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Abstract
Mutations in parkin, PTEN-induced kinase 1 (PINK1) and DJ-1 can all cause autosomal recessive
forms of Parkinson disease. Recent data suggest that these recessive parkinsonism-associated genes
converge within a single pathogenic pathway whose dysfunction leads to the loss of substantia nigra
pars compacta neurons. The major common functional effects of all three genes relate to
mitochondrial and oxidative damage, with a possible additional involvement of the ubiquitin
proteasome system. This review highlights the role of the mitochondrial kinase, PINK1, in protection
against mitochondrial dysfunction and how this might relate to loss of substantia nigra neurons in
recessive parkinsonism.
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Introduction
Defects in mitochondrial metabolism are implicated in many common diseases of aging. Of
these, Parkinson disease (PD) is a common neurodegenerative disorder that is characterized in
part by the loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc).
Although mitochondrial defects have been proposed to be part of the pathophysiology of many
age-related neurodegenerative disorders, there are several distinct and complementary lines of
evidence suggesting links between mitochondria and PD. These ideas have been re-emphasized
in the last few years by the discovery of mutations in genes that are directly associated with
mitochondrial function where the phenotype includes loss of SNpc neurons, as seen in PD.

One piece of supportive data for the hypothesis that mitochondria may be important in PD is
that the mitochondrial complex I inhibitors, rotenone and MPTP (1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine), lead to death of dopaminergic cells in the SNpc (Betarbet et al., 2000,
Langston et al., 1983, Langston et al., 1984, Liou et al., 1996, Ricaurte et al., 1986). Therefore,
damage to mitochondria, specifically to complex I is sufficient to produce a phenotype that
mimics the cell loss in PD.
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One specific link between PD and mitochondria is that complex I activity of the electron
transport chain is diminished in the substantia nigra of PD patients (Schapira et al., 1989).
Inhibition of electron transport produces damaging reactive oxygen species (ROS) and limits
the capacity of mitochondria to generate ATP, which has profound effects on the cell. This
type of continuous oxidative insult induces cell death, which in many model systems includes
cytochrome c release via the mitochondrial permeability transition pore and features typical
of apoptosis (Tsujimoto and Shimizu, 2007).

Oxidative damage secondary to ROS generation has been proposed to be associated with the
pathogenesis of PD (Dexter et al., 1989, Shimura-Miura et al., 1999, Sofic et al., 1992, Yoritaka
et al., 1996, Youdim et al., 1989). ROS are capable of damaging many macromomolecules
including nuclear and, especially, mitochondrial DNA (mtDNA), which is not histone bound.
Mammalian mitochondrial DNA is a circular molecule of 16.6 kb, present in several copies
per mitochondria which encode 13 subunits of respiratory chain complexes I, III–V, which are
essential components of oxidative phosphorylation (OXPHOS). MtDNA also encodes the 12S
and 16S rRNA genes and the 22 tRNA genes required for mitochondrial protein synthesis. The
remaining mitochondrial OXPHOS proteins, the metabolic enzymes, the DNA and RNA
polymerases, the ribosomal proteins and the mtDNA regulatory factors are all encoded by
nuclear genes, synthesized in the cytosol and then imported into the mitochondria (Wallace,
1997). A supportive piece of evidence for a mitochondrial pathophysiology of PD is the
observation that mtDNA abnormalities are found in patients with PD (Rana et al., 2000,
Swerdlow et al., 1998, Swerdlow et al., 1996). Furthermore, although mtDNA deletions are
rarely found in nigral neurons in young subjects, they are found increasingly in the same
neuronal groups in older subjects (Bender et al., 2006, Kraytsberg et al., 2006).

However, decreased complex I activity in PD patients is also seen in peripheral tissues of PD
patients (Krige et al., 1992, Parker et al., 1989, Wallace et al., 1992, Blake et al., 1997), and it
is therefore unclear why neurons in general, and SNpc neurons in particular, would be
susceptible to loss of complex I activity. Furthermore, consistent mtDNA mutations have not
been identified in either familial or sporadic forms of parkinsonism (Tan et al., 2000). One
possible interpretation of this data is that mtDNA mutations are secondary to the pathological
process of PD and are not causal for the disease. The age-related loss of mtDNA integrity and
biochemical mitochondrial function may be a precipitating event for neuronal damage that is
fundamentally driven by other events that are yet to be described.

These several lines of evidence are largely derived from studies of sporadic PD, which accounts
for the majority of all cases and is not familial in nature. However, there are rare inherited
diseases that partially overlap with the clinical syndrome of PD. These have been given
designations of PARK1-14 in OMIM (http://www.ncbi.nlm.nih.gov/omim/) and are discussed
elsewhere. This review will focus on autosomal recessively inherited early onset disease where
parkinsonism is a major clinical feature.

It is important at this point to distinguish parkinsonism from PD. Parkinsonism is a clinically
defined syndrome that describes predominantly motor problems (tremor, slowness of
movement, rigidity and instable upright posture) deriving from loss of SNpc neurons.
Parkinson disease, at least in the way the term is currently used, is a clinico-pathological
diagnosis that requires the presence of protein deposition as Lewy bodies superimposed on a
picture of neuronal loss. Importantly, PD is not ‘simply’ a nigral disease and includes both
non-dopaminergic and non-motor symptoms. Recessive parkinsonism tends to be earlier onset,
have a milder course, respond better to symptomatic treatment and have fewer non-motor
complications such as dementia compared to sporadic PD. This distinction between PD and
parkinsonism is partly an issue of terminology but it is important here because if these are
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different diseases (ie having a different underlying cause), we have to be careful about
extrapolating from one to the other in relation to mitochondrial mechanisms.

There are three genes for autosomal recessive parkinsonism: parkin, DJ-1 and PINK1. Several
recent lines of data suggest that recessive parkinsonism-associated genes converge within a
single pathogenic pathway whose dysfunction leads to the loss of SNpc neurons. The major
common functional effects of all three genes relate to mitochondria and oxidative damage, with
a possible additional involvement of the ubiquitin proteasome system (UPS) (for a recent
review on the UPS and neuronal dysfunction, see Tai and Schuman, 2008) (Tai and Schuman,
2008). This review will focus specifically on the role of the mitochondrial kinase, PINK1, in
protection against mitochondrial dysfunction and how this might relate to loss of SNpc neurons
in recessive parkinsonism.

