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Abstract
Most of what is written and believed about pain and nociceptors originates from studies of the
“somatic” (non-visceral) sensory system. As a result, the unique features of visceral pain are often
overlooked. In the clinic, the management of visceral pain is typically poor, and drugs that are used
with some efficacy to treat somatic pain often present unwanted effects on the viscera. For these
reasons, a better understanding of visceral sensory neurons—particularly visceral nociceptors—is
required. This review provides evidence of functional, morphological, and biochemical differences
between visceral and non-visceral afferents, with a focus on potential nociceptive roles, and also
considers some of the potential mechanisms of visceral mechanosensation.

Introduction
The majority of what is known about pain and nociceptors originates from studies of “somatic”
structures (i.e., non-visceral components of the body, principally skin). Nevertheless, the most
common pain produced by disease (and the most difficult to manage) is that originating from
the internal organs (i.e., visceral pain), and the characteristics of visceral innervation differ
significantly from other tissues. Visceral pain may result from direct inflammation of a visceral
organ (e.g., inflammatory bowel disease, pancreatitis, appendicitis), occlusion of bile or urine
flow (e.g., kidney stones), or from functional visceral disorders [e.g., irritable bowel syndrome
(IBS)]. Add to this list angina, painful bladder syndrome (interstitial cystitis), gastroesophageal
reflux disease, endometriosis, and dyspepsia, and the widespread impact of visceral disease
becomes clear. Most basic and clinical pain research has focused on somatic (principally
cutaneous) tissue, which has significantly influenced strategies for pain management. As a
result, the unique features of visceral pain and innervation have remained underappreciated,
and thus visceral pain management is typically poor. Moreover, visceral nociceptors are
intrinsically different from cutaneous and most other non-visceral nociceptors. We provide
here a review of the visceral sensory system and highlight some of the features that distinguish
it from non-visceral systems. The visceral system encompasses a large number of organs, from
the eyes (technically, the brain is also a visceral organ) down to the genitourinary organs, and
so this review will focus on our laboratory’s current primary area of experimental expertise:
the lower gastrointestinal tract (principally colon) and bladder.

The Visceral Sensory System
The principal extrinsic afferent nerves innervating visceral organs are anatomically associated
with sympathetic and parasympathetic nerves and are accordingly named (e.g., pelvic nerve
afferent), although they are not part of these efferent, autonomic, pathways. Most extrinsic
visceral afferent neurons have cell bodies in dorsal root ganglia (DRG) and terminate in the
spinal cord (spinal afferents); visceral afferent fibers in the vagus nerve, with cell bodies in the
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nodose and adjacent jugular ganglia, terminate in the brainstem nucleus tractus solitarius. There
are two features that are unique to the visceral sensory innervation: 1) most organs also have
an intrinsic innervation (e.g., the enteric nervous system of the gastrointestinal tract) and 2)
each organ is innervated by two different extrinsic nerves (e.g., the distal colon and urinary
bladder are innervated by the pelvic and splanchnic nerves). Although there are likely important
functional interactions between the intrinsic and extrinsic visceral innervations, their
anatomical relationship and means of intercommunication are largely unknown. Figure 1
summarizes the visceral sensory innervation, using the gut as an example.

Visceral Afferents are Anatomically Different from Non-Visceral Afferents
A key difference between visceral and non-visceral sensory neurons is the degree to which
their peripheral terminals are specialized. For example, cutaneous afferents can have one of
many different sensory endings to transduce stimuli into electrical energy (e.g., Merkel cells,
Ruffini endings, Pacinian corpuscles), whereas only two types of specialized ending have been
reported in visceral afferents: intraganglionic laminar endings (IGLEs) and intramuscular
arrays (IMAs). Both types have limited distributions (e.g., near sphincters), are specific to
muscular vagal or pelvic innervation, and are less intricate than their non-visceral counterparts
[for review, see (1,2)]. IGLEs and IMAs appear to be low-threshold mechanoreceptors and are
therefore less likely to be involved in detecting noxious events. Most spinal visceral afferents
are believed to have primitive, unencapsulated endings (like non-visceral nociceptors), with
no specialized structure and one or a few punctate receptive fields.

