chip probe boundaries were
redefined so as to match the ChIP-seq windows (later in the master-level
HMM). With typical probes having length >25 nt, one ChIP-chip probe can
be mapped to multiple windows. The impact of varying window sizes is
further discussed in Section 3.

2.2 HHMM
Let the ChIP-seq count data and the ChIP-chip intensity data be denoted
by S = (s1,...,sT ) and C = (c1,...,cT ), respectively, for a chromosome that
has been divided into T windows. We assume that the number of windows
is identical in the two data. It is assumed that each data source follows its
own independent HMM. Their respective hidden states are denoted by hs =
(hs1,...,hsT ) and hc = (hc1,...,hcT ). As shown in Figure 1, these hidden states
are modeled as bivariate random variables in the emission of master HMM,
whose hidden states are denoted by h= (h1,...,hT ). Both the individual-level
states (hs,hc) and the master-level states h consist of either ChIP enriched
(denoted 1) or background (denoted 0) states. Note that the ultimate goal of
HHMM is to infer the master-level hidden states h.

The model parameters are now specified in the individual level first.
The three main components of HMM—initial state distribution, transition
probability matrix and emission (Rabiner, 1989)—are defined. The initial
state distribution π (hs1) and π (hc1) and the transition probabilities As and
Ac can either be fixed or estimated from the data. Each matrix has two
rows and two columns, with probability moving from one state in the
row to another state in the column. In the latter case, one can assume
that each row of As and Ac follows multinomial distribution and estimate
the probabilities from the frequency of relevant moves in the inference of
hs and hc, respectively. Parametric models are used to describe emission
probabilities in the ChIP-enriched states and the background states.

In the following, we briefly describe the two individual-level HMMs
proposed to model ChIP-chip and ChIP-seq data, respectively. More details
of the two models can be found in the Supplementary Material. We will
then explain in details about the master-level HMM which is the main focus
of this study. Note that the individual-level HMMs proposed here can be
replaced by alternative methods to infer ChIP-enrichment in the individual
data sources.

2.2.1 HMM in ChIP-chip In ChIP-chip data, we use uniform and normal
distributions to model the hybridization intensities in the ChIP-enriched
states and the background states, respectively. The uniform–normal mixture
model has been previously used to model differential gene expression in
microarray data analysis (Parmigiani et al., 2002). While the assumption of
uniform distribution for signals in the ChIP-enriched states may be an over-
simplification due to possible variation in TF binding affinity across the
genome, this assumption alleviates the computational loading of HHMM
when no prior knowledge is given as to the preferential binding site
enrichment. A possible replacement for the distribution in the ChIP-enriched
states is another normal distribution (Li et al., 2005).

In the uniform–normal model, Ct |hct =1∼Uθc1 (·) and Ct |hct =
0∼Nθc0 (·), where U and N denote the uniform and normal distributions
in the ChIP-enriched states and the background states, respectively. The
uniform distribution parameters θc1 are fixed as the minimum and maximum
of intensities {Ct}T

t=1, and the mean and variance parameters of the normal
distribution θc0 = (µc,σ

2
c ) will be estimated. Bayesian inference for HMM

was implemented with conjugate priors and efficient sampling algorithm
was presented in Scott (2002) (See Supplementary Material Section 1.1 for
details).
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2.2.2 HMM in ChIP-seq In ChIP-seq data, overdispersion and higher
proportion of zero counts must be accounted for in the model. We assume
single sample analysis for now. We use generalized Poisson (GP) distribution
and zero-inflated Poisson (ZIP) distribution to model read counts in the
ChIP-enriched states and the background states, respectively (Consul, 1989;
Johnson et al., 1992). For inference purposes, a latent variable Zt is defined
for sequence count st at location t such that Zt =0 if st =0 and st is generated
from the point mass at zero, and Zt =1 otherwise (thus, it is always the case
Zt =1 if st >0). As in the model for ChIP-chip data, Bayesian inference was
implemented (See Supplementary Material Section 1.2 for details).

The same model can be extended to two sample analysis (ChIP-treated
sample and untreated control sample). In the paired design, we used a
bivariate GP/ZIP distribution to model the read counts between the two types
of samples. A HMM is then designed to perform inference on the ChIP-
enriched/background states (See the Supplementary Material Section 1.2 for
details).