PINK1 and mitochondrial dysfunction
The PINK1 (phosphatase and tensin homolog (PTEN)-induced kinase 1) gene consists of eight
exons, encoding a 581-amino acid protein with a predicted molecular mass of 62.8 kilodaltons.
PINK1 mRNA is expressed ubiquitously, but the highest expression levels are found in the
heart, skeletal muscle, and testes and intermediate levels of expression are found in the liver,
kidney pancreas and brain (Unoki and Nakamura, 2001, Taymans et al., 2006). In the brain,
expression is primarily neuronal in the hippocampus, substantia nigra and cerebellar Purkinje
cells (Blackinton et al., 2007).

The PINK1 protein has a central domain with homology to serine/threonine kinases (Valente
et al., 2004a) and exhibits autophosphorylation activity in vitro (Nakajima et al., 2003, Beilina
et al., 2005, Silvestri et al., 2005). An N-terminal mitochondrial-targeting signal (MTS) is
sufficient for mitochondrial import of PINK1 (Muqit et al., 2006, Silvestri et al., 2005) and the
protein can be found the outer mitochondrial membrane (OMM) (Gandhi et al., 2006, Weihofen
et al., 2009), the mitochondrial intermembrane space (IMS) (Plun-Favreau et al., 2007,
Pridgeon et al., 2007, Silvestri et al., 2005) and the inner mitochondrial membrane (IMM)
(Gandhi et al., 2006, Lin and Kang, 2008, Muqit et al., 2006, Pridgeon et al., 2007, Silvestri
et al., 2005). However, PINK1 also localizes to the cytosol (Beilina et al., 2005, Haque et al.,
2008, Lin and Kang, 2008, Takatori et al., 2008, Weihofen et al., 2008, Weihofen et al.,
2009, Zhou et al., 2008). Recent work suggests that the topology of PINK1, including the
endogenous protein, relies on the presence of a transmembrane domain located after the MTS
to insert the N-terminal tail into the outer mitochondrial membrane with the kinase domain
facing the cytoplasm (Zhou et al., 2008). This suggested orientation would imply that
physiological PINK1 substrates are localized in the outer mitochondrial membrane or possibly
in the cytosol at the mitochondrial surface. The cytoplasmic pool of PINK1 found in
overexpression models may represent excess protein that is shed from the mitochondrial
surface; it is of interest that this pool is rapidly degraded by the proteasome (Lin and Kang,
2008, Takatori et al., 2008).

The first reported PINK1 mutations, G309D and the truncation mutant W437X, were identified
in patients of Spanish and Italian origin, respectively (Valente et al., 2004a). Over 20
pathological mutations have now been identified in PINK1 varying from point mutations,
truncations and whole gene heterozygous deletions (Klein et al., 2006, Marongiu et al., 2007,
Zadikoff et al., 2006), which between them account for between 1–9% of cases with early onset
parkinsonism (Healy et al., 2004, Li et al., 2005, Rohe et al., 2004, Tan et al., 2006, Tan et al.,
2005, Valente et al., 2004b).

Because they are recessively inherited, pathogenic mutations are predicted to inactivate the
protein, leading to a loss of function. Some mutations cause loss of function in very simple
way. For example, L347P is less stable than wild type PINK1 (Beilina et al., 2005, Moriwaki

Thomas and Cookson Page 3

Int J Biochem Cell Biol. Author manuscript; available in PMC 2010 October 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



et al., 2008), probably due to increased protein turnover by the proteasome (Moriwaki et al.,
2008). Other pathogenic mutations such as G309D are stable have decreased in vitro kinase
activity (Beilina et al., 2005), measured using autophosphorylation as a convenient assay.

However, it is difficult to say whether mutations outside the kinase domain affect kinase
activity or whether they work in some other fashion. PINK1 C-terminal truncations identified
produce clinical phenotypes to missense PINK1 mutations (Rohe et al., 2004). The C-terminal
regions of many protein kinases contain functional motifs that control catalytic activity of the
kinase domain and/or bind regulatory proteins and substrates (Jeffrey et al., 1995, Niefind et
al., 1998, Nolen et al., 2001). Deletion of the C-terminal region of PINK1 results in decreased
kinase activity when expressed in baculovirus-infected insect cells (Sim et al., 2006) but
enhanced kinase activity when recombinant PINK1 was expressed in E. coli (Silvestri et al.,
2005). Again, these studies measured autophosphorylation activity and so an open question is
whether these types of assays capture the true effects on mutations under more physiological
conditions.

Two putative mitochondrial substrates for PINK1, tumor necrosis factor type 1 receptor
associated protein 1 (TRAP1) (Pridgeon et al., 2007) and the serine protease Omi/HtrA2 (high
temperature requirement protein A2) (Plun-Favreau et al., 2007), have been identified. TRAP1
has been reported to be a direct substrate for PINK1, based on in vitro assays using phospho-
serine specific antibodies but the site of modification is not known. TRAP1 has been shown
to localize primarily in the mitochondrial matrix, but it has also been found in the IMS (Pridgeon
et al., 2007) and at extramitochondrial sites (Cechetto et al., 2000). Omi/HtrA2 is
phosphorylated at Ser142 by p38γ and this is modified by the presence or absence of PINK1.
Whether Omi/HtrA2 is therefore a direct PINK1 substrate is unclear and it is possible that
differences in cell viability resulting from PINK1 inactivation (see below) might indirectly
affect Omi/HtrA2 through other kinases, including p38. Omi/HtrA2 is released from the
intermembrane space of the mitochondria during apoptosis to the cytosol where it interacts
with the inhibitor of apoptosis protein (IAP) (Strauss et al., 2005). If the model of PINK1
topology proposed by Zhou et al. is correct, then neither TRAP1 nor Omi/HtrA2 would be
substrates of PINK1 under physiological conditions, as such substrates would need to be
present on the cytoplasmic edge of the mitochondria. However, it is not clear how much
endogenous PINK1 is present in different mitochondrial locations under basal conditions and
under conditions of cellular toxicity, where PINK1 has been shown to have a functional role.