Visceral Afferents Transmit Unique Sensations
Visceral and non-visceral afferents encode different types of information: the conscious
experiences generated by the visceral sensory system are not initiated by non-visceral afferents.
For example, the sensation of nausea does not arise from the skin, and vice versa, one cannot
detect cutting of the gut [for review, see (3,4)]. Conscious sensations arising from the viscera,
in addition to pain, include organ filling, bloating and distension, dyspnea, and nausea, whereas
non-visceral afferent activity gives rise to sensations such as touch, pinch, heat, cutting, crush,
and vibration. Both sensory systems can detect chemical stimuli.

The Visceral Nociceptor Defined
Nociceptors were originally defined as receptors that respond to noxious stimuli, particularly
those that damage or threaten to damage skin. Thus, they were defined in a functional context.
As our understanding of nociceptors has increased, however, attempts to redefine the
nociceptor have generated much debate and little agreement. Furthermore, a “noxious
stimulus” is semantically distinct from a “painful stimulus,” a concept that has evolved from
the descriptions of “nocicipient” cutaneous receptors by Sherrington at the beginning of the
twentieth century (5).

“Pain” is a psychological state, defined by the International Association for the Study of Pain
(IASP) as “an unpleasant sensory and emotional experience associated with actual or potential
tissue damage, or described in terms of such damage” (6). This concept, and the distinction
between nociception and pain, has been appreciated for some time, as the following quotation
from 1900 shows (7):

The stimuli which evoke pain may be characterised as ‘excessive.’ It might almost
be asserted that ‘excess’ is that quality of a stimulus in virtue of which it becomes
‘adequate’ for the sense of pain. ‘Excessive’ in this application connotes ‘harmful,’
or ‘to be avoided,’ e.g. by muscular action for resistance or escape. The ‘excess’ of
the stimulus may lie in its intensity, or in its extensity (spatial or temporal).
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Potential confusion arises from the IASP’s definition (6) of a noxious stimulus as “one which
is damaging to normal tissues,” thereby excluding the potential for damage that is considered
under the definition of “pain”. Thus, a nociceptor is a peripheral sensory receptor (considered
colloquially to be the entire neuron, including its peripheral and central terminals and soma)
that signals actual tissue damage.

One problem with these definitions is demonstrated by the existence in visceral organs of low-
threshold mechanosensory afferents (sometimes also called “wide dynamic range”) that
proportionally encode organ distension from low, physiological (non-noxious), distending
pressures through to pressures that are noxious (Figure 2A and B). Similarly, joint afferents
and some cutaneous afferents also have low mechanical response thresholds and encode well
into the noxious range; however, neither slowly nor rapidly adapting mechanosensitive
afferents in skin encode into the noxious range, or sensitize (see below). The current definition
thus appears to omit low-threshold visceral afferents from the classification of nociceptor, as
no matter how prolonged a non-noxious stimulus may be, low-threshold mechanoreceptors
will not signal a noxious event until the stimulus intensity increases. Silent (or sleeping)
nociceptors offer another complication. These neurons are unusual in that they are insensitive
to all but the highest intensity of mechanical stimulation. However, inflammatory chemicals
“awaken” these nociceptors and induce spontaneous activity and mechanosensitivity in the
noxious range.

Accordingly, we propose that a visceral nociceptor (or indeed, a nociceptor in any tissue) is a
sensory receptor that, when activated, can produce a reflex or response that is protective or
adaptive (e.g., withdrawal, guarding, vocalization); can encode stimulus intensity in the
noxious range; and can sensitize (i.e., give increased responses to noxious intensities of
stimulation after insult or exposure to chemical mediators such as those produced during
inflammation). Requirement for the latter two capabilities reveals that most of the visceral
sensory innervation is nociceptive in character, particularly during organ insult. Most (70-80%)
mechanosensitive visceral afferents have low thresholds for activation in the physiological
range; the remainder have high thresholds and are commonly considered to represent the
population of visceral nociceptors. Nevertheless, most low-threshold mechanosensitive
visceral afferents encode into the noxious range and generally give greater responses than their
high-threshold counterparts (Figure 2A). They also sensitize after organ insult, giving increased
responses to both innocuous and noxious intensities of stimulation. These findings argue for
potential roles of both low- and high-threshold mechanoreceptive visceral afferents in visceral
pain conditions.

