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Abstract

Genome-wide association studies (GWAS) have been widely used to identify genetic effects on
complex diseases or traits. Most currently used methods are based on separate single-nucleotide
polymorphism (SNP) analyses. Because this approach requires correction for multiple testing to
avoid excessive false positive results, it suffers from reduced power to detect weak genetic effects
under limited sample size. To increase the power to detect multiple weak genetic factors and
reduce false positive results caused by multiple tests and dependence among test statistics, a
modified forward multiple regression (MFMR) approach is proposed. Simulation studies show
that MFMR has higher power than the Bonferroni and false discovery rate (FDR) procedures for
detecting moderate and weak genetic effects, and MFMR retains an acceptable false positive rate
even if causal SNPs are correlated with many SNPs due to population stratification or other
unknown reasons.
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INTRODUCTION

With the development of genotyping and computer technology, genome-wide association
studies (GWAS) have become feasible because currently available genotyping platforms for
association mapping can accommaodate up to 1 million single-nucleotide polymorphisms
(SNPs), with a density of genotyping average 1 SNP per 3 kb, across the whole genome.
However, large numbers of false positive results become a major challenge in genome-wide
association studies due to multiple testing and correlations among SNPs located in different
genomic regions. In GWAS for a 500K SNP data, if one controls Type | error at 5% in
single SNP tests, there will still be about 25,000 positive SNPs even if none of the SNPs are
truly associated with disease or trait. In addition, if there are some causal SNPs affecting the
disease or trait of interest, and if these SNPs are correlated with other SNPs not in the same
linkage disequilibrium (LD) region because of population stratification or other unknown
reasons, we may observe additional false-positive SNPs (here we define the positive SNPs
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in the same LD region of a causal SNP as true positives, and the positive SNPs not in the
same LD region of a causal SNP as false positives). So, identifying which, if any, of these
results is a true positive versus the many expected false positives presents a major statistical
problem to localize the true genes that relate to the complex disease or trait under study. To
solve this problem, a Bonferroni correction based on the significance level of an individual
test divided by the number of total tests has been used to control the Family-Wise Error Rate
(FWER). Alternatively, Bonferroni Step-Down [Holm, 1979], Westfall and Young
Permutation [1993], Benjamini and Hochberg’s false discovery rate (FDR) correction
[1995], a Monte Carlo approach [D.Y. Lin, 2005], two-stage GWAS design [Satagopan and
Elston, 2003], principal components approach [Price at al, 2006] and many other methods
have been proposed to control for multiple tests in order to yield an acceptable FWER or
FDR. Some of these methods such as principle components analysis also allow for
population stratification.

Among the above mentioned methods, the Bonferroni correction is the most stringent
approach. Practical application shows it is adequate for controlling FWER and detecting
relatively strong genetic effects, but it is too stringent to detect weak or moderate genetic
effects. FDR (defined as the expected proportion of false rejections among the total number
of rejected hypotheses) correction tolerates more false positives than many other methods
and has thus been found to yield more power to detect weak genetic effects than other
approaches. However, when the number of tests is very large, such as in GWAS, the FDR
approach still lacks power to find weak genetic effects. For example, in the study of
genome-wide association for lung cancer at 15925.1 [Amos et al, 2008], the risk allele of
SNP rs1051730 conveyed an odds ratio 1.31 versus the wild allele in Chi-square test, and
gave a generalized R2 = 0.009 in logistic regression [Nagelkerke, 1991], showing a rather
weak effect of this SNP in influencing lung cancer risk. Even though 2291 individuals (1154
cases and 1137 controls) were studied, the p-value was only 1.14 x 10~ from Chi-square
test, and 5.38 x 102 from logistic regression. Because there were 315,824 SNPs, a test
employing the Bonferroni correction did not have enough power to detect this risk SNP, and
the FDR procedure (g = 0.05) also failed to detect this weak genetic factor.