Such a neuroprotective effect has been demonstrated in cell culture models under various forms
of cellular stress. PINK1 has been shown to protect against cell death induced by proteasome
inhibition (Muqit et al., 2006, Valente et al., 2004a, Wang et al., 2007) and oxidative damage
with rotenone (Deng et al., 2005) and MPP+, the active metabolite of the complex I inhibitor
MPTP (Deng et al., 2005, Haque et al., 2008, Tang et al., 2006). PINK1 has also been shown
to protect against MPTP toxicity in vivo in a kinase-dependent fashion (Haque et al., 2008).
Interestingly, the MTS is not required for the protective function of overexpressed PINK1 in
vivo against complex I inhibition (Haque et al., 2008), which supports the idea that the
functional part of the molecule is exposed to the cytoplasmic surface (Zhou et al., 2008).
Presumably, high levels of cytoplasmic PINK1 can substitute for endogenous protein in this
context by phosphorylating substrates at the mitochondrial surface or in the cytoplasm in the
vicinity of mitochondria. Loss of function mutations (Hoepken et al., 2008, Hoepken et al.,
2007, Pridgeon et al., 2007, Valente et al., 2004a) or PINK1 silencing (Clark et al., 2006,
Gautier et al., 2008, Wang et al., 2006, Wood-Kaczmar et al., 2008) enhances susceptibility to
cell death mediated by oxidative damage.

Prolonged ROS exposure can cause mitochondrial dysfunction, in part because proteins with
iron sulfur clusters that are involved in oxidative phosphorylation and the electron transport
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chain are sensitive to oxidative stress (Gardner and Fridovich, 1991). PINK1 silencing also
results in mitochondrial respiratory dysfunction. PINK1 knockout mice exhibit impaired
striatal mitochondrial respiration and decreased activity of aconitase (Gautier et al., 2008), an
iron sulfur cluster-containing enzyme involved in oxidative phosphorylation. This loss of
mitochondrial aconitase activity is an intracellular indicator of superoxide generation and
oxidative damage. In addition, the impaired mitochondrial respiration in these mice can be
exacerbated by exposure of isolated mitochondria to heat shock or H202, or by letting the
animals age (Gautier et al., 2008). Similarly, analysis of fibroblasts obtained from a patient
carrying the homozygous W437X PINK1 nonsense mutation showed a lower mitochondrial
respiratory activity (Piccoli et al., 2008). ATPase activity was lower in W437X patient
fibroblasts when cultured with galactose, which causes cells to utilize oxidative
phosphorylation instead of relying on glycolytic ATP, which suggests a basal oxidative
phosphorylation deficit in these cells (Piccoli et al., 2008). Complex I respiratory defects were
also found in primary fibroblasts isolated from patients homozygous for G309D PINK1
(Piccoli et al., 2008).

In addition to oxidative stress, loss of mitochondrial membrane potential (Δψm) can cause
mitochondrial dysfunction. Mitochondrial membrane potential results from the charge
imbalance across the inner mitochondrial membrane as the respiratory chain builds up the
proton gradient that is required for oxidative phosphorylation. One mechanism resulting in the
decrease of Δψm results from the permeabilization of the inner mitochondrial membrane by
oxidative stress or Ca2+ overload. Inner mitochondrial membrane permeabilization results in
increased mitochondrial matrix volume, reduced matrix electron density and the
disorganization of the cristae—the internal compartments formed by the inner membrane of a
mitochondrion (Nieminen et al., 1997, Petronilli et al., 1999). Mitochondrial membrane
potential is maintained with wild type PINK1 overexpression and decreased by the presence
of the G309D mutation after treatment with the proteasome inhibitor MG-132 (Valente et al.,
2004a), heterozygous PINK1 mutations (Abou-Sleiman et al., 2006) or PINK1 silencing
(Exner et al., 2007). Parkin, another recessive parkinsonism gene can also affect Δψm
(Mortiboys et al., 2008) and decrease mitochondrial swelling once parkin has translocated to
the outer mitochondrial membrane (Darios et al., 2003). Recently it has been shown that when
parkin is overexpressed it is selectively recruited to mitochondria with low membrane potential
(Narendra et al., 2008). Therefore, whether by direct or indirect mechanisms, PINK1 and parkin
influence the ability of mitochondria to maintain Δψm, particularly under conditions such as
oxidative stress or a shift to galactose as a respiratory substrate to stress the cell.

In combination, the results above show that PINK1 is a mitochondrial kinase that promotes
cell survival, particularly under conditions of oxidative/metabolic stress. Although the precise
physiological substrate(s) of PINK1 are not resolved, two have been proposed and it is clear
that the kinase activity is important. Given a likely functional pool of PINK1 at the cytoplasmic
face of the organelle, the protein is positioned to potentially play a role in many aspects of
mitochondrial function. The remainder of this review will focus on one facet of mitochondria,
namely the regulation of morphology, which is a regulated and dynamic process in many cells
and tissues.

PINK1 and mitochondrial dynamics
The combinatorial consequences of mitochondrial dysfunction and oxidative stress, both of
which are modified by PINK1, are known to influence mitochondrial morphology. Free radical
generation by the respiratory chain (Jezek and Hlavata, 2005) and reactive oxygen species
(Pletjushkina et al., 2006) modify mitochondrial morphology (Benard and Rossignol, 2008),
leading to rapid mitochondrial fragmentation (Yu et al., 2006).
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Three groups concurrently reported abnormal mitochondrial phenotypes, and a genetic
interaction between PINK1 and parkin, in Drosophila models (Clark et al., 2006, Park et al.,
2006, Yang et al., 2006). The phenotype associated with PINK1 knockout in Drosophila was
found to be similar to that of parkin knockout, with altered mitochondrial morphology
consisting of fragmentation and disintegration with loss of cristae, flight defects attributable
to the degeneration of flight-wing muscle. Such flies also have an increased sensitivity to
oxidative stress (Greene et al., 2003, Pesah et al., 2004) and male sterility due to ineffective
spermatid maturation (Clark et al., 2006, Park et al., 2006). Transgenic expression of parkin
could rescue both the PINK1-null phenotypes of male sterility and mitochondrial abnormalities
(Clark et al., 2006, Park et al., 2006). However, PINK1 transgenic flies could not ameliorate
the parkin-null phenotype, suggesting that PINK1 lies upstream of parkin in a common genetic
pathway. Also, the phenotype of double parkin/PINK1 null flies resembled that of single
mutants, suggesting that PINK1 and parkin do not act in parallel (Clark et al., 2006, Park et
al., 2006).