With an ever-increasing number of in vitro methods available to the pain researcher, the
identification of nociceptors often relies on cellular characterization, such as size or
biochemical markers, rather than functional definitions. For example, all small-diameter,
capsaicin-sensitive DRG neurons (that is, those that either express the capsaicin receptor
TRPV1 or respond to application of capsaicin) are sometimes considered as nociceptors. The
reliability of biochemical targets, such as TRPV1, to act as nociceptor markers is discussed
below.

Visceral Pain is Different from Non-Visceral Pain
The ability to identify the source (spatial location) of cutaneous pain is excellent, and the ability
to identify that of joint and muscle pain is generally good; in contrast, visceral pain is diffuse
in character and poorly localized. Two factors contribute to this difference. First, relative to
non-visceral structures, the viscera are sparsely innervated. It is estimated that fewer than seven
percent of spinal afferents in the DRG project to the viscera [see (1,8,9,10)], and only a fraction
of these convey input to the central nervous system that will be perceived. This sparse
innervation is compensated for in the spinal cord, where visceral terminations arborize widely
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over several spinal segments and even to the contralateral spinal cord (11). Second, spinal
neurons that receive visceral input also receive convergent input from skin or deeper structures
(including other viscera), producing referred pain. For example, cardiac pain (angina) is
typically referred to the left arm and shoulder (but skin, joint, or muscle pain is not referred
from shoulder to heart). In addition, whereas pain can be evoked from virtually all non-visceral
structures, parenchymous viscera (e.g., liver and pancreas) do not give rise to pain unless the
organ is inflamed or the organ capsule is distorted, for example by a tumor. Finally, visceral
pain is commonly associated with greater emotional valence and exaggerated autonomic
reflexes, although the former is a central phenomenon not to be confused with nociception.

Distinguishing Visceral Nociceptors from Their Non-Visceral Counterparts
We discuss here some of the differences between visceral and non-visceral nociceptors—with
the caveat that the majority of studies are done in the absence of a physiologically (functionally)
defined nociceptor population.

Morphological Considerations
The most obvious parameter for distinguishing cell types is size. It is generally accepted that
DRG neurons are bimodally distributed in terms of soma size, resulting in the designation of
“(large) light” or “small dark” neurons. The former have myelinated A-fibers and somata with
dense neurofilament (typically detected using antibodies raised against neurofilament protein,
such as RT97 (12)); the latter have unmyelinated C-fibers and are significantly less dense.
Generally, the somata of visceral afferents in DRG are larger than those considered to be non-
visceral nociceptors (13,14).

Generally, smaller-diameter neurons have myelinated Aδ- or unmyelinated C-fiber processes,
whereas myelinated Aα/β-fibers can be found on cells of most sizes. Up to eighty percent of
visceral DRG somata can have C-fibers, whereas fewer than forty percent generally have Aδ-
fibers (15,16). An exception, however, can be found in the perianal mucosa, where the
distribution is reversed: 23% C-fibers, 77% Aδ-fibers (16). Visceral Aβ-fibers are rarely
encountered. In contrast, L4 DRG neurons with projections in the sciatic nerve (a non-visceral
nerve that innervates skin and muscle) show a bias towards Aα/β-fibers (≥ 69%), with few
Aδ- (approximately 15%) or C- (7-17%) fibers (17,18). A similar pattern has been shown in
guinea pig neurons that innervate the left hind limb and flank; the bias shifts to C-fibers in an
identified nociceptive population of these afferents (19). In addition to nociceptive Aδ- and C-
fibers, non-visceral nociceptors can also have Aβ-fibers [for review, see (20)]. It is important
to appreciate that studies such as these do not necessarily reflect the exact proportions of each
type of fiber present; the data are subject to varying selection dynamics and other experimental
parameters chosen by the investigator.