In general, for a genome-wide screen to detect multiple genetic factors for a complex trait,
methods based on separate SNP analyses have required criteria that are either too strict to
detect weak genetic effects or yield too many false positive results if the criteria are relaxed
to a > 1074, Therefore, the conventional methods based on separate SNP analysis including
the Bonferroni and FDR methods may not effectively control both type | error and provide
adequate power unless a large enough sample size is used. To increase the power to detect
weak genetic effects and at the same time control the number of false positives under limited
sample size, we propose a modified forward multiple regression (MFMR) approach based
on maximum order statistics.

METHODS

Let Xy, X», ..., X, be independent random variables with respective cumulative distribution
function Fi(x) (i1=1, 2, ..., n), and let Yy, = X(ny be the maximum order statistic of Xy, Xy,
..., Xp. Then Yy, has cumulative distribution function Gn(Yn) = P(Yn <Ypn) =P(X; S yp; i =1,

< v )= (v
2,..,n)= lT[P(X' =) DF'O"). Considering a GWAS using general linear regression,
let X; = MSR/MSE be the mean square for regression divided by mean square for error for
the i SNP (i=1, 2, ..., n). Letus treat X; (i=1, 2, ..., n) independently by assuming each
SNP is from a different LD block and no population stratification or population substructure

has been controlled in genome data. The null hypotheses H;,;8; =0 indicate no additive mean
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trait effect among the genotypes (AA, AB and BB) of the i SNP. The alternative
hypotheses HL:,Bi1 # 0 indicate that there is additive mean trait effect among the genotypes of

the it SNP. If null hypotheses H};8 =0 (i = 1, 2, ..., n) are true, X (i=1, 2, ..., n) are
independently and identically distributed from the same F distribution F(X; 1, N—2) where N

is sample size. If the alternative hypotheses H[,:,Bi1 #0(i=1,2,...,n)are true then X (i=1,
2, ..., n) are independent and follow non-central F distributions Fi(X; 1, N—2,4;) [Hocking,
2003]. In approaches of separate SNP analyses, we set a critical value cg such that P(X > cg

|H.;i=1,2,...,n)=a, where o is the probability of Type I error in each test, and the
corresponding power for each test is mij = P(X; > cg | H). Now we use the same critical value

Co for the maximum order statistic Yy, and let H;™** be the joint null hypothesis that there is
no true positive SNP in whole genome, then the probability of Type I error for Y is P(Y, >
Co| HP™)=1—-P(Ypn<co| H™) =1-P(X;<co|Hyi=1,2,....,n)=1-[P(X <cq|
Hg)]" =1 —[1 - a]" ~ na, which is just the FWER in an approach of separate SNP analysis
assuming all tests are independent. When we use Bonferroni approach, the o is about 0.05/n
if we control FWER at 0.05 level, which is 5.0x10~7 for a GWAS with 100,000 SNPs. From
the above formula, the Type | error rate of a maximum order statistic tends to 1 when a >0
and n increases. Supplementary Figure 1 shows the Type | error rate of a maximum order
statistic for o = 0.0001, 0.001, 0.01 and 0.05.

Let the joint alternative hypothesis for the maximum order statistic Y, be F™** = {the SNP
with the maximum order statistic has additive genotype effect and there is at least one SNP
with additive genotype effect in genome.}, then the power for Y, is P(Y,> co | H™*) =1 —
P(Yn<co| H™)=1—-P(Xj<co| H™; i=1,2, ...,n). Assume the Jth test statistic X; is the
largest statistic among X1, X», ..., Xp. Because the alternative hypothesis for the maximum
order statistic 7™ includes the alternative hypothesis for the J test statistic H, and the
hypothesis 7/ implies H™, they are actually equivalent. Also because the hypothesis for Jth
SNP A has nothing to do with other SNPs by independent assumption, we have P(X; < cy |
H))=P(Xj<cp)fori#J,and P(Y,>Co | H™™) =1 -P(Xj<co| H™i=1,2,...,n)=1~-

_ 1= P(X, < «olH)| |P(Xi < co) _
PXi<co|H);i=1,2,...,n)= ! D , where P(X; < cg | H/) is the
probability of Type Il error for the largest test statistic in separate SNP test approach. In the

separate SNP test approach, because we do not have (or do not use) the condition that X; is
the maximum order statistic, X; follows univariate distribution.

