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In this paper, the authors use the rubric of “coarsened data,” of which missing and censored data are special
cases, to motivate the elicitation and use of expert information for performing sensitivity analyses of censored
event-time data. Elicited information is important because observed data are insufficient to estimate how study
participants with coarsened data compare with participants with uncoarsened data, and misspecifying this com-
parison may produce biased analysis results. In the presence of coarsening, performing a sensitivity analysis over
a range of plausible assumptions is the best one can do. Here the authors illustrate an approach for eliciting expert
information for use in sensitivity analyses to compare cumulative incidence functions of censored nonmortality
outcomes. An example of such data is the AIDS Link to Intravenous Experience (ALIVE) Study, where the authors
aim to estimate and compare cumulative incidence functions for human immunodeficiency virus between risk
factor categories. The interval and right-censoring and censoring due to death found in the ALIVE data (1988
1998) are thought to be informative; thus, a sensitivity analysis is performed using information elicited from 2 ALIVE
scientists and an expert in acquired immunodeficiency syndrome epidemiology about the relation between sero-
conversion and censoring.

Bayesian analysis; frequentist approach; HIV; hypothesis test; incidence; interval censoring; sensitivity analysis

Abbreviations: ALIVE, AIDS Link to Intravenous Experience; CAR, coarsening at random; Cl, confidence interval; Crl, credible
interval; CNAR, coarsening not at random; HIV, human immunodeficiency virus.

Incomplete data, including missing and censored data, are
common challenges in epidemiology.

The main challenge is that selection bias can result from
inability to determine how participants with complete and
incomplete data differ. For missing data, statistical methods
facilitating sensitivity analysis have been developed (1) and
advocated (2). These methods involve performing analysis
over ranges of plausible yet untestable assumptions about
the missingness mechanism (relation between participant
characteristics and probability of missingness). Sensitivity
analysis using elicited expert information is recommended
because subject-matter experts can posit scientifically plau-
sible assumptions (2).

Despite available statistical methods, missing data are
often inadequately addressed (3). Typically ‘“‘complete

case” analyses are performed that delete observations with
missing variables, which may produce bias unless data are
missing completely at random (4) (i.e., there is an equal
probability of missingness for all participants). Sensitivity
analysis is rarely performed and is often limited to imputing
extreme or other scientifically implausible values, which
almost always produces inconclusive results (3).
Missingness is 1 member of a broader class of
incomplete-data structures called coarsening. Coarsening
occurs when some set of values containing the exact value
is observed, but not the exact value itself (5, 6). Other than
missing data (where the set contains all possible values of
the variable), coarsening includes censoring, grouping, and
rounding as special cases. Conceptualizing incomplete data
under the rubric of coarsening is beneficial for generalizing
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methods for missing data to other incomplete-data prob-
lems. Concern centers around inability to estimate the
coarsening mechanism (relation between participant char-
acteristics and probability of being coarsened into a set) and
bias resulting from incorrect assumptions about coarsening.

In this paper, we illustrate the elicitation and use of expert
information about coarsening for frequentist and Bayesian
sensitivity analyses of interval-censored data. We use data
from the AIDS Link to Intravenous Experience (ALIVE)
Study, a prospective study with censored times to human
immunodeficiency virus (HIV) infection and censoring by
death.

EXAMPLE: THE ALIVE STUDY

Begun in 1988, ALIVE is a prospective observational
study of risk factors for HIV infection among injection drug
users in Baltimore, Maryland. Seronegative participants
were recruited through community outreach and were inter-
viewed regarding potential risk factors (7-9). Determination
of HIV serostatus, a proxy for infection status, was scheduled
through semiannual laboratory blood tests using enzyme-
linked immunosorbent assay confirmed by Western blot.
The estimated sensitivity and specificity of ALIVE data are
over 99% (10); therefore, misclassification is not addressed
here.