Visceral and non-visceral afferents also differ in their spinal cord terminations. Spinal visceral
afferent fibers terminate in the superficial dorsal horn, lamina V, and around the central canal,
an area also referred to as lamina X (21,22). In contrast, the terminal fields of cutaneous
nociceptive afferent neurons are much smaller than those of visceral afferents and terminate
throughout the spinal dorsal horn (11,23). Non-visceral nociceptors also terminate in the
superficial dorsal horn and lamina V, and thus converge on some of the same second order
spinal neurons as visceral afferents; this convergence may account for the perception of pain
from referred visceral sensations. Furthermore, visceral C-fibers have significantly more
extensive spinal terminations (more terminal regions in different laminae and at multiple levels
of the spinal cord) than the “nest-like” terminations of non-visceral C-fibers that are found
principally in laminae I and II (11).
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Biochemical Considerations
Calcitonin Gene–Related Peptide—The vast majority (typically, 70–90%) of visceral
afferent cell bodies in the DRG stain positive with antibody for the calcitonin gene-related
peptide (CGRP) (Table 1) (24-35). In contrast, DRG cell bodies of the non-visceral sensory
system are far less likely to manifest positive immunostaining for CGRP. For example,
approximately four-fifths of mouse colonic DRG somata are positive for CGRP, compared to
about one-fourth of cells in the whole DRG population (24), one-third to one-half of cutaneous
afferents (25,36,37), and one-fifth to one-third of muscle afferents (37). It has also been noted
that visceral neurons that are positive for CGRP show a more intense signal than do positive
non-visceral neurons (38).

Using techniques that label whole nerve bundles (Table 1 and Box 1), rather than just cell
bodies in the DRG, ninety percent or more of visceral afferents are reactive to anti-CGRP
immunostaining, compared to only about 20–50 percent of skin and 30–70 percent of muscle
afferents (38-41). Approximately one-third of functionally identified non-visceral nociceptors
in the guinea pig are CGRP-positive (42), although proportions vary among tissues (e.g., hairy
versus glabrous skin). If only C- and Aδ-fibers are considered, this value is just under half of
nociceptive units. We are unaware of any visceral correlate to these experiments for
comparison.

Box 1. Spinal Nerves Innervating Visceral and Non-visceral Tissues

One method to identify visceral or non-visceral spinal afferents is to use retrograde labeling
of whole nerve bundles and study their cell bodies in the DRG. Some of these nerves are
described here, including their afferent innervation and the DRG levels at which labeled
neurons have been found in the rat. Data are collated from a number of studies [72-76].

Population Nerve Aferent innervation Principal DRG levels

Visceral splanchnic (SPL) visceral organs T8–T12

pelvic (PN) visceral organs L6 and S1
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Non-visceral genitofemoral (GF) muscle L1 and L2

gastrocnemius (GS) muscle L5

saphenous (SAP) skin L3–L4

sciatic (SCI) muscle and skin L4–L5

Subpopulations of afferent neurons that bear the CGRP marker are known as “peptidergic. ”
Classically, peptidergic neurons are reported to express the nerve growth factor receptor trkA;
in contrast, non-peptidergic neurons express Ret, the receptor for glial cell line–derived
neurotrophic factor. It has been suggested that nonpeptidergic neurons also bind the Griffonia
simplicifolia-dervied isolectin IB4 and express the purinergic P2X3 receptor. Immunoreactivity
patterns for trkA correlate well with those for CGRP; for example, 75% of bladder and 43%
of skin DRG somata express trkA (25), and in situ hybridization studies show trkA mRNA in
ninety percent of visceral (pelvic nerve), 20% of muscle (gastrocnemius nerve), and 48% of
cutaneous (saphenous nerve) afferents (43). Thus, a greater proportion of visceral DRG somata,
relative to non-visceral DRG somata, contain CGRP and are, therefore, potential nociceptors.
Any line of argument that maintains that visceral afferents are predominantly peptidergic,
however, should be tempered by the caveat that a strict distinction between “peptidergic” and
“nonpeptidergic” may not be completely suitable for this group of neurons.