In hypothesis F™*, if there are other m true positive SNPs, then we have

m n—1
P(Y,>col HT™)=1 = P(X, < col | [P(X,, < ol [P(X,, < colHy)=
0

m+1
m

n—-m-—1 n—1
1—[1—7r,]><1:[[1—7?/,»]><[1—0] =1l mxti=al>n o aty

PY,>colH™)>1 - [1-nm,1x | |[1-7,]. )
e ’ l:l "“if m# 0and n>m + 1). For example, Assuming

the power in an approach of separate SNP analyses for the J' SNP is 80% at given effect
size, allele frequency, o level, and sample size, then the power for the same SNP given the
SNP has the maximum order statistic is P(Y, > co | H™¥) > 1 — [1-0.8]x[1—a]""1, which is
always greater than the power from separate SNP analyses. Supplementary Figure 2 shows
the minimum power of a maximum order statistic for o = 0.0001, 0.001, 0.01 and 0.05
assuming 80% power from the same test statistic in separate SNP test approach.
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The above formulas and Figures 1 and 2 suggest that tests based on maximum order
statistics have more power than the tests based on separate SNP analyses. When n is large,
the power from the maximum order statistic tends to 1. When n decreases, the power is still
higher than the power from separate SNP analysis, especially when there are multiple true

m

" : [1-m)x [ [(1-m,
positive SNPs because the power mainly depends on the term 0 when n

is not large. Although a test based on maximum order statistic increases the probability of
Type | error, the Type | error rate will reduce quickly when n decreases. Based on these
characteristics of Yy, at the first step of forward multiple regression, we pick the SNP with
the maximum order statistic in the regression model if its p-value is less than a pre-specified
a level, then we chose a number ¢4 such that P(X > ¢q | Hp) = 0.05 and drop all SNPs with
observed test statistics Xj < ¢q (i =1, 2, ..., n). We only retain SNPs with the largest 5% of
order statistics for the next step of forward multiple regression. Repeating this procedure in
the following steps of forward multiple regression, the remaining number of SNPs, n;, at it
forward regression will reduce quickly, so the Type | error rate of the maximum order
statistic at the it forward regression will tend to o quickly. The forward multiple regressions
will stop when n; becomes small, because no Hq will be rejected at a small o level if null
hypothesis is true. By using this approach, the power to detect weak genetic effect will
increase and the number of tests will decrease greatly, so that we can use a less stringent o
level to increase power without increasing the number of false positives due to a large
number of tests. For example, in the study of genome-wide association for lung cancer by
Amos et al in 2008, when we used MFMR and took o = 0.0001, we detected rs1051730 and
26 other positive SNPs out of total 315,824 SNPs. Because the properties of the maximum
order statistic do not limit the distributions of the test statistics, here we have extended
MFMR from general linear regression to logistic regression where the test statistics follow
2 distributions. This approach can also be extended to a GWAS using any other test
statistics.