2.2.3 Master HMM In the master level, the initial state distribution
π (h1) and transition probabilities A are defined the same way as in the
individual level. For the emission, the data (hs,hc) are modeled with two
multinomial distributions, i.e. (hst,hct)|ht =1∼Mθ1 (·) and (hst,hct)|ht =0∼
Mθ0 (·), where the distribution for the enriched state M denotes multinomial
distribution, and θ1 = (p1

00,p
1
01,p

1
10,p

1
11) and θ0 = (p0

00,p
0
01,p

0
10,p

0
11) are

their parameters for the ChIP-enriched states and the background states,
respectively. These parameters are given a conjugate Dirichlet prior with
parameters (γ 1

00,γ
1
01,γ

1
10,γ

1
11) and (γ 0

00,γ
0
01,γ

0
10,γ

0
11), respectively.

Given the posterior probability pairs (qst,qct) at all positions t =1,...,T
estimated in the individual-level HMMs, hidden states in the master level
are inferred as follows. Had (hst,hct) been observed directly, the likelihood
for the master-level HMM would be

π (h1)
T∏

t=2

π (hst,hct |ht,θht )π (ht,ht−1,A)

From the inference of individual HMM, {(qst,qct)}T
t=1 are computed, but the

actual hidden states {(hst,hct)}T
t=1 remain still unknown. Treating this as a

missing data problem, the likelihood is integrated over all four possibilities
of (hst,hct) based on the marginal weights (qst,qct), i.e.

π (h1)
T∏

t=2

⎡
⎣ ∑

(hst ,hct )

gt ·π (hst,hct |ht,θht )

⎤
⎦π (ht,ht−1,A)

where gt = (qst)hst (1−qst)(1−hst )(qct)hct (1−qct)(1−hct ). This multiplicative
factor gt weights the four possible cases of (hst,hct) based on the product
of their corresponding marginal posterior probabilities in ChIP-seq and
ChIP-chip at position t, as an approximate solution to the missing data
problem.

With this likelihood, imputation and posterior sampling steps are iterated
as in the ChIP-chip case: (i) Imputation: draw h(i+1) ∼π (h|hs,hc,θ0,θ1,A)
using the forward–backward algorithm, and (ii) Posterior sampling: draw
θ

(i+1)
j ∼π (θj|hs,hc,h(i+1),A) for j=0,1. With the multinomial likelihood and

the Dirichlet prior, the posterior is again Dirichlet distribution, thus θj =
(pj

00,p
j
01,p

j
10,p

j
11) are drawn from D(γ j

00 +Hj
00,γ

j
01 +Hj

01,γ
j
10 +Hj

10,γ
j
11 +

Hj
11) where Hj

kl =
∑

t 1{hst =k,hct = l,ht = j} for k,l=0,1 and j=0,1.
Prior was elicited to reflect the known technological difference between

ChIP-seq versus ChIP-chip in terms of precision and sensitivity. Since ChIP-
seq signals tend to be more sparse but more precise than ChIP-chip signals,
elicitation of informative prior that elevates the confidence for ChIP-seq
signals more than ChIP-chip signals was preferred for the master-level HMM.
In fact, there are ways to conjecture the optimal posterior distribution in real
data. For example, if one is aware of the false positive rates in ChIP-seq and
ChIP-chip, then the posterior can be set so that the ratio p1

10/p1
01 is inversely

proportional to the ratio of false positives. One can also learn this knowledge
from preliminary motif search in TFBS identified in ChIP-seq and ChIP-chip
and reflect the sensitivity ratios in p1

10/p1
01 and p1

11/p1
10. Through multiple

simulations and real data analysis, it was found that the following prior works
well: γ 1

11 =M/2, γ 1
10 =M/5 and γ 1

01 =M/10 in the ChIP-enriched windows,
and γ 0

kl =1 in the background windows.
The elicited prior results in the posterior probability ratios 1<r01 <r10

<r11 where rkl =p1
kl/p0

kl . This requirement is important since the noise in
the ChIP-chip data will substantially increase the number of windows with
unique ChIP-chip signals H1

01 assigned to the ChIP-enriched state, and as a
result the posterior probability of ChIP-enrichment for these windows will be
overestimated unless informative prior is specified. Admission of ChIP-chip
unique signals with higher frequency than ChIP-seq unique signals is likely
to result in elevated false positive rates.