Isolectin B4—Among DRG somata, cutaneous afferents are over ten times more likely to
bind IB4 than are visceral afferents [40 percent vs 3 percent; 72 hours after retrogradely labeling
whole nerve trunks (44)]. Few muscle DRG somata (approximately 3%) bind this lectin (44).
There are currently few studies detailing the binding of IB4 in afferents retrogradely labeled
from specific organs, but in the case of colon and bladder, the proportion of afferents that bind
IB4 has been estimated at six to thirty percent (24,25,34,35), whereas retrograde labeling from
skin indicates that twenty to forty percent of cutaneous afferents bind IB4 (25,36). These data
suggest that visceral afferents are biased towards the peptidergic classification; however, it is
worth noting that over ninety percent of colonic DRG somata that bind IB4 (i.e., presumed to
be “non-peptidergic”) stain positive for CGRP (whereas only about twenty percent of all IB4-
binding DRG somata test positive for CGRP; David R. Robinson, PhD thesis, University of
Cambridge, 2004). Also, although the functional significance is unknown, these IB4- and
CGRP-positive neurons display lower-intensity IB4 staining than afferents that bind IB4 but
are not CGRP-positive (24). In any event, these observations suggest that the biochemical
phenotype visceral afferents can be distinguished from that of non-visceral sensory neurons.
This difference is reinforced by the finding that colonic afferents are far less likely to test
positive for both the P2X3 receptor and IB4 binding, relative to the rate that both markers appear
together in the general DRG population (24).

Transient Receptor Potential Vanilloid 1—The capsaicin receptor, TRPV1, is often
regarded as a marker for nociceptors. The majority of visceral DRG somata test positive for
TRPV1 (Table 1) (24,39,45,46). In contrast, cutaneous (36,39,45) and muscle afferents (39)
are far less likely to contain the receptor. The few studies that have functionally identified
nociceptors report that only a very small number of cutaneous nociceptors contain TRPV1.
For example, one study showed only thirteen percent of tested nociceptors (both C- and A-
fiber afferents) innervating mouse skin were TRPV1-positive (47). In the colon, animals
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lacking the TRPV1 receptor are significantly less sensitive to colorectal distension (Figure 2C)
than wild-type littermates (48). Although not specifically identified as nociceptors,
approximately half of colonic serosal mechanoreceptors respond to capsaicin (49). In
innervation of cat viscera, all C-fibers and 38% of A-fibers are capsaicin-sensitive (50).

An illustration of both the complexity of the definition of the nociceptor and the role of TRPV1
can be found in a less commonly studied animal species. The African naked mole-rat,
Heterocephalus glaber, expresses functional TRPV1 receptors, but does not exhibit pain
behavior in response to capsaicin applied to the hind paw, unless substance P, which is absent
in cutaneous C-fibers (51), is first administered as an intrathecal injection (52). This
observation raises an interesting question: Are the afferent neurons that are obviously capable
of encoding a noxious stimulus to be considered nociceptors, even if such “nociception”
depends on a pharmacological intervention?