SIMULATION STUDIES

To verify the effectiveness of the MFMR empirically, we conducted several simulation
studies to compare power and type | error for the proposed method, the Bonferroni
procedure and the more powerful FDR method. The first and second simulation studies are
based on data from genotyping that has been performed using Illumina bead arrays. There
were 6922 Caucasian samples from Canada and North America, which included 2755 males
and 4167 females. The data were extracted from an Illumina Infinium Human Hap300 SNP
arrays [Plenge et al., 2007]. All SNPs in the extracted data set have p-value greater than
0.0001 for Hardy-Weinberg Equilibrium (HWE) test, minor allele frequency (MAF) greater
than 0.01 and genotyping rate greater than 0.999. To generate 100 replicates, 500 subjects
were randomly selected without replacement from the original 6922 samples to form a
dataset until we obtained 100 datasets. For each dataset, a complex trait for each subject was
simulated based on several artificial causal SNPs. The causal SNPs were chosen from
different chromosomes and were uncorrelated (The maximum r2 among them is 4.8x1074).
In simulation study 1, we simulated a quantitative complex trait with three causal SNP
effects. In simulation study 2, we simulated a complex dichotomous disease trait with three
different causal SNPs. The minor allele frequencies of these causal SNPs varied from 9.5%
to 27.7%. The genetic effects of the causal SNPs were additive, and contributed an average
1% to 5% of total trait variance in 100 replicates. The population is homogeneous in
simulation studies 1 and 2. The inflation factors (the observed mean of test statistics divided
by the expected mean of test statistics under Hg [Devlin et al, 2001]) are close to 1 (0.996 in
simulation study 1 and 0.934 in simulation study 2), which indicates no “overdispersion”
was generated by population substructure. Supplementary figures 3 and 4 show the g-q plots
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of the expected negative log p-values of test statistics versus observed negative log p-values
of test statistics. The third and fourth simulation studies are based on a 115K Affymetrix
SNP data set that was collected by St. Jude Children’s Research Hospital from the germline
DNA of 400 leukemia patients. There are 294 (73.5%) Caucasians, 69 (17.25%) Blacks, 13
(3.25%), Hispanics, and 24 (6.0%) others. Race was self-identified and consistent with
genotype checking. 178 females and 222 males were distributed among the race groups and
no significant gender difference was found in each race group. The data include 115,182
SNPs that were derived from analysis of an Affymetrix SNP array [Matsuzaki et al., 2004].
The BRLMM method was used to assign genotypes [Rabee and Speed, 2006]. The overall
SNP call rate is more than 98%. There is a strong population stratification issue in
simulation study 3 where the selected causal SNPs are highly associated with race. The
inflation factor in this study is A = 1.4. Supplementary Figure 5 shows the g-q plot of the
expected negative log p-values of F statistics versus observed negative log p-values of F
statistics. The purpose of simulation study 3 is to compare the influences of population
stratification on the Bonferroni, FDR and MFMR tests. In simulation study 4, three selected
causal SNPs are not correlated with race. The goal of the simulation study 4 is to check
whether the inflation of false positives still exists when causal SNPs are not correlated with
population substructure and whether MFMR still performs better than Bonferroni and FDR
approaches in that situation.

Simulation study 1

In the first simulation study, we picked one SNP each from chromosomes 1, 5, and 13. The
additive genetic effects —a, 0 and a are assigned to genotypes AA, AB and BB where AA is
the common genotype. The parameter a is determined by the additive variance component
0,2 = 2pga? where p and q are frequencies of alleles A and B [Hartl and Clark, 1997]. The
quantitative traitis Y = 10 + 0.24X; + 0.41X5 + 0.46X3 + ¢, where X1, X, and X3 are
indicator variables for SNP1, SNP2 and SNP3 respectively, and each is coded -1, 0 and 1 for
genotype AA, AB and BB. SNP1 contributes 5%, SNP2 contributes 3%, and SNP3
contributes 1% to the total trait variance. The normal residual e has mean 0 and contributes
91% of total trait variance. In 100 replicates, we use MFMR approach to obtain a multiple
regression model for each replicate. The power calculated for detecting each causal SNP is
the number of times detected in 100 replicates dividing by 100. If the causal SNP is not
found but a SNP in the same LD region (with |r| > 0.8) of the causal SNP is detected, we
count that SNP as a causal SNP (Table 1). The average number of false positives (ANFP) in
each replicate is calculated by dividing the number of total false positive SNPs found in 100
replicates by 100. We also applied the Bonferroni and FDR procedures to the results of
single SNP regression to estimate their power and the ANFP in each replicate.