We operationalize infection time here as year of serocon-
version. ALIVE participants often miss study visits or attend
off-schedule visits, sometimes producing interval-censored
seroconversion times that are known only within a range of
years (i.e., an unknown, untestable coarsening mechanism
that may produce bias if incorrectly modeled). Discretizing
time introduces noninformative coarsening (a known mech-
anism) (5, 6), provides clinically interpretable results, re-
duces sensitivity to small departures from the visit
schedule (visits within the year scheduled are considered
uncoarsened here, but visits more than a year off schedule
can lead to coarsening), and circumvents mathematical dif-
ficulties related to continuous interval-censoring (11). Some
seroconversion times are right-censored by withdrawal, ad-
ministrative censoring, or death. In this paper, we estimate
and compare 10-year cumulative incidence functions
(1988-1998) of seroconversion between participants who
self-reported sharing needles for drug injection upon enroll-
ment and participants who self-reported not sharing needles
upon enrollment. Time-varying needle-sharing is unad-
dressed here; the development of methods utilizing it is
planned for future research.

Among 2,205 ALIVE participants, 1,527 reported sharing
needles and 678 did not. Of needle-sharers’ seroconversion
times (years), 12%, 74%, 9%, and 4% were censored by
death, censored by dropout or administrative censoring,
interval-censored, and exactly observed, respectively. Re-
spective percentages among nonsharers were 11, 77, 8, and 4.

Although censoring class percentages are similar between
needle-sharers and nonsharers, observed data alone cannot
determine how censoring and seroconversion relate. There-
fore, analysis requires unverifiable assumptions about cen-
soring. To tackle this problem, we elicit information from 2
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ALIVE investigators (N. G., D. V.) and an expert in acquired
immunodeficiency syndrome epidemiology for performing
frequentist and Bayesian sensitivity analyses to estimate and
compare needle-sharing specific incidence functions (12, 13).
Before discussing statistical models, we describe the data
structure and formalize the concept of coarsening.

DATA STRUCTURE

To accommodate assumptions about coarsening in statis-
tical models, 2 types of variables are needed: the coarsened
variable (in ALIVE, seroconversion time) and coarsening
process variables (in ALIVE, censoring variables). For
missing data, a response indicator (yes/no) describes the
coarsening process. Additional notation is unnecessary be-
cause missingness does not restrict possible values for the
coarsened variable.

In ALIVE, the potentially coarsened variable is 7T}, year of
seroconversion (from enrollment) for participant i. For an
M-year study, T; = t denotes seroconversion during year f,
where f can be 1, 2, ..., M — 1, M. If participant i did not
seroconvert within M years, we arbitrarily set T; = M + 1 (12).

To denote coarsening, L; and R;, respectively, are the
earliest and latest possible years of seroconversion induced
by censoring. They are the left and right endpoints of ran-
dom interval [L;, R;], into which T; is coarsened. For exam-
ple, if participant i is last observed as seronegative during
year 2 and is first observed as seropositive during year 5,
then T} is coarsened into interval [L; = 2,R;=5]and T; € [2, 5].
However, if participant i is observed as seronegative
during year 2 but never returns, then R; = M + 1. Therefore,
T; € [2, M + 1]; seroconversion may occur anytime after
withdrawal. If participant i is observed as seronegative during
year 2 and tests positive later during year 2, then L; =2, R; = 2,
and 7; = 2. If participant i is observed as seronegative at the
end of year M (final study year), then L; = R; = M + 1; thus,
T,=M+1.

While some participants may miss visits by choice, others
may die during the study. Censoring by death affects possi-
ble seroconversion times. For example, if participant i is last
observed as seronegative during year 2 and dies during year 5,
then serostatus at death is unknown. Thus, possible sero-
conversion times are [2, 5] and M + 1. Let A; = 1 if T; is
censored by death, and A; = 0 otherwise. Having A; = 1
implies that R; is not the first year of observed seropositivity
but rather is the latest possible year of seroconversion. Thus,
L;=2,R;=5,and A; = 1imply T; € {[2, 5], M + 1}, whereas
L;=2,R;=5,and A; = 0 imply T; € [2, 5]. When a partici-
pant’s vital status is unknown, R; = M + 1, because no avail-
able information excludes times after L;,, We only consider
death in order to specify the censoring set, not as a primary
outcome. We are interested in estimating the cumulative in-
cidence of seroconversion. Thus, in our approach, we specify
participants as no longer being at risk of seroconversion after
death (14-16).