A similar PINK1/parkin relationship may hold in mammalian cells where fragmented and
truncated mitochondrial phenotypes associated with the loss of PINK1 could be rescued by
overexpression of parkin (Exner et al., 2007). Additionally, altered cristae were observed in
PINK1 deficient cells, suggesting one similarity with the Drosophila models (Exner et al.,
2007). In contrast, no gross mitochondrial morphological defects were found in PINK1
knockout mice (Kitada et al., 2007), even though functional effects were seen (Gautier et al.,
2008). This suggests that mitochondrial morphology changes can result from loss of PINK1
function but may possibly be secondary to other changes. It would therefore seem important
to understand the mechanism(s) involved in morphological changes in mitochondria in PINK1
deficient cells or tissues to understand the precise role of PINK1 in this process.

Mitochondria are dynamic organelles that continually undergo the opposing processes of fusion
and fission to maintain a distinct morphology. The balance between fission and antagonizing
fusion events regulate mitochondrial morphology, which includes controlling the shape,
number and length of mitochondria. The shape of the mitochondria corresponds to the
metabolic status (Rossignol et al., 2004) and the health of the cell (Youle and Karbowski,
2005). The process of fusion is necessary for maintaining mitochondrial function, including
mitochondrial inner membrane potential, respiration, and genomic content (Chen et al.,
2003). Fission events mediate apoptosis by regulating the release of pro-apoptotic factors from
the intermembrane space to the cytosol. Proteins involved in mitochondrial dynamics originally
identified in yeast are highly conserved in mammals. The fission mediators include Drp1
(Dnm1 in yeast) and Fis1, while the mediators of fusion are Mitofusins 1 and 2 (Mfn) (Fzo1
in yeast) and Opa1 (Mgm1 in yeast) (Westermann, 2008). However, additional proteins have
been found in mammals that do not appear in yeast, such as Bax (Karbowski et al., 2006) and
Endophilin B1 (Karbowski et al., 2004), which also influence mitochondrial dynamics. Yeast
also have mitochondrial dynamics players that have not been identified in mammals (Coonrod
et al., 2007). Therefore, although many aspects of mitochondrial dynamics are highly
conserved from single cell organisms to humans, there are species differences, especially in
some of the modulatory machinery for dynamics. Figure 1 illustrates the localization of
mammalian proteins involved in mitochondrial dynamics.

In mammalian cells, the large GTPase, dynamin-related protein 1 (Drp1) mediates division of
the mitochondrial network (Hoppins et al., 2007, Okamoto and Shaw, 2005). Drp1 belongs to
the conserved dynamin large GTPase superfamily that controls membrane tubulation and
fission (Praefcke and McMahon, 2004). Dynamin, a Drp1 homolog, is assembled in the cytosol
and forms spirals around endosomes to mediate fission from the plasma membrane. Helices
of dynamin mediate lipid tubule scission by constricting and twisting the anchored tubules
upon GTP cleavage (Danino et al., 2004, Roux et al., 2006). Presumably acting like dynamin,
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Drp1 oligomerizes into ring-like structures at division sites on the outer mitochondrial
membrane to initiate fission in a GTP-dependent manner (Ingerman et al., 2005). However,
unlike dynamin, Drp1 contains a carboxy-terminal GTPase effector domain (GED), which
facilitates intra- and intermolecular interactions that regulate GTPase activity (Chang and
Blackstone, 2007, Zhu et al., 2004). Dominant negative mutations that block Drp1 GTPase
activity result in an elongated mitochondrial phenotype through the inhibition of GTP-mediated
fission (Otsuga et al., 1998, Smirnova et al., 2001).

Soluble Drp1 is mostly cytosolic, but can be recruited to the mitochondria to form punctate
foci at sites of mitochondrial fission (Smirnova et al., 2001, Wasiak et al., 2007). Both actin
filaments and microtubules are integral in the recruitment of Drp1 to mitochondria (De Vos et
al., 2005, Varadi et al., 2004). Drp1 recruitment to the outer mitochondrial membrane occurs
via a transient interaction with Fis1 (Yoon et al., 2003, Yu et al., 2005), a tetratricopeptide
domain protein that contains a C-terminal transmembrane domain localized to the outer
mitochondrial membrane and an N-terminus, which protrudes into the cytosol (Yoon et al.,
2003, Dohm et al., 2004, Suzuki et al., 2003). It has been suggested that Fis1 acts as a limiting
factor in mitochondrial fission, supporting the notion that Fis1 acts as a receptor for Drp1 on
the outer mitochondrial membrane (Yoon et al., 2003). However, Drp1 can assemble on
mitochondria in the absence of Fis1 (Lee et al., 2004, Stojanovski et al., 2004), leaving the
mechanism of Drp1 localization to mitochondria unclear.

Three large GTPases from the dynamin family, Mitofusin 1 (Mfn1), Mitofusin 2 (Mfn2) and
Optic atrophy protein 1 (Opa1), are conserved from yeast to mammals and mediate
mitochondrial fusion. It has been demonstrated that Mfn1 and Mfn2 regulate fusion of the outer
mitochondrial membrane while Opa1 is responsible for fusion of the inner mitochondrial
membrane (Meeusen et al., 2006, Meeusen et al., 2004). Although both Opa1 and Mfn1/2 are
necessary for mitochondrial fusion, no direct interactions between the two proteins have been
observed in mammalian cells. However, Mfn1 was reported to be required for Opa1-dependent
inner mitochondrial membrane fusion (Cipolat et al., 2004).