2.2.4 Regions with missing data Due to the limitations in technology
and the presence of repetitive regions, neither ChIP-seq nor ChIP-chip is
able to completely survey all bases of the human genome. Regions that are
inaccessible from both are marked and skipped. There are also regions on
the genome that are uniquely accessible by either technology. When data
from one source is missing, the inference of the hidden states at the upper
level in HHMM will rely on the other data source alone. That is, using
the marginal distribution (Bernoulli) of the joint distribution to model the
observed (non-missing) data.

3 RESULTS

3.1 Simulation study
A simulation study was conducted in order to assess the performance
of HHMM. The posterior probabilities were generated instead of the
raw signals, as the focus of this simulation study is the assessment of
master-level HMM, where the information from both data sources
are combined.

First, the master-level hidden states h in a chromosome containing
a 100 000 probes (25 Mb chromosome) were simulated from a
stationary Markov chain with a transition probability matrix

A=
(

0.99 0.01
0.15 0.85

)

Hidden state 1 denotes ChIP-enrichment. ChIP-enriched states have
been accepted only when the probes formed a contiguous block, i.e.
all ‘singletons’ in the ChIP-enriched state have been converted to
the background state. This generates the baseline ‘truth’ where the
true ChIP-enriched sites are 150 bp long on average (range from 75
bp to 1375 bp and IQR of 100–250 bp).

Given a value of hidden state ht =1 at each locus t, posterior
probabilities P(hst =1|S) and P(hct =1|C) have been generated
from Beta distributions with mean 0.9 and 0.8, respectively. In
order to reflect higher resolution in ChIP-seq over ChIP-chip, data
were generated so that each true ChIP-enriched region is almost
exactly covered by a ChIP-seq peak region with ChIP-chip signals
surrounding it. Negative signals (ht =0) have been placed as follows.
Reflecting the actual false positive rates of <5% in ChIP-seq and
25% in ChIP-chip previously reported in analyses of real datasets,
e.g. Robertson et al. (2007), these false positive signals were planted
in blocks of 3–8 windows with probability 0.05 and 0.25 in the two
datasets, respectively.

Datasets with four possible sampling behaviors (ps, pc) have been
simulated. Sampling behavior here refers to the sensitivity of each
data source producing signal within the true ChIP-enriched regions.
Case I (ps =0.75,pc =0.9) and Case II (ps =0.6,pc =0.8) represent
scenarios where ChIP-chip signals appear with a greater frequency
(with a greater error rate) than ChIP-seq, which may represent the
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Fig. 2. Plots of the ROC in the four simulation datasets, comparing ChIP-
seq only, ChIP-chip only, HHMM, Intersection and Union. Four different
settings of ChIP-seq and ChIP-chip data were generated. Signal present in
75% and 90% (A); 60% and 80% (B);75% and 75% (C); and 90% and
90% (D) of the ChIP-enriched regions detected by ChIP-seq and ChIP-chip,
respectively.

cases where the sequencing depth is low and hence a number of
real ChIP-enriched regions are missed by ChIP-seq. Case III (ps =
0.75,pc =0.75) and Case IV (ps =0.9,pc =0.9) represent scenarios
where both data sources cover real binding site motif regions with
a good sensitivity and some of the platform-specific regions host a
good number of real motifs. Other scenarios of a varying range of
combinations with the fixed ps/pc ratio have also been simulated,
and the results were consistent.

HHMM was compared with four other ways to identify ChIP-
enriched regions with high probability: (i) ChIP-seq only: peak
regions from ChIP-seq HMM; (ii) ChIP-chip only: peak regions
from ChIP-chip HMM; (iii) Intersection: common peak regions
in both sources; and (iv) Union: peak regions from either source.
Figure 2 shows the receiver operating characteristic (ROC). In
all examples, HHMM is the best performing method in terms of
sensitivity followed by Union, outperforming both single-source
analyses. More importantly, HHMM keeps the specificity higher
than Union for nearly all decision points (square dots). The fact that
the ROC curve bent to the right significantly for high specificity
decision points in the Union indicates that blind picking of all
signals would result in high false positive rates at a fixed specificity,
mostly due to ChIP-chip data. HHMM removes most of the low-key
negative signals, which can be seen in the upper left corner of the
ROC curves.