Differences among Visceral Afferent Populations
Although visceral afferents can be distinguished from their non-visceral counterparts, they do
not appear to form a homogeneous population (Table 1). Indeed, the colon and bladder are
innervated by afferents associated with two different nerves: afferents that follow the
splanchnic nerves and have cell bodies in thoracolumbar DRG, and afferents that follow the
pelvic nerve and have cell bodies in lumbrosacral DRG. Studying the mechanosensitivity of
single afferent fibers that innervate the colon reveals five different classes of mechanosensory
primary afferent (53) (Figure 3). Two of these are expressed in specific afferent populations,
with the remaining three (i.e., serosal, muscular, and mucosal) found in both the splanchnic
and pelvic pathways. Mesenteric afferents, an afferent class that is not observed in the pelvic
nerve, constitute half the splanchnic innervation of the colon. Similarly, muscular/mucosal
afferents have been reported in the pelvic, but not splanchnic, innervation and have been likened
to a population of vagal afferents. This prompts the question of whether the pelvic nerve is
fulfilling a “vagal-like” role in those more distal portions of the gastrointestinal tract that the
vagus nerve does not innervate. (Pelvic afferent terminals in the colon are predominantly found
distal to those from the lumbar splanchnic nerve). Generally, pelvic afferents have lower
mechanical thresholds for activation but respond more intensely to a given stimulus than do
splanchnic afferents. Chemical differences are also apparent between these two visceral
afferent subpopulations. For example, significantly more splanchnic than pelvic afferents (66%
versus 11%) respond to the direct application of bradykinin (BK), a chemical mediator released
following tissue injury, to the receptive ending (54). BK-responsive pelvic afferents (two of
nineteen fibers tested) were mechanosensitive, whereas the BK-responsive splanchnic
population included mechanically insensitive as well as mechanically sensitive afferents. If a
purely serosal afferent population is studied (chosen because they are equally represented in
both the pelvic and splanchnic nerves), more splanchnic than pelvic afferents respond to
activation of either P2X or TRPV1 receptors (49), findings that are confirmed
immunohistochemically (35,49).

Similar findings have been reported in the rat bladder, an organ that also receives dual
innervation through the pelvic and splanchnic nerves. Whole-cell patch clamp
electrophysiology of cultured retrograde labeled DRG neurons has revealed that almost all
pelvic afferent cell bodies respond to the P2X agonist α,β-methyleneATP, whereas only half
of the splanchnic afferents responded (55). Although practically all the neurons studied
responded to capsaicin, those from pelvic DRG evoked a significantly greater current.

The peptide content of splanchnic and pelvic afferent cell bodies in the DRG, based on
immunostaining for CGRP, has been reported to be similar. On the other hand, there appears
to be a difference in the non-peptidergic population, as more pelvic than splanchnic afferent
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cell bodies bind IB4, although variations in the use of retrograde tracers and fluorophphres
have produced some inconsistencies in results (35,56). Of the two IB4-binding populations,
splanchnic afferent cell bodies tend to show lower intensity in staining than does the pelvic
population (DR Robinson and GA Hicks, unpublished). A higher proportion of IB4-binding
afferents has also been reported in splanchnic, as compared to pelvic, afferents that innervate
the rat bladder (55).

Visceral Mechanosensation
As anyone who has experienced “gas” or bloating can attest, the distension of the gut can be
an unpleasant and sometimes intensely painful experience. As genetically modified mice have
become more widely available, there has been increased interest in the study of molecules that
mediate visceral mechanosensation and hypersensitivity (Table 2). These studies have
implicated a number of different molecules, including two members of the TRP family of
receptors, TRPV1 and TRPV4, and the acid-sensing ion channels (ASICs).

As indicated above, five different types of afferent fiber have been reported in the colon, each
of which is responsive to different forms of mechanical stimulation and has its own putative
functional role. An overview of these, along with the differences seen between the splanchnic
and pelvic innervation of the colon, can be found in Figure 3.

TRPV1 knockout mice show a significant reduction in their behavioral (visceromotor) response
to colorectal distension as well as in afferent fiber responses to stretch (48); similarly, urinary
bladder and jejunal afferent subpopulations exhibit reduced mechanosensitivity (57,58). It also
appears that TRPV1 plays a role in hypersensitivity to mechanical stimulation in models of
colon (48) and bladder hypersensitivity (interstitial cystitis) (59). This evidence of a role for
TRPV1 in visceral hypersensitivity—and thus, presumably, in visceral pain—extends to non-
visceral tissues, because mice that lack the TRPV1 receptor do not exhibit the enhanced referred
mechanical hypersensitivity to the hind paw following cystitis that is seen in wild type controls
(59).