Mitofusins 1 and 2 localize to the outer mitochondrial membrane through two transmembrane
domains (Santel and Fuller, 2001) orienting their N-terminal GTPase domains and C-terminal
coiled-coil regions towards the cytosol (Rojo et al., 2002) and facilitate the docking of adjacent
mitochondria through a tethering mechanism (Koshiba et al., 2004). Trans-mitochondrial
tethering occurs when the C-terminal coiled-coil regions of Mfn1 and Mfn2 interact (Chen et
al., 2003, Ishihara et al., 2004, Koshiba et al., 2004, Meeusen et al., 2004). The GTPase activity
of the mitofusins is necessary for fusion activity in addition to the maintenance of mitochondrial
membrane potential (Hales and Fuller, 1997, Hermann et al., 1998, Santel and Fuller, 2001).
Some experiments suggest that Mfn1 and Mfn2 proteins are functionally redundant (Chen et
al., 2003); however, Mfn1 and Mfn2 seem to have specialized functions despite their
similarities in protein structure (Cipolat et al., 2006, Eura et al., 2003). It has been shown that
increased GTPase activity of Mfn1 mediates more efficient GTP-dependent mitochondrial
tethering than Mfn2 (Ishihara et al., 2004). Using co-immunoprecipitation, anti-apoptotic Bcl-2
and Bcl-xL have been shown to specifically interact with Mfn2 to enhance mitochondrial fusion
(Delivani et al., 2006). Mitofusin interactors also include the pro-apoptotic Bcl-2 family
members Bax and Bak, which have been shown to interact with both Mfn1 and Mfn2 (Brooks
et al., 2007). It has been proposed that mitofusins and Bcl-2 family proteins interact to regulate
mitochondrial fusion in healthy cells (Karbowski et al., 2006).

Opa1 is located in the inner mitochondrial membrane, facing the intermembrane space
(Olichon et al., 2002) and is required for fusion but not mitochondrial docking (Chen et al.,
2005, Cipolat et al., 2004, Olichon et al., 2003). A single gene encodes mammalian Opa1 with
8 transcript variants resulting from alternative splicing (Delettre et al., 2001). Opa1 splice
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variants are differentially proteolyzed and yield various long and short isoforms that influence
membrane association (Satoh et al., 2003). Longer isoforms, which retain the N-terminal
transmembrane segment and the MTS, are more tightly connected to the inner mitochondrial
membrane when compared to the shorter isoforms lacking residues required for membrane
insertion (Ishihara et al., 2004). Numerous proteases have been identified in Opa1 processing
that include paraplegin (Ishihara et al., 2004), PARL (presenilin-associated rhomboid-like)
(Cipolat et al., 2006, McQuibban et al., 2003) and Yme1 (Griparic et al., 2007, Song et al.,
2007). The identification of multiple splice variants of Opa1 in mammalian cells suggests that
many versions of Opa1 may be necessary to differentially regulate mitochondrial morphology
with respect to damaging cellular triggers. Cleavage of Opa1 is enhanced under conditions of
decreased inner mitochondrial membrane potential suggesting its activity is coordinated with
the energetic state of the mitochondria, supporting the notion that high membrane potential is
required for fusion (Duvezin-Caubet et al., 2006, Griparic et al., 2004, Ishihara et al., 2004,
Meeusen et al., 2006).

Recently it has been proposed that the parkinsonism-associated genes PINK1 and parkin
regulate mitochondrial dynamics through interaction with the fission/fusion machinery.
Specifically, it is thought that PINK1 and parkin promote mitochondrial fission in
Drosophila. Introducing an extra copy of Drp1 rescues wing posture abnormalities caused by
degeneration of indirect flight muscle in PINK1 mutants with both PINK1 and parkin deficient
mutants (Deng et al., 2008, Karbowski et al., 2006, Poole et al., 2008, Yang et al., 2008). Fewer
swollen and more intact cristae structures were observed in tissue with Drp1 overexpression
when compared to the flight muscle in wild type flies (Poole et al., 2008, Deng et al., 2008).
However, Drp1 overexpression had no effect on mitochondrial morphology in the wild type
(ie PINK1 +/+) background (Yang et al., 2008).

As an alternative to the dPINK1 knockdown model, dPINK1 overexpression was examined in
the compound eye of Drosophila, where ectopic dPINK1 expression causes disruption of
ommatidia. Genetic perturbations of dDrp1 that reduce its activity suppress the dPINK1 eye
overexpression phenotype (Poole et al., 2008). However, although the compound eye is a useful
structure to assess genetic relationships, phenotypes associated with dPINK1 overexpression
compared to knockout are functionally different, as parkin does not rescue PINK1
overexpression effects (Yang et al., 2008).

Inactivation of PINK1 in Drosophila also leads to loss of dopaminergic neurons (Park et al.,
2006, Yang et al., 2006) and overexpression of Drp1 restores dopamine levels to normal in
dPINK1 null mutant (Yang et al., 2008). GFP labelled mitochondria in dopaminergic neurons
in flies are aggregated and tubular in dPINK1 mutant or dPINK1 RNAi lines (Yang et al.,
2008). Increasing Drp1 dosage in this mutant dPINK1 background promotes uniform
mitochondrial distribution and eliminates aggregate formation (Yang et al., 2008). Drp1
overexpression in a wild type background did not influence mitochondrial morphology in this
study. Studies in cultured S2R Drosophila cells indicate that downregulation of Drp1 results
in a singular perinuclear mitochondrial aggregate that resembles the phenotype demonstrated
by dPINK1 silencing (Yang et al., 2008). However, double knockdown of dPINK1 and
dDrp1 demonstrates extreme fusion of the mitochondrial networking (Yang et al., 2008).
Additionally, expression of the Fis1 Drosophila homolog in PINK1 silenced S2R cells
suppresses the mitochondrial phenotype. Together these data suggest that Fis1 and Drp1 are
epistatic to PINK1.