We focus on comparing cumulative HIV incidence func-
tions between 2 groups. Let g = s denote needle-sharers and
g = n denote nonsharers, where subscript g denotes group-
specific quantities (e.g., incidence).
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COARSENING MECHANISMS

We formally define coarsening at random (CAR) and
coarsening not at random (CNAR). For clarification, we first
relate these concepts to missing data and then focus on
censoring.

Coarsening at random

CAR means that the coarsened variable (e.g., study out-
come) and the coarsening process are independent, given the
set of values into which the variable is coarsened. With
abuse of notation, CAR means

P(coarsening|outcome, set) = P(coarsening|set)
or
P(outcome|coarsening, set) = P(outcomelset),

where “‘coarsening’’ refers to coarsening process variables,
“outcome” refers to the outcome variable, and “set” refers
to the set of values into which the outcome is coarsened. Let
Y denote a potentially missing outcome. Missingness does
not exclude possible values for Y; thus, CAR means
P(missing|Y) = P(missing) or P(Y|missing) = P(Y), the
well-known definition of data missing at random (4) when
other relevant fully observed variables are unavailable. Thus,
data being missing at random is a special case of CAR (17).

For ALIVE, CAR means that seroconversion is indepen-
dent of censoring, given possible seroconversion times in-
duced by censoring. For participants in group g = n, s not
censored by death, CAR means

P(L=1, R=r, A=0|T=1,Te{l,....r})
=P,(L=1, R=r, A=0|Te{l,....,r}). (1)

Similarly, for those censored by death in group g, CAR is

P,(L

I, R=r, A
=1 R

1
Py(L r

T=t,
, A=1|Te{l,...

(2)

Equations 1 and 2 are selection models that describe how
T affects the probability of being ‘“‘selected” into interval
[L, R] (18). Let p,, denote the probability of seroconverting
during year t among group g participants. CAR can be rep-
resented using pattern-mixture models (models describing
how the coarsening “‘pattern,” L and R, affects the distribu-
tion of T) (19, 20):

P(T=t|L=LR=r,A=38Te{l,....,r,M+1})
=P,(T=¢t|Te{l,....,M+1}) = e

T pgte AP HOpgant)

(3)

for participants in group g = n, s, and & = 0, 1. When
assuming CAR, pg1, ..., pgmy1) are estimated using
Turnbull’s method (21).

Models for CNAR

For missing data, several statistical methods have been
proposed assuming that data are missing not at random (i.e.,
the potentially missing variable affects the probability of
missingness). Methods exist for both selection models
(22) and pattern-mixture models (2, 19, 20).

Pattern-mixture models were proposed to ““tilt”’ the out-
come distribution toward stochastically (i.e., on average)
higher or lower values relative to that assumed under CAR,
based on functions of inestimable elicited parameters (23).
This idea was extended to interval-censored data (12). In
ALIVE, censoring bias functions (12) specify whether ex-
perts believe seroconversion occurs stochastically earlier
or later within the coarsening set, relative to that assumed
under CAR. Let g,4(#) denote a generic censoring bias func-
tion. We use pattern-mixture models to accommodate
q4(1):

P(T=t|L=1R=r,A=3)

pgte%(’)
B pgleq”(l) + ... —‘,—pgrqu(’) + 6pg(M+1)qu(M+l).

4)

The left-hand sides of equations 3 and 4 are equivalent,
because L = [, R = r, A = J specifies the possible serocon-
version times.

To understand g(t), consider needle-sharers (g = s) with
L=2,R=5,and A =0, where p,, = 0.1, pj3 =0.15, pyy =
0.15, and pgs = 0.2. Assuming CAR, equation 3 for t = 2
equals

P(T=2|L=2,R=5A=0)
B 0.1
T 0140.15+0.1540.2

=0.17.