A relative of TRPV1, the TRPV4 receptor, has also been implicated in visceral
mechanosensation and may be most important in the colon; TRPV4 receptor mRNA content
is significantly greater in colonic DRG cell bodies (with more in splanchnic than pelvic nerve
DRG) compared to the cell bodies of gastric or non-visceral afferents (56). Furthermore,
mechanical responses of colon afferents are reduced, and response thresholds are greater, in
TRPV4 receptor knockout mice, consistent with reduced behavioral responses to colorectal
distension (56). Conversely, the intracolonic administration of a TRPV4 receptor–selective
agonist results in a dose-dependent increase in the responses of mice to colorectal distension
(60).

The proton-sensing ion channels of the ASIC family have been investigated as potential
visceral mechanotransducers using knockout mice that lack ASIC1a, ASIC2, or ASIC3
channels. The loss of ASIC1a appears to result in an increase in mechanosensitivity throughout
the gastrointestinal tract, including the colon, whereas deficiency in ASIC2 results in different
mechanical responses, depending on the target (in the colon it also results in increased
mechanosensitivity) (61,62). CGRP release from the colon is unchanged by knockout of ASIC2
(63). In contrast, knocking out ASIC3 leads to reduced colonic mechanosensitivity, both with
respect to stretch in single-fiber experiments and behavioral assessment of the visceromotor
response to colorectal distension (48,62).
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Conclusion
We have reviewed evidence here that visceral nociceptors—or, more accurately, visceral
afferents with the potential to transmit nociceptive information—differ from non-visceral
(somatic) afferents in a number of ways, including their morphology and the channels and
receptors they contain. They also differ in the consequences of their activation. In humans,
visceral pain has a number of characteristics that distinguish it from pain originating from non-
visceral structures, and these differences are most likely responsible for the symptoms
experienced by patients with a visceral disease such as IBS. Somatic pain relief strategies
typically work poorly for the management of visceral pain, and a better understanding of the
visceral nociceptor (along with central mechanisms not discussed here) is vital to the
development of new therapies for visceral pain management. The way forward would be easier
if we were able to identify visceral nociceptors by characteristics other than response to noxious
stimuli. Although CGRP- and TRPV1-containing DRG somata are more common in visceral
sensory neurons, these and other potential surrogates do not reliably distinguish visceral from
non-visceral nociceptors. Until such a marker (or constellation of markers) is found,
identification of nociceptors requires functional assessment.
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Figure 1. Functional neuroanatomy of the visceral sensory system
The gut is depicted here as an example of the sensory innervation of the visceral system. Vagal
afferent neurons, which do not innervate the urinary bladder or the distal gut, have cell bodies
in the nodose ganglia (NG) bilaterally and travel alongside parasympathetic efferent pathways
to organs in the thoracic and abdominal cavities. Once in the gut wall, vagal afferent fibers
innervate neurons in the myenteric or submucosal plexus (M/SP), circular and longitudinal
muscle layers, and the mucosa. Pelvic afferent neurons also travel alongside parasympathetic
efferent pathways, but their cell bodies are in dorsal root ganglia (DRG). Other spinal nerves
(e.g., greater splanchnic) travel alongside sympathetic efferent pathways, have cell bodies in
DRG, and pass through prevertebral ganglia (e.g., the celiac ganglion, CG). Intestinofugal
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afferents (purple) synapse onto efferent sympathetic neurons in prevertebral ganglia, such as
the inferior mesenteric ganglion (IMG) and have their cell bodies in M/SP. Afferent fibers of
the intrinsic (or enteric) nervous system, termed intrinsic primary afferent neurons (IPANs),
synapse onto intestinofugal fibers, either directly, or via interneurons (i). Rectospinal fibers
(blue) have cell bodies in the myenteric plexus or muscle layers, with axons terminating in the
spinal cord (CNS). Note that not all these nerves and fibers will terminate in the same areas of
the gut, and inputs to the spinal cord may traverse a number of different levels; this figure has
been simplified for clarity.
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Figure 2. The viscera are innervated by low- and high-threshold mechanoreceptors
Hollow viscera are exquisitely sensitive to distension, a phenomenon that can be observed