Some studies characterizing the genetic interactions between PINK1 and parkin in
Drosophila testes suggest that these parkinsonism associated genes may inhibit mitochondrial
fusion (Deng et al., 2008) rather than promote mitochondrial fission. In Drosophila,
mitochondrial morphology can be examined during spermatogenesis, where germ cells
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undergo multiple rounds of mitosis and meiosis with incomplete cytokinesis to yield
interconnected early spermatids (Fuller, 1993). During spermatid maturation at the ‘onion
stage’, the mitochondria aggregate adjacent to the nucleus (Fuller, 1993) and fuse into two
large mitochondrial masses that are arranged by layers of wrapped mitochondrial membrane
into a structure called the nebenkern (Lindley, 1980). Dramatic morphological changes occur
when the two interlocked subunits of the nebenkern elongate with the growing microtubule-
based axenome to promote membrane remodeling and individualization (Fuller, 1998). The
Drosophila genome encodes two Mfn homologs that regulate mitochondrial fusion, Fuzzy
onion (Fzo) and Marf (Mitochondrial assembly regulatory factor). Fzo expression is limited
to the testes and mutations cause mitochondrial fusion deficits and male sterility due to
defective nebenkern formation (Hales and Fuller, 1997). Marf is expressed in germline and
somatic cells (Hwa et al., 2002). During spermatogenesis, dPINK1 or dparkin loss of function
results in defects in mitochondria morphology as observed by the vacuolated ‘onion stage’
nebenkern (Clark et al., 2006, Deng et al., 2008, Riparbelli and Callaini, 2007). Fzo mutants
exhibit onion-staged nebenkern composed of many small mitochondria and, as a consequence,
nebenkern borders appear irregular but this is morphologically different from the PINK1
phenotype (vacuolated with regular borders). Double mutants with dPINK1 and Fzo loss of
function exhibit a single elongated mitochondrial derivative and irregular nebenkern borders
associated with Fzo mutants were rescued by dPINK1 mutation (Deng et al., 2008). These data
support the notion that PINK1 plays a role in mitochondrial morphology but suggest that
PINK1 is not a core component of the fusion/fission machinery but rather plays a modulatory
role.

The Drosophila genome also encodes a single homolog of Opa1 (Yarosh et al., 2008) that
functions to regulate mitochondrial fusion of the inner mitochondrial membrane. Loss of
function mutations in Drosophila Opa1 or Mfn2 homologs suppresses the dPINK1 and
dparkin flight and climbing phenotypes (Poole et al., 2008). Moreover using the dPINK1
overexpression eye phenotype, alterations that decrease dOpa1 and Marf activity enhance the
eye phenotype associated with PINK1/parkin pathway activation (Poole et al., 2008). PINK1-
dependent inhibition of fusion was further studied in the indirect flight muscle using
mitochondrial directed GFP and phalloidin to simultaneously label mitochondria and actin,
respectively. In addition to muscle specific downregulation of Marf in flies, dOpa1 RNAi in
muscle resulted in mitochondrial fragmentation that is relatively similar to dDrp1
overexpression in transgenic flies (Deng et al., 2008).

These studies of mitochondrial dynamics in Drosophila models have therefore provided a great
deal of insight into the relationships of PINK1 and parkin to mitochondrial morphology,
especially in flight muscles and in testes. However, PINK1 silencing studies performed in
mammalian cells (Exner et al., 2007, Weihofen et al., 2009) or C. elegans (Ichishita et al.,
2008) have shown very different effects of PINK1/parkin on morphology. The genetic
interaction between PINK1 and parkin initially identified in Drosophila is conserved in
mammalian cells in that parkin can rescue loss of PINK1. However, PINK1 deficient
mammalian cells have a fragmented and truncated mitochondrial morphology, which would
suggest an imbalance towards fission (Exner et al., 2007, Weihofen et al., 2009). Data from
our own studies in mammalian cells also supports a fragmented mitochondrial phenotype after
PINK1 silencing (KJ Thomas, unpublished observations) and parkin deficient fibroblasts have
decreased mitochondrial connectivity (Mortiboys et al., 2008). Additionally, in a high
throughput system for examining modulators of mitochondrial morphology in C. elegans,
knockdown of the PINK1 homolog in that species also resulted in fission, not fusion. What
possible explanations could there be for apparently disparate results in different models?

The dynamic life cycle of a mitochondrion is heavily dependent upon mitochondrial membrane
potential (Duvezin-Caubet et al., 2006, Griparic et al., 2004, Ishihara et al., 2004, Meeusen et
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al., 2006, Twig et al., 2008). The downregulation of PINK1 causes loss of mitochondrial
membrane potential in several mammalian systems (Abou-Sleiman et al., 2006, Exner et al.,
2007, Valente et al., 2004b). Therefore, loss of Δψm associated with the loss of PINK1 may
be a primary event that leads to secondary effects mitochondrial morphology that may result
in apparent fission or fusion depending on the tissue/cell type or status. As recent data suggests
that fusion and fission are linked (Twig et al., 2008), the apparent occurrence of either fusion
or fission may not be instructive as to which is the primary event. Coupled with evidence
comparing PINK1 mutants with mutations in the fission/fusion machinery (Deng et al.,
2008), the most parsimonious interpretation is that the effects of PINK1 on morphology are
indirect.