Table 1 shows that Bonferroni and FDR (g = 0.05) approaches are too stringent to find weak
genetic effects unless we reduce the significance criteria (such as increasing the g value in
the FDR approach from 0.05 to 0.6 as shown in the Table 1) or increase the sample size.
Although the Bonferroni and FDR (g = 0.05) approaches maintained FWER at 5% level
(those 5 false positive SNPs were found from 5 different replicates) because of the relatively
independent multiple testing in this simulation study, it is not necessary to have so stringent
FWER in GWAS. MFMR has better power to detect weak genetic effects, and the number
of false positives are acceptable when we take o = 1074, Even if we take a = 0.05, the ANFP
is still much less than that using separate SNP analysis, where about 1800 false positives are
expected for a = 0.05. When we used the same significance criterion as Bonferroni
procedure for MFMR, we obtained similar powers and false positive rates as found with the
Bonferroni approach.
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Simulation study 2

In the second simulation study, we picked three SNPs from chromosome 2, 4 and 8
separately. SNP1 is assigned additive effect —1, 0 and 1 to genotype AA, AB and BB. SNP2
and SNP3 are assigned additively —0.7, 0, 0.7 and —0.3, 0, 0.3 for genotype AA, AB and
BB. Let the probability of complex disease for it subject follow a logistic function p; = 1 —
U1 +exp(1 + Xqj + 0.7X5; + 0.3X3)], where Xy is the genotype coding (=1, 0 or 1 for
genotype AA, AB or BB) for SNPk (k = 1, 2, 3) from it subject. For each subject, a random
variable u is generated from uniform distribution U(0, 1). If u < p; we treat the subject as a
patient, otherwise we treat the subject as a healthy person. Because the probability of u < p;
is p;, the it subject has probability of p; to get disease. In simulation study 2, the average
odds ratios of additive effects in 100 replicates are 2.6, 2.02 and 1.38 for SNP1, SNP2 and
SNP3 respectively, and the average generalized r-squares in logistic regressions are 0.036,
0.025 and 0.01. The powers and ANFP from Bonferroni, FDR and MFMR approaches in
100 replicates are listed in Table 2.

Simulation study 2 for dichotomous traits shows consistent results with the simulation study
1 for continuous trait: if a genetic effect contributes less than 3% of total trait variation,
Bonferroni and the commonly used FDR (q = 0.05) approaches have very little power to
find the effect in a sample size of 500. We may use a less stringent criterion in FDR
approach, such as q = 0.6, to obtain a close power as in MFMR, but which criterion should
be adopted is very subjective and depends on how many positives are allowed. MFMR may
use a less stringent criterion and has showed acceptable number of positives (even if a =
0.05), so it has more power to detect weak genetic effects.

Simulation study 3

In the third simulation study, three SNPs were selected from chromosomes 2, 15, and 19
separately. Each of them is significantly correlated with race to create a population
stratification issue. The three causal SNPs are uncorrelated (the maximum r2 is 0.006). The
quantitative trait Y is simulated by a model Y =80 + SNP1*N(3, 4) + SNP2*N(1.4, 1) +
SNP3*N(2, 1) + N(0, 4), where SNP1 (on chromosome 2 with MAF 0.10) contributes
average 10.4% of total trait variation in 100 replicates and is coded additively 0, 0.5, and 1
for genotype AA, AB and BB separately; SNP2 (on chromosome 19 with MAF 0.31)
contributes average 5.2% of total trait variation and is coded recessively 0, 0, and 1 for
genotype AA, AB and BB; SNP3 (on chromosome 15 with MFA 0.21) contributes average
5.6% of total trait variation and is coded additively 0, 0.5, and 1 for genotype AA, AB and
BB; N(3, 4) is a normal random variable with mean 3 and variance 4, et cetera. In simulation
study 3, three causal SNPs are significantly correlated with 8,093 SNPs (|r] > 0.2, p <
0.0001) in the genome data. 8,078 of them are not in the same LD regions of the three causal
SNPs. 6,008 of them are correlated with SNP1. The results from Bonferroni, FDR and
MFMR procedures are listed in Table 3.