In sum, the results in Cases I through IV indicate that the area
under the curve of the ROC is the highest in HHMM followed by
Union and the number of positive calls is almost always highest in
HHMM at fixed specificity. In all scenarios where either the more
advanced mapping platform misses some of the true signals or both
platforms complement the identification for each other, HHMM has

the potential to collect the highest number of binding sites and, at
the same time, to keep the false discovery rates lower than blind
picking of all signals.

Meanwhile, another dataset was simulated with (ps,pc)=
(0.8,0.6), where the better performing platform ChIP-seq covers
most of the signals picked up by ChIP-chip. Examination of ROC
curve shows that HHMM, ChIP-seq only and Union methods
perform equivalent to one another, indicating that there is no
additional benefit earned by HHMM as expected. Also, this is
consistent with the fact that the ROC improved the least in Case IV
out of the four scenarios, where the number of overlapping signals
in ChIP-seq and ChIP-chip is the largest among all.

3.2 Application to NRSF data
3.2.1 Data HHMM was applied to a real dataset for the TF NRSF
(Johnson et al., 2007). In the study, ChIP-seq was used to study
genome-wide mapping of binding sites of NRSF, a neuron-restrictive
silencer factor known for its negative regulation of many neuronal
genes in non-neuronal cells (Schoenherr et al., 1996), were mapped
to ∼2000 locations in the human genome using ChIP-seq. ChIP-
seq data for the treated and control cell lines were available from
the Illumina web site and an unpublished ChIP-chip data was also
available in Gene Expression Omnibus (GSE7372). Since the array
platform used in the ChIP-chip data (Nimblegen ENCODE tiling
arrays) does not cover the whole genome, this section focuses on
the 10 ENCODE regions each spanning 5 million bp, i.e. around 1%
of the human genome.

High probability signals (0.9 and above) appeared in 26.5 and
272.9 kb in ChIP-seq and ChIP-chip data, respectively, indicating
significant differences between the two platforms. Among these, 422
windows were overlapping, which accounts for 37% of ChIP-seq.
The posterior probabilities were then combined into a single data as
mentioned previously, and master-level HMM was fit.

3.2.2 Motif enrichment For the peak regions identified by each
method, we used two motif search engines to find TFBS. First,
we used MatInspector (Cartharius et al., 2005) of Genomatix
(http:// www.genomatix.de) using the position weight matrix (PWM)
reported in Schoenherr et al. (1996) (See Supplementary Material
Section 2 for motif logo plot). Since the sequence alignment in
MatInspector does not offer confidence assessment, we generated
permuted sequences by randomly shuffling the nucleotides within
each sequence in the peak regions and the motif search was
reiterated, providing a reference for assessing the significance of
the hits. The enrichment of TFBS motifs was tested by χ2 test in
a contingency table setting. The rows of the 2×2 table indicate
whether the motif search was done in the original sequence or in the
permuted sequence, and the columns indicate whether the sequences
contain motifs or not Frith et al. (2004). Second, we applied Clover
to construct more realistic background sequences from a specific
composition of real sequences (human chromosome 20). We used
the same PWM used above for sequence alignment. Clover reports
the motifs that are statistically significant matches compared with
matches to background sequences at a certain significance threshold
(e.g. P = 0.05).

Table 1 shows the result of the analysis using the probability
threshold 0.9. The total number of motifs is the highest at 67 in the
Union method, but the HHMM picks up 46 motifs while keeping
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Table 1. Motif summary for the five methods in NRSF data

Method #Matcha (#Permuteb) #Peaks Coverage (kb) ORc χ2 Match rated #Clovere Rate in Cloverf

HHMM 46 (11) 424 179.2 4.56 21.74 0.19 51 0.28
Union 67 (24) 860 293.0 2.94 20.47 0.15 64 0.22
ChIP-seq 25 (4) 61 26.5 9.89 18.09 0.79 37 1.39
ChIP-chip 52 (17) 830 272.9 3.20 17.48 0.13 40 0.15
Intersect 10 (1) 25 6.6 16.00 7.46 1.36 13 1.97

Regions containing at least one peak with probability 0.9 were selected and motifs with PWM of NRSF motif were searched.
a#Match is the number of peaks including a motif match in the original sequence.
b#Permute is the number of peaks including a motif match in the permuted sequence.
cOR stands for odds ratio.
dMatch rate is (#Match − #Permute)/1 kb.
e# Clover corresponds to the number of statistically significant motif hits in the selected peak regions at P-value threshold 0.05.
fRate in Clover refers to the # motif hits divided by the sequence coverage.

the false positives less than half of the Union, indicating improved
control of false positive rates, at the expense of fewer low ranking
signals. This is congruent with the Clover analysis shown in the last
two columns of Table 1, where the absolute number of motifs is
the highest in the Union but the identification rate (per 1 kb) is the
highest in HHMM (using the default P-value threshold 0.05).