An additional question regarding the relationship between PINK1 and mitochondrial
morphology occurs because of evidence of multiple roles of mitochondria in apoptosis.
Mitochondrial membrane permeabilization is often considered the “point of no return” in
events leading to cell death as during apoptosis, the permeability of the outer mitochondrial
membrane increases allowing soluble, intermembrane space proteins to be released into the
cytoplasm (Adrain et al., 2001, Patterson et al., 2000, Susin et al., 1999). PINK1 has been
shown to block apoptosis induced by staurosporine, a general kinase inhibitor (Gelmetti et al.,
2008, Petit et al., 2005, Wood-Kaczmar et al., 2008) and degeneration of indirect fly muscles
in Drosophila from knockout animals includes apoptosis. Overexpression of PINK1 and parkin
in cultured cells can prevent the release of cytochrome c and caspase activation (Darios et al.,
2003, Gelmetti et al., 2008, Petit et al., 2005, Pridgeon et al., 2007). However, apoptosis is
associated with mitochondrial fission and there is therefore difficult to understand how a
molecule could promote fission but limit apoptosis. It is known that Drp1-mediated
mitochondrial fission and fragmentation of the mitochondrial network occurs during
programmed cell death in Drosophila (Abdelwahid et al., 2007, Goyal et al., 2007). In recent
studies on overexpression of parkin, increased expression did not induce fission (as would be
predicted from the idea that PINK1/parkin promotes fission or limits fusion) but instead
resulted in the formation of extended organelles that were then degraded by autophagy
(Narendra et al., 2008). One possibility is, again, that the effects on morphology are secondary
to the direct effects of PINK1, which may include protection of the organelle. Clearly, the
resolution of these questions will require a more detailed understanding of the mechanism(s)
by which PINK1 and its partner, parkin, influences both cellular viability and mitochondrial
morphology in different tissues and cells.

Mechanisms involved in the PINK1/parkin pathway and effects on
mitochondria

How do PINK1 and parkin influence mitochondria? One current controversy surrounds the
localization of PINK1 and parkin. The majority of parkin is cytoplasmic in most cells, including
neurons (Cookson et al., 2003, Hase et al., 2002), although a fraction is found at the outer
mitochondrial membrane (Darios et al., 2003, Narendra et al., 2008). Kuroda et al. suggested
that parkin preferentially localizes to the mitochondrial matrix, and mitochondrial biogenesis
is enhanced through an association with mitochondria transcription factor A in dividing cells
(Kuroda et al., 2006). As previously described, PINK1 is found in both the mitochondria
(Beilina et al., 2005, Gandhi et al., 2006, Plun-Favreau et al., 2007, Lin and Kang, 2008, Muqit
et al., 2006, Pridgeon et al., 2007, Silvestri et al., 2005, Weihofen et al., 2009) and the cytoplasm
(Beilina et al., 2005, Haque et al., 2008, Lin and Kang, 2008, Takatori et al., 2008, Weihofen
et al., 2008, Weihofen et al., 2009, Zhou et al., 2008). Whether PINK1 and parkin proteins
physically interact is unclear. It is plausible that they associate in the cytoplasm before PINK1
is transported to the mitochondria or perhaps they interact after mitochondrial import and
processing of PINK1.
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Alternatively, PINK1 and parkin might modify one another indirectly. For example, they may
share substrates, such as the mitochondrial proteins released into the cytoplasm under stress
conditions or other proteins mediating cell death and/or survival. Parkin may only ubiquitylate
substrates that have been phosphorylated by PINK1. It is also possible that parkin can only
function as a ubiquitin ligase after phosphorylation by PINK1 whose kinase activity is
upregulated in response to oxidative stress.

Might post-translational regulation of key players in the mitochondrial dynamics process be
targets for phosphorylation or ubiquitylation by PINK1/parkin, respectively? Drp1 activity is
enhanced by cyclin-dependent kinase 1/cyclin B phosphorylation of Ser618 (human Drp1;
Ser585 in rat Drp1) during mitosis (Taguchi et al., 2007) and cAMP-dependent protein kinase
A (PKA) inactivates Drp1 GTPase activity by phosphorylation of Ser637 (human Drp1; Ser656
in rat Drp1) which results in mitochondrial fusion (Chang and Blackstone, 2007, Cribbs and
Strack, 2007). The Ser637 residue is conserved in Drosophila, but according to these reports
if Drp1 phosphorylation in flies mimics that which occurs in mammalian cells, PINK1 would
limit mitochondrial fission. Whether PINK1 influences mitochondrial morphology through
direct phosphorylation of Drp1 remains to be determined.

SUMOylation also regulates Drp1 activity and mitochondrial morphology (Harder et al.,
2004) (Zunino et al., 2007). SUMOylation of Drp1 enhances its activity, positively regulating
mitochondrial fission. During apoptosis, more Drp1 protein associates with the outer
mitochondrial membrane and Drp1 SUMOylation increases (Wasiak et al., 2007), resulting in
increased mitochondrial fission. Parkin has been shown to physically interact in vitro and in
vivo with SUMO1 to increase its nuclear transport and self-ubiquitination (Um and Chung,
2006). Downregulation of SUMO1 may inhibit mitochondrial fission caused by excess parkin
turnover in the dPINK1/dparkin pathway and the epistatic Drp1.

The mitofusins, which regulate fusion events in yeast (Fzo1) and mammals, may be regulated
by ubiquitylation. During the mating of yeast, mitochondria fragment and the levels of Fzo1
decrease. Chemical inhibition (Neutzner and Youle, 2005) or genetic inactivation (Escobar-
Henriques et al., 2006) of the proteasome attenuates the loss of Fzo1. Fzo1 is removed from
the outer mitochondrial membrane and degraded following lysine 48-dependent ubiquitination
to regulate its function in a process similar to ERAD (ER-associated degradation) removal and
degradation of membrane spanning proteins. Mammalian mitofusin protein levels increase
after exposure to proteasome inhibitors in culture (Karbowski et al., 2007), suggesting the
ubiquitin proteasome pathway regulates these fusion proteins.

As an E3 ligase, parkin can promote both degradative and nondegradative forms of
ubiquitination (Doss-Pepe et al., 2005, Joch et al., 2007, Lim et al., 2006). For instance,
ubiquitin lysine 48-linked polyubiquitin chains target substrates to the proteasome (Imai et al.,
2000), whereas ubiquitin lysine 63-linked chains control non-degradative processes including
kinase activation, DNA repair, translational regulation and endocytosis of membrane proteins
(Doss-Pepe et al., 2005, Joch et al., 2007, Moore et al., 2008, Pickart and Fushman, 2004). It
is notable that ubiquitin lysine 63-linked chains promote the degradation of membrane proteins
by the lysosome, a putative link supporting the notion that parkin may be a quality control
mechanism in Drosophila whereby the PINK1/parkin pathway promotes fission to degrade
impaired mitochondria by autophagy. In fact, it has been shown that overexpression of parkin
in mammalian cells selectively recruits dysfunctional mitochondria with low membrane
potential and promotes their autophagy (Narendra et al., 2008). The loss of parkin associated
with recessive parkinsonism suggests that parkin-mediated ubiquitination of specific cellular
substrates is required for the survival of dopaminergic neurons. At the present it is unclear how
parkin deficiencies might precipitate defects in mitochondrial function and whether this relates
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to the accumulation of toxic parkin substrates or loss of a non-degradative regulatory role of
parkin-mediated ubiquitination.