Simulation study 3 shows that the ANFP from MFMR is not influenced by population
stratification. Once the causal SNP that is correlated with population structure is selected
into regression model, population stratification has been controlled through the causal SNP.
Therefore, false positive SNPs caused by correlation with the causal SNP in univariate
analysis will no longer be significant. Simulation study 3 also indicates that if there is
population stratification in genome data and causal SNPs are correlated with population
structure, separate SNP analyses such as Bonferroni and FDR approaches cannot control
FWER at a theoretical level especially for FDR approach. In this case, the number of
positives (both power and Type | error) will be inflated as shown in Table 3 and Figure 5.
To deal with this problem, people do analysis stratified by population structure or
controlling for population stratification [Price et al, 2006], but this may reduce power to
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detect causal SNPs. Table 4 lists the results after controlling for race in the same simulation
study.

After controlling for race, the inflation factor is close to 1 (1.02). Although the ANFP from
Bonferroni and FDR are well controlled, the power from Bonferroni and FDR approaches
are significantly reduced. The power from MFMR is influenced less and it is higher than
that from Bonferroni and FDR approaches. Comparing the results of MFMR before and
after controlling for race, the power is reduced but the ANFP is not. This result suggests no
need to control population stratification for MFMR approach. The ANFP from MFMR is
greater than that from Bonferroni and FDR methods because MFMR uses a less stringent o
level. If one uses Bonferroni criterion for MFMR or uses less stringent g value (0.15) for
FDR correction, the ANFP from MFMR is slightly lower than that obtained using other
approaches in this simulation study.

Simulation study 4

In simulation study 4, the quantitative trait Y was simulated by using the same model as in
simulation study 3, but the three causal SNPs were not associated with race (p > 0.41) and
not significantly correlated with each other (the maximum r2 is 0.01). SNP1 (coded
additively) is selected from chromosome 8 with MAF 0.10 and contributes average 6.8% of
total trait variation in 100 replicates; SNP2 (coded recessively) is selected from chromosome
1 with MAF 0.17 and contributes average 5.3% of total trait variation; SNP3 (coded
additively) is selected from chromosome 4 with MAF 0.37 and contributes 5.2% of total
trait variation. Because the three causal SNPs are not associated with population
substructure, they are only significantly correlated (|r| > 0.2, p < 0.0001) with 41 SNPs in the
genome. 33 of them (0.2 < |r| < 0.6) are not in the same LD regions of the causal SNPs. The
results from genome-wide testing for 100 replicates by using Bonferroni, FDR and MFMR
approaches are shown in Table 5.

In this simulation study, because population substructure is not associated with causal SNPs,
it is also not associated with the quantitative trait generated by the causal SNPs. The average
p-value is 0.52 for the association tests between race and quantitative trait in 100 replicates.
We did not find inflation of false positives in this simulation study. The inflation factor is A
= 0.985. The g-q plot of the expected negative log p-values versus observed negative log p-
values is shown in Supplementary Figure 6. This study indicates that the population
stratification due to effects from a few large strata may not be an issue if population
substructure is not associated with disease trait. From Table 5, the power from MFMR is
significantly higher than that from Bonferroni and FDR procedures, and the ANFP from
MFMR is still acceptable although a less stringent a level is used. If the Bonferroni
significance criterion is adopted by MFMR, the MFMR shows higher power and lower Type
| error rate than the other two procedures.

DISCUSSION

Compared to the Bonferroni and FDR procedures, MFMR shows higher power to detect
weak and moderate genetic effects and an acceptable number of false positives. According
to Figures 1 and 2, and the formula to calculate the power of the maximum order statistic,
when a is reduced from 0.05 to 0.0001, the Type | error rate of MFMR will reduce greatly
while the power from MFMR will not reduce similarly if the specified power from a single
SNP test is not too low, especially when there are multiple true positive effects. This
expectation was confirmed in simulation studies 1 to 4. Table 1 through Table 5 show when
o is reduced from 0.05 to 104, the power from MFMR changes little if the power from a
single SNP test is not very low, while the Type | error rate from MFMR reduces greatly.
Therefore, using o = 10~ for MFMR may be a better option.
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For simulation studies 1 and 2, we extracted the dataset that includes only SNPs that are not,
or modestly correlated with each other. If higher correlated SNPs are studied, the power of
the Bonferroni test can be expected to deteriorate further because the procedure will be even
more conservative, given that it assumes the tests are independent. The power for the
MFMR test is not as influenced by correlations because it is not adjusting the critical value
for the total number of independent tests.