3.2.3 Comparison of individual HMMs Since the performance
of HHMM depends on the success of individual HMMs, we
evaluated the individual-level HMMs in ChIP-seq and ChIP-chip
data in comparison to cisGenome (Ji et al., 2008) in the NRSF data.
CisGenome is an integrative system for detecting ChIP-enriched
regions from ChIP-seq or ChIP-chip data. The same datasets used
in the HHMM analysis were fed into CisGenome. All default
arguments were used in CisGenome. The significance criterion was
set at the posterior probability threshold 0.9 (default in HHMM)
for HMMs in HHMM and FDR 0.1 for CisGenome (default in
CisGenome).

The comparison in the ChIP-chip data reveals that a considerable
overlap exists between the two methods. Our uniform–normal model
and CisGenome identified 697 and 830 peaks, respectively, with
530 peaks (76%) identified in CisGenome in the peaks identified by
our uniform–normal HMM. The peaks unique to each method are
likely due to the distinct approach taken in TileMap (Ji and Wong,
2005) implemented in CisGenome. In the ChIP-seq data, GP-ZIP
HMM identified 61 peaks with probability threshold 0.9 whereas
CisGenome identified 37 peaks with FDR threshold 0.1. Thirty-five
peaks from CisGenome (95%) have overlap with at least one region
in the selected peak regions in our GP-ZIP HMM.

We also found that, for the ChIP-chip data, the peaks identified
by CisGenome tend to be longer than the peaks identified by our
uniform–normal HMM (589 bp versus 328 bp) on average, while,
for the ChIP-seq data, peaks identified by CisGenome tend to be
narrower than peaks identfied by our GP-ZIP HMM (136 bp versus
435 bp).

Despite the differences in the width of peak regions, both
comparisons suggest that the individual-level HMMs in HHMM
perform reasonably in concordance with other implementations such
as CisGenome.

3.2.4 Impact of window size We evaluated the impact of the
window size in HHMM using 10 and 50 nt long windows in addition

Table 2. Impact of window sizes in HHMM analysis

Window
size (nt)

Peaks Coverage (kb) Overlap with

10 nt 25 nt 50 nt

10 1195 350.9 – – –
25 424 179.2 97% – –
50 405 194.4 98% 91% –

Finer window size helps to identify more motifs at the expense of extended
computational loading.

to the 25 nt window used above. In terms of sequence overlap, 25 and
50 nt windows gave consistent result (see Table 2). Peaks identified
using 10 nt windows but missed using the other two larger windows
from 3 to 8 windows (30 to 80 nt), indicating that they are short
peak regions.

This inconsistent result with 10 nt window suggests that using
microscopic windows may exaggerate short peaks, let alone
increased computational loading. Based on the consistency in the
analyses using 25 and 50 nt windows, windows of comparable size
to sequence reads (20–30 nt) or array probes (36–50 nt) is deemed
optimal for HHMM analysis.

3.3 Application to CTCF data
3.3.1 Data and model fit For an example of genome-wide
mapping, binding sites of CTCF were mapped using the data
from Kim et al. (2007) and Barski et al. (2007). CTCF is a zinc
finger protein that has a multivalent character as a TF (Dunn and
Davie, 2003; Ohlsson et al., 2001) capable of participating in both
repression and activation due to the combinatorial use of its 11 zinc
fingers. CTCF zinc fingers can be selectively utilized based on the
different needs of target genes, and thus the binding sites are likely
to be more variable than other transcription factors. For instance,
Kim et al. (2007) has reported 62 genes for which multiple CTCF
binding sites were identified. We used the PWM reported in that
study for motif search (See Supplementary Material Section 2 for
the motif logo plot).