For t = 3, 4, and 5, equation 3 equals 0.25, 0.25, and 0.33,
respectively. Assuming CNAR with censoring bias func-
tion ¢,(t) = ¢y X (¢ — 1) and ¢, = 0.1, equation 4 for r = 2
equals

P(T=2|L=2,R=5,A=0)
0.1e°

= =0.14.
0.1e9 + 0.15¢%! 4 0.15e02 + 0.2¢03

For t+ = 3, 4, and 5, equation 4 equals 0.23, 0.25, and
0.38, respectively. If, however, ¢, = —0.1, then for t =
2, equation 4 equals 0.20, and for + = 3, 4, and 5, it
equals 0.27, 0.24, and 0.29, respectively. In the former
CNAR example, seroconversion is assumed to occur sto-
chastically later in comparison with CAR; in the latter,
seroconversion is assumed to occur stochastically earlier
relative to CAR. Thus, ¢(f) can “tilt” the seroconversion
distribution toward later or earlier times, depending
on ¢,.

Selection models are useful for interpreting g,(¢). Let te¢
denote some reference time where g (t..r) = 0. For g,(t) =
b, X (t — 1), ter = [. Using Bayes’ theorem, it can be shown
(12) that
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P(L=LR=r,A=3|T=1)
P(L=LR=rA=38|T =t

)= exp{gg(1)}.  (5)

Thus, exp{q,(?)} is the probability ratio of L=, R =r, A = 5,
comparing participants who seroconverted during year ¢
with those who seroconverted during year fr. If g,(?) is
constant in ¢, equation 4 simplifies to equation 3, and
CAR is assumed.

Parameterization of q4(t) for ALIVE

For sensitivity analysis, g,(f) should be parsimoniously
specified yet capture key study features. For g,(7) to be in-
terpretable, it should be specified so that 7. is included in
[/, r]. The example ¢, X (¢ — I) adheres to this guideline,
because t,.r = [. Using too many parameters results in un-
wieldy sensitivity analyses, while using too few parameters
is overly simplistic. Because g,(f) cannot be estimated from
data, no empirical diagnostic can assess its fit; therefore,
input from subject-matter experts is essential.

For ALIVE, we specify 3 classes of coarsening patterns:
interval censoring (class 1), right-censoring (class 2), and
death (class 3). It was thought plausible that participants in
different classes would have different coarsening mecha-
nisms and that the mechanism would depend on censoring
endpoints (/ and r) and needle-sharing status. To capture
these characteristics in a scientifically interpretable manner
that facilitates elicitation and maintains parsimony, we pro-
pose the following censoring bias function:

(=0

9
qe(d,1,1,1,9) :Zd)gl XI(r<M+1)(1— 6)(M7 0

(t—1

~

+ ¢ XI(r=M+1)

t—1
—|—d>g3><l(r<M+l)6< i )7 g=n,s,

where ¢ (vector of scalars ¢gc; g = 1, 53¢ = 1, 2, 3) are
called censoring bias parameters (12) for group g and coars-
ening class c; and I(-) denotes the indicator function. From
equations 5 and 6,

* exp{¢,;} is the needle-sharing-specific probability ratio
of having censoring interval [1 year, 5 years] comparing
persons seroconverting during year 5 with persons sero-
converting during year 1;

* exp{¢,2} is the needle-sharing-specific probability ratio
of dropping out after baseline comparing persons not se-
roconverting within 10 years with persons seroconverting
during year 1, among those remaining alive throughout
the study; and

* exp{¢,3} is the needle-sharing-specific probability ratio
of dropping out after baseline comparing persons not se-
roconverting while alive with persons seroconverting dur-
ing year 1, among those dying during the study.

The factor 9/4 in equation 6 accounts for 10-year follow-
up, but investigators preferred stating beliefs for 5-year

Am J Epidemiol 2008;168:1460-1469

A)
Negative Positive
Tests Tests
Baseline «+——| Missed Visits |__, 5 Years
B)
Negative End of
Tests Study
| I
T 1
Baseline 5 Years 10 Years
Dropout Seroconversion
After 10 Years or
Never
C)
Negative End of
Tests Study
I
1
Baseline 10 Years

eroconversion?

Figure 1. Schematic for elicitation of the coarsening mechanism
among participants in the AIDS Link to Intravenous Experience
(ALIVE) Study, Baltimore, Maryland, 1988—1998. A, interval-censored
participants in ALIVE; B, right-censored participants in ALIVE who are
not censored by death; C, right-censored participants in ALIVE who
are censored by death.

intervals. When exp{d,.} > 1, participants in censoring
class ¢ are assumed to seroconvert stochastically later in
comparison with CAR. Similarly, when exp{¢,.} < 1, par-
ticipants in censoring class ¢ are assumed to seroconvert
stochastically earlier in comparison with CAR.