Morphological changes in mitochondria can be influenced by directed movement or anchoring
of these organelles by various components of the cytoskeleton (Rube and van der Bliek,
2004). In cultured cells, disruption of the microtubule network affects the distribution of
mitochondria (Heggeness et al., 1978), suggesting that mitochondria require microtubules for
normal cellular distribution. Secondary messengers, such as calcium, can influence movement
of mitochondria along microtubule tracks. For instance, mitochondrial motility is blocked by
increased mitochondrial calcium uptake (Rintoul et al., 2003), suggesting that local calcium
buffering limits mitochondrial movement. Moreover, calcium signaling can influence the
function of molecular motors (Marston, 1995) that facilitate mitochondrial movement along
cytoskeletal elements. Recently, it was shown that PINK1 forms a multi-protein complex with
an atypical calcium-dependent GTPase Miro and the adaptor protein Milton (Weihofen et al.,
2009), a complex which links the heavy chain of kinesin to mitochondria for anterograde
transport of mitochondria along microtubules (Glater et al., 2006, Stowers et al., 2002).
Overexpression of Miro and Milton rescued mitochondrial fragmentation associated with the
loss of PINK1 and increased mitochondrial localized PINK1 protein, further suggesting a role
for PINK1 at the outer mitochondrial membrane and linking PINK1 function to mitochondrial
trafficking (Weihofen et al., 2009). These aspects of mitochondrial transport may be especially
important in neurons where mitochondria are transported out of synapses. Future studies should
address the effects of PINK1/parkin pathway perturbations not only on mitochondrial calcium
regulation and buffering but also investigate the effect of the differences between metabolically
homogeneous and heterogeneous pools of mitochondria on mitochondrial transport and
trafficking.

Other putative links between defects in mitochondrial transport and recessive parkinsonism
include the association of parkin with the cytoskeleton or the influence of oxidative stress on
cytoskeletal function. Parkin is reported to associate with cytoskeletal elements, such as actin
filaments (Huynh et al., 2000) and microtubules (Ren et al., 2003). Studies suggest that the
binding of parkin stabilizes microtubules (Yang et al., 2005). Stabilization of the cytoskeletal
network may be an important link between parkin and mitochondrial dynamics because
disruption of microtubules can cause aberrant mitochondrial distribution (Yaffe et al., 1996).
On the other hand, this interaction may simply provide transport of misfolded proteins for
degradation (Yang et al., 2005). Additionally, oxidative stress is associated with microtubule
disorganization (Annunen-Rasila et al., 2007) and oxidative insult can impair mitochondrial
trafficking (Liu et al., 2008). The idea of oxidation being detrimental to mitochondrial plasticity
is further supported by the notion that rotenone selectively kills neurons via a microtubule-
dependent mechanism (Ren and Feng, 2007). While the shape and connectivity of the
mitochondria are likely to influence the ability of the cytoskeleton to move the organelle, it is
unknown if altered transport is the result of defects in morphology or vice versa.

Concluding remarks
In addition to summarizing the role of PINK1 in mitochondrial function, this review has
attempted to critically analyze the newly proposed relationship between parkinsonism and
mitochondrial dynamics. Evolutionarily conserved from yeast to humans, mitochondrial
morphogens regulate the genome, membrane integrity, bioenergetic connectivity and turnover
of mitochondria. We suggest here that the PINK1/parkin pathway is also conserved from
Drosophila to mammals but those differences in the output, in terms of mitochondrial
morphology, imply that it is likely that the primary effect is on mitochondrial function and any
changes in morphology are probably secondary. Figure 2 illustrates the possible direct effects
of PINK1/parkin on the life cycle of a mitochondrion, which may influence other aspects of
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organellar function, such as transport or degradation (mitophagy), in addition to mitochondrial
membrane potential. Future work needs to address in detail the biochemical roles of PINK1/
parkin in terms of substrates for both proteins, as well as their relationship to each other.
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Figure 1. Mitochondrial fission and fusion machinery
A schematic of the localization of the proteins involved in mitochondrial dynamics is
illustrated. Mitochondrial fission divides a mitochondrion into two daughter units by the
coordinated actions of Drp1, Endophilin B1, Fis1 and MarchV. Tethering of two mitochondria
results in mitochondrial fusion of the membranes mediated by Mfn and Opa1. Bcl-2 family
proteins, Bax and Bak are involved primarily in the induction of apoptosis, which influences
mitochondrial dynamics.

Thomas and Cookson Page 23

Int J Biochem Cell Biol. Author manuscript; available in PMC 2010 October 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2. Model for the life cycle of a mitochondrion
This proposed model for the life cycle of a mitochondrion reflects mitochondrial dynamics and
turnover (adapted from (Twig et al., 2008)). In a healthy cell, the antagonizing events of
mitochondrial fusion and fission are dependent upon mitochondrial membrane potential.
Following a mitochondrial fission event, fragmented mitochondria may either maintain an
intact membrane potential (green line) or depolarize (red line). Should mitochondrial
membrane depolarization take place prior to fission, it is unlikely to proceed to fusion without
repolarization. Consequences of depolarization include the production of reactive oxygen
species (ROS), increased cytosolic [Ca2+] or loss of ATP with subsequent effects on various
types of cell death and/or impaired mitochondrial transport and trafficking. PINK1 lies
upstream of parkin in a conserved genetic pathway as indicated. Exactly how this relates to
mitochondrial morphology is unclear, but we suggest here that the major effect of PINK1/
parkin might be on the turnover of damaged mitochondria and thus may be tangential to the
fusion/fission machinery.
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