Individual HMM fits in this data showed that 419 457 windows
in ChIP-seq and 3.4 million probes (7.1 million windows worth)
in ChIP-chip had positive posterior probabilities, where 152 025
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Table 3. Motif summary for the five methods in CTCF data

Method #Matcha (#Permuteb) #Peaks Coverage (Mb) ORc χ2 Match rated

HHMM 23 772 (4815) 65 808 30.31 7.16 16 057.36 0.63
Union 26 788 (6200) 83 325 40.08 5.89 16 018.71 0.51
ChIP-seq 16 771 (1836) 25 372 9.33 25.00 18 926.85 1.60
ChIP-chip 16 599 (5134) 69 246 33.83 3.94 7172.77 0.34
Intersect 6310 (719) 9576 3.06 23.80 7023.18 1.83

Peak regions that contains a signal with probability 0.9 were selected and motifs with PWM of CTCF motif were searched.
a#Match is the number of peaks including a motif match in the original sequence.
b#Permute is the number of peaks including a motif match in the permuted sequence.
cOR stands for odds ratio.
dMatch rate is (#Match − #Permute)/1 kb.

windows overlapped with each other (37% of ChIP-seq). Among
these, 1.5 million windows had posterior probabilities 0.9 in at
least one data source, and 1.2 million of these had 0.9 and above
probability in the master level.

3.3.2 Motif enrichment Table 3 presents the motif enrichment test
results in MatInspector based on the data filtered at the probability
threshold 0.9. For background sequences, we randomly shuffled the
original sequences within each peak region as in the NRSF data.
It is easy to see that HHMM and Union are the two methods that
collect the highest number of TFBS motifs, but the number of hits in
the permuted sequences shows almost a 3:4 ratio, indicating that the
relative significance of motif search results is improved in HHMM.

Since the number of hits in a genome-wide data is extremely
large, all χ2 tests reported extremely small P-values. However, the
odds ratio of observing motifs in the selected regions was higher
in HHMM (7.16) than in Union (5.89), and the match rate was
also higher in HHMM (0.98/1 kb) than in Union (0.84/1 kb). This
improvement is an obvious consequence of the fact that the regions
picked by HHMM (30 Mb) is far narrower than those picked by
Union (40 Mb) on average.

On the other hand, ChIP-seq data from Barski et al. (2007) seem
to demonstrate the ultra-performance of ChIP-seq, where 62% of
the motifs found in Union were identified, but the search regions are
so specific that the number of hits in the permuted sequences is low
(1836 in ChIP-seq, 6200 in Union) and therefore the odds ratio and
the match rates are high. Nonetheless, it is the goal of HHMM to
find a compromise between Union and ChIP-seq only analysis, in
which extra 7000 motifs were saved by allowing some of the most
significant ChIP-chip-specific regions at the expense of a reduced
overall statistical significance of motif enrichment.

4 DISCUSSION
The availability of multiple experimental datasets profiling the
activity of a specific TF is an important asset for delineating
regulatory mechanisms. The proposed HHMM method not only
identifies more binding sites with increased specificity, but also
serves as an assessment of agreement and discrepancy between
both technologies. It is noted that HHMM may not be optimal
when the best performing experimental platform (ChIP-seq in
this case) identifies most of the true ChIP-enriched regions,
since additional information with a decreased precision will do
nothing but dilute the signal with little contribution to finding

extra binding site motifs (See the example of STAT1 data in the
Supplementary Material Section 3). Nevertheless, it is difficult to
expect that the new sequencing technology will always be able to
provide perfect coverage of the genome in practice, and thus the
previously deposited ChIP-chip datasets may be of significant value
in improving TFBS identification in most cases.

Although our method is designed for combining ChIP-chip and
ChIP-seq data, the HHMM framework is rather general and can
be applied to other scenarios where information collected from
multiple sources may be integrated. The opportunities for this type
of joint analyses frequently arise in biomedical research. With the
rapid development of new technologies, there are often multiple
assays co-existing, measuring the same or closely related quantities
of interest. Also for measuring protein–DNA binding, a series of
assays have been developed, e.g. ChIP-PCR, ChIP-chip, ChIP-PET
and ChIP-seq. Since these assays often have different sensitivity
and specificity, straightforward combinations such as Union and
Intersection do not work well. HHMM, on the other hand, is built
under a coherent probability framework that is able to handle
heterogeneity in sensitivity and specificity from the individual
data sources, and therefore allows for easy incorporation of data
from multiple experimental platforms. Because technologies are
constantly changing, the two-stage HHMM estimation framework
allows straightforward incorporation of data from new platforms.
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