ELICITING EXPERT INFORMATION

Censoring bias parameters are not estimable without ad-
ditional assumptions (ideally elicited from subject-matter
experts) (24-26). We elicited information from 2 ALIVE
investigators and 1 external acquired immunodeficiency
syndrome epidemiologist. For elicitation of ¢ in equation
6,2 ALIVE investigators (D. V., N. G.) were separately shown
Figure 1 and were asked 3 pairs of questions: 1) “Among those
who self-reported needle-sharing at baseline, who was more
likely to test negative for HIV at baseline, miss visits, then
return during the fifth year and test positive: one who serocon-
verted during the first year or one who seroconverted during
the fifth year? How many times more likely?”’; 2) “Among
those who self-reported needle-sharing at baseline and who
remained alive throughout the study, who was more likely to
test negative for HIV at baseline, then drop out: one who
seroconverted during the first year or one who did not
seroconvert within 10 years? How many times more likely?”’;
and 3) “Among those who self-reported needle-sharing
at baseline, who was more likely to test negative for HIV at
baseline, then drop out and die with unknown serostatus:
one who seroconverted during the first year, or one who did
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Table 1. Elicited Range of exp{¢} and Parameters for p Distributions Used in Bayesian

Analyses
Range of ex
gﬁ:gl:é Censoring ¢ Minimumg M:){:ibnium Shape Scale
Yes Interval-censored st 1.757" 2.75 2.00 7.75
Dropped out bs2 1.50 3.00 5.25 2.75
Deceased bsa 2.00 2.50 2.00 1.00
No Interval-censored o 11571 2.50 2.00 9.50
Dropped out Gro 1.75 2.50 3.75 2.00
Deceased Lo 2.00 2.50 2.00 1.00

not seroconvert while at risk? How many times more likely?”
The questions were repeated for nonsharers.

Elicited exp{¢} varied between investigators. A consen-
sus was reached (Table 1, columns 4 and 5) by experts
agreeing to connect their elicited ranges. The experts be-
lieved that needle-sharers who seroconverted during year 5
were 1.75 times less likely to 2.75 times more likely to be
censored into interval [1 year, 5 years] than needle-sharers
who seroconverted within 1 year. The range for nonsharers
was 1.15 times less likely to 2.50 times more likely. Experts
expressed uncertainty about this relation’s direction, because
some early seroconverters may return later as health dimin-
ishes, while others may return early for treatment to slow
disease progression. For participants who were alive after 10
years, the experts believed that needle-sharers not serocon-
verting within 10 years were 1.50-3.00 times more likely to
drop out after baseline than needle-sharers who serocon-
verted within 1 year. Among nonsharers, the range was
1.75-2.50 times more likely. Participants who are sero-
negative after 10 years probably engage in fewer high-risk
behaviors than early seroconverters, providing little benefit
in study participation and increasing the likelihood of drop-
ping out. The experts believed that nonseroconverters who
died within 10 years were 2.00-2.50 times more likely to
drop out than participants who seroconverted within 1 year
with the same needle-sharing status, because early sero-
converters are expected to attend study visits as their health
worsens.

Prior distributions of p,, and ¢ for Bayesian analyses
were elicited from an acquired immunodeficiency syndrome
epidemiologist and an ALIVE investigator, respectively. An
expert unaffiliated with ALIVE was chosen for opinions
prior to knowledge gained from the ALIVE Study. HIV in-
cidence depends on population seroprevalence (27). Given
Baltimore’s high 1988 HIV seroprevalence (24%) among
injection drug users (7) and HIV prevention efforts (28),
the elicited prior 10-year cumulative incidence was 35%;
using Dirichlet priors (12), this prior incidence was
weighted 10% of the final results (ALIVE data weighted
90%), indicating prior uncertainty. This uncertainty means
that ALIVE data more strongly influence results than does
the prior. Prior information about incidence was not needle-
sharing-specific to reflect the “‘null’” belief of equality.