experimentally by recording the electrical activity induced in pelvic nerve afferent fibers
(mechanoreceptors) during distension of the visceral organ under study. A) Low-threshold
mechanoreceptors (blue) detect both non-noxious and noxious distension pressures, whereas
high-threshold mechanoreceptors (green) only respond to noxious distention pressures. Data
are recorded from distension of the rat bladder. B) Mechanoreceptors (of either the high- or
low-threshold type) in the pelvic nerve can be sensitized by the addition of irritants (e.g.,
xylenes) into the bladder. C) Mice lacking the TRPV1 receptor show impaired visceral
nociception. The visceromotor response (electrical activity recorded in the abdominal
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musculature) produced during distension of the colon to a noxious pressure (e.g., 60 mmHg)
is lower in mice that do not have functional TRPV1 receptors compared to wild-type controls.
Even at the highest tested colonic distension pressure, TRPV1 knockout mice only show a
level of response equivalent to that of the wild-type mice at 30 mmHg, the pressure at which
this stimulus is likely to be noxious (dashed red line). Panels A and B are adapted with
permission from (64), and panel C is adapted with permission from (48).
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Figure 3. The colon is innervated by five different types of mechanosensory afferent
Five different types of afferent fiber have been reported in the colon: serosal, mesenteric,
muscular, mucosal, and muscular/mucosal. Each has characteristic response criteria based on
a protocol of probing, stretching, and stroking the colonic wall, and each has a different putative
functional role. Most serosal afferents are mechanosensitive and, given that their thresholds
for activation are higher than would be expected physiologically, are thought to signal short,
sharp events (e.g., muscle contraction). Found only in the splanchnic afferent innervation,
mesenteric afferents are predominantly found closely associated with blood vessels and likely
signal twisting of the colon wall and some changes in mesenteric blood pressure, with a
potential role in inflammation. Muscular afferents, named for their termination in the circular
and longitudinal muscle layers of the gut, respond directly to circumferential stretch with a low
threshold of activation (though can code into the noxious range). Muscular afferents exhibit
slightly different properties depending upon the nerve (splanchnic or pelvic) in which they are
found, but generally are considered to contribute to sustained filling, bloating, or distending
sensations. Mucosal afferents are stretch-insensitive (at least circular stretch-insensitive) and
respond to fine probing and stoking of the mucosal membrane. This suggests a role in providing
feedback from physiological stimuli such as the normal passing of fecal material through the
gastrointestinal tract. Finally, muscular/mucosal afferents, so named for their ability to detect
both circular stretch and fine mucosal stroking, are a class of mechanoreceptor that, in mouse
colon at least, are only found in the pelvic innervation. Presumably, these fibers provide a
combination of the information that is transmitted from the muscular and mucosal fibers
described above. For examples of the responses seen for each of these mechanosensitive fiber
types, please see reference (53).
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Table 2
Molecules that Mediate Mechanosensation and Hypersensitivity

Molecule Description Effects in the colon Reference(s)

5-HT3 Serotonin receptor Antagonists attenuate glycerol-induced visceral
nociception and prevent restraint stress–induced colonic
hypersensitivity.

(66,67)

ASIC3 Acid-sensing ion channel Knockout mice show reduced mechanosensitivity. (48,62)

Nav1.8 Voltage-gated Na+ channel Knockout mice show reduced response to intracolonic
capsaicin or intracolonic mustard oil.

(68)

P2X Purinergic P2X receptors ATP is released from the colonic mucosa by colorectal
distension, and pelvic nerve afferents are activated by
α,β-methyleneATP; visceral hypersensitivity is reversed
by specific P2X1, P2X3, and P2X2/3 antagonists.

(69,70)

PAR Protease-activated receptors Luminal application of PAR2-activating peptide causes
visceral hypersensitivity.

(71)

TRPV1 TRPb-vanilloid 1 receptor Knockout mice show reduced mechanosensitivity. (48)

TRPV4 TRPb-vanilloid 4 receptor Knockout mice show attenuated mechanosensitivity and
reduced response to colorectal distension; a selective
agonist increases response to colorectal distension.

(56,60)

a
References provided here are representative, not exhaustive.

b
TRP, transient receptor potential.
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