When causal SNPs are correlated with many SNPs out of LD regions due to population
stratification or other factors, single SNP analysis without adjusting for population
stratification will inflate the false positives rate, while MFMR still maintains better power
and well-controls the Type | error rate. When causal SNPs are not correlated with population
substructure and population substructure is not associated with disease trait as shown in
simulation study 4, there is no inflation of false positives. In that case, the performances of
all three approaches are similar to their performances in simulation studies 1 and 2 where
there is no population stratification. If causal SNPs are not correlated with population
substructure but there is an unknown environmental risk factor that is correlated with
population substructure, the inflation of false positives may still be an issue. In that case,
investigators may adjust population substructure to control the inflation of false positives in
separate SNP analyses. MFMR is very likely to select a SNP, which is highly associated
with the unknown environmental risk factor, into regression model to effectively control
population stratification. Because there are hundreds of thousands of SNPs in genome, we
assume such a SNP always can be found. Since in any case MFMR has higher power to
detect weak genetic effects and has limited number of false positives, it may be a good
choice for a first-stage analysis in a two-stage GWAS design.

There is another advantage in MFMR. In practice, if a trait is caused by several independent
factors, then the tests for each factor in multiple regressions are usually more significant
than in univariate regression analysis. That is, when multiple predictors influencing a trait
are not included in the model, their effects are subsumed by the residual error. Therefore, the
standard error for each variable in univariate regression will be larger than that in multiple
regressions. That’s why MFMR has better power than the Bonferroni approach when using
the same significant criterion in simulation studies 1 to 4.

When multiple SNPs are highly correlated with a positive SNP, each of the SNPs will tend
to be identified when univariate analyses are conducted. In contrast, only the most strongly
associated SNP will be identified in forward multiple regressions. Additional SNPs that are
correlated with this SNP and without independent contributions to response variable will fail
to explain a significant proportion of the residual variance conditional on the most
associated SNP. Thus, these additional SNPs will fail to be incorporated in multiple
regression models and false positives due to correlation with the true positive SNP can be
excluded. In some situations, this characteristic of MFMR may not be beneficial. If two
SNPs are highly correlated with each other and the SNP with weaker effect has a true effect,
MFMR will pick the SNP with the stronger effect and have less power to detect the weaker
effect. For example, in Table 3 we see MFMR has less power than the Bonferroni approach
to detect SNP1’s effect. That was because in some replicates, some non-causal SNPs that
were highly correlated with SNP1 had a stronger effect than SNP1 due to random
fluctuation of samples. Those SNPs were first selected by MFMR, which reduced the power
to detect SNP1. The same thing could happen to SNP2 and SNP3 when they are highly
correlated with many other SNPs. If a causal SNP is not highly correlated with other SNPs
in different genomic regions, as expected for most GWAS where homogeneous populations
were used, MFMR has higher power than other methods as shown in simulation studies 1, 2
and 4.
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One disadvantage of MFMR is that it is sensitive to missing genotype. Because MFMR
jointly analyzes n SNPs after n steps, even if each SNP has only several missing genotypes,
dozens of SNPs could have several hundred observations with missing genotypes. In that
case multiple regressions will lead to removing any subject having missing genotype from
the regression model, consequently influencing SNP selection. We suggest imputing missing
genotypes with a method such as Mach [Scott et al., 2007] or Bimbam [Servin and Stephens,
2008] before using MFMR.
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Figure 2.
Minimum power of the maximum order statistic assuming 80% power for the same test

statistic in single SNP test approach.
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Figure 3.
g-q plot of expected negative log p-value vs observed negative log p-value in simulation
study 1.
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Figure 4.
g-q plot of expected negative log p-value vs observed negative log p-value in simulation

study 2.
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Figure 5.
g-q plot of expected negative log p-value vs observed negative log p-value in simulation
study 3.
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g-q plot of expected negative log p-value vs observed negative log p-value in simulation
study 4.
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