Prior distributions for ¢ were obtained by displaying
histograms of data generated from several B distributions

for each ¢, to an ALIVE investigator (D. V.). Data were
centered and scaled to reflect elicited ranges of exp{¢} to
graphically elicit f parameters. The elicited prior distribu-
tions and B parameters are shown in Figure 2 and Table 1
(columns 6 and 7), respectively.

To specify the multivariate prior distribution of ¢, we
elicited pairwise correlations for ¢,.. We displayed to the
ALIVE investigator scatterplots like those in Figure 3 (mul-
tivariate normal approximation to the B distribution) depict-
ing pairwise correlations between parameters. The
investigator’s prior correlation matrix,

correlation(exp{$})

exp{dy}
0.00 exp{dp}
0.00 0.60 exp{dy}
~los 0.00 0.00 exp{d,; }
0.00 0.75 0.45 0.00 exp{d,n}

0.00 0.50 0.75 0.00 0.55 exp{d,3}
indicates high correlations between needle-sharing groups
within censoring class, reflecting believed similarity within
censoring types regarding other HIV risk factors (e.g., sex-
ual behavior). High correlations within right-censored status
(c = 2, 3) reflect the belief that many persons dying with an
unknown serostatus may not have returned to the study even
if they had remained alive during follow-up. Beliefs about
interval-censored event times (¢ = 1) were uncorrelated
with those regarding right-censored event times (¢ = 2, 3),
because motivations for visit compliance may differ.

ESTIMATION AND INFERENCE

We briefly describe methods for estimating p,, in model
4 using equation 6 and comparing cumulative incidence
functions between needle-sharers and nonsharers. For fre-
quentist estimation, we adapt the method of Shardell et al.
(12), which simplifies to Turnbull’s (21) method when as-
suming CAR. Censored times are replaced by expected
values (equation 4) using the expectation-maximization al-
gorithm (29) described by Shardell et al. (12). Estimates are
used to perform the log-rank-type test (13).

Bayesian estimation is performed for fixed and random ¢
via the Gibbs sampler (30) in the paper by Shardell et al.
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Maryland, 1988—1998.
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Elicited prior exp{¢} B densities, given elicited ranges (x-axis), AIDS Link to Intravenous Experience (ALIVE) Study, Baltimore,

(12). A posterior parameter distribution (distribution condi-
tional on observed data) motivated by the log-rank test is
calculated and compared with a standard normal distribu-
tion, the expected distribution under the null hypothesis of
equal cumulative incidence functions. Similarity between
observed and expected posterior distributions is summarized
by a tail probability. Tail probabilities of 0 and 1 correspond
to no distributional overlap and perfect distributional over-
lap, respectively. The tail probability quantifies how rare the
parameter values corresponding to the null hypothesis are
under their posterior distribution, as described by Shardell
et al. (13).

For both frequentist and fixed-¢ Bayesian estimation of
ALIVE, we perform sensitivity analysis under 3 assump-
tions: CAR (¢ = 0), maximum elicited ¢, values with min-
imum elicited ¢, values, and vice versa, where (bg denotes
the parameter vector for group g = n, s.

Am J Epidemiol 2008;168:1460-1469

ALIVE SENSITIVITY ANALYSIS RESULTS

Figure 4 shows results from frequentist analysis. When
needle-sharers and nonsharers are assumed to seroconvert
stochastically late and early, respectively—that is,
{max(d,), min(¢d,)}—estimated 10-year incidences for
needle-sharers and nonsharers are 0.21 (95% confidence in-
terval (CI): 0.18, 0.24) and 0.17 (95% CI: 0.14, 0.21), re-
spectively (P = 0.11). For the opposite assumption,
{min(d,), max(d,)}, estimated 10-year incidences for
needle-sharers and nonsharers are 0.18 (95% CI: 0.16, 0.20)
and 0.19 (95% CI: 0.15, 0.23), respectively (P = 0.68). These
assumptions produce lower estimated 10-year cumulative
incidences than assuming CAR (needle-sharers: 0.24 (95%
CI: 0.22, 0.28); nonsharers: 0.23 (95% CI: 0.19, 0.28)),
owing to min(exp{d,.}) > 1 for dropouts (c = 2, 3), the
largest censoring classes in ALIVE.
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Elicitation figure for prior pairwise correlation between exp{¢d,1} and exp{$s1}, AIDS Link to Intravenous Experience (ALIVE) Study,

Baltimore, Maryland, 1988-1998. A) correlation = 0; B) correlation = 0.5; C) correlation = 0.9.

Figure 5 shows results from Bayesian analysis. Fixed-¢
analyses were run for 5,000 iterations with 500 burn-in iter-
ations; random-¢ analysis was run for 10,000 iterations
with 1,000 burn-in iterations. A diagnostic scheme includ-
ing trace plots for parameters simulated from 2 parallel
chains, autocorrelation functions of each parameter, and

cross-correlation functions (31) suggested Markov chain
convergence. Mean posterior cumulative incidences were
higher than analogous frequentist estimates, because prior
10-year incidence (35%) was higher than frequentist esti-
mates. When needle-sharers and nonsharers were assumed
to seroconvert stochastically late and early, respectively,
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Frequentist results for the AIDS Link to Intravenous Experience (ALIVE) Study, Baltimore, Maryland, 1988—1998. Depicted across

the range of elicited assumptions are the log-rank P value and the cumulative incidences for needle-sharers (—) and nonsharers (- — =) and their
95% confidence intervals (— and - - -, respectively). CAR, coarsening at random; Max, maximum; Min, minimum.
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Bayesian results for the AIDS Link to Intravenous Experience (ALIVE) Study, Baltimore, Maryland, 1988—-1998. Depicted across the

range of elicited assumptions are the log-rank tail probabilities and the mean posterior cumulative incidences for needle-sharers (—) and non-
sharers (= — =) and their 95% credible intervals (— and - - -, respectively). CAR, coarsening at random; Max, maximum; Min, minimum.

{max(d,), min(d,)}, posterior mean 10-year incidences for
needle-sharers and nonsharers were 0.23 (95% credible in-
terval (Crl): 0.20, 0.26) and 0.20 (95% Crl: 0.16, 0.23),
respectively (tail probability = 0.12). When making the
opposite assumption, {min(d,), max(¢,)}, posterior mean
10-year incidences for needle-sharers and nonsharers were
0.20 (95% Crl: 0.18, 0.22) and 0.21 (95% Crl: 0.18, 0.25),
respectively (tail probability = 0.63). Random-¢ Bayesian
analyses produced intermediate estimates (needle-sharers:
0.21 (95% CrI: 0.18, 0.23); nonsharers: 0.20 (95% Crl:
0.17, 0.24); tail probability = 0.74). Corresponding closely
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with frequentist results (because of the high weight given to
ALIVE data), mean posterior 10-year cumulative incidences
were larger assuming CAR than assuming elicited ranges
(needle-sharers: 0.26 (95% Crl: 0.24, 0.29); nonsharers:
0.26 (95% CrI: 0.22, 0.30)).

DISCUSSION

In this paper, we have described the concept of coarsening
and have illustrated a framework for eliciting expert
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information about coarsening for sensitivity analysis. These
principles, which are well-developed for missing data (3),
are less developed for other types of coarsening. We have
discussed how missingness mechanisms are special cases of
coarsening mechanisms and, for censored data, how one can
elicit and model departures from CAR.

Sensitivity analysis using expert information is prefera-
ble to ad hoc single imputation (e.g., extreme scores for
missing data, interval endpoints for censoring) because
the latter produces underestimated standard errors (32)
and is often scientifically implausible. We also recommend
performing sensitivity analyses of prior distributions on
results. In ALIVE, we performed a Bayesian analysis that
weighted prior assumptions of HIV incidence to be 10% of
final results. The frequentist analysis weighted prior as-
sumptions to be 0% of final results. In general, larger prior
weights lead to results that are closer to the prior HIV in-
cidence function.

ALIVE exemplifies the advantages of sensitivity analysis.
Singly imputing the latest time is equivalent to ¢ = . This
can be seen by plugging equation 6 into equation 4 and
taking the limit as ¢, — o for each censoring class and
needle-sharing group. However, the maximum elicited ¢,
was 1og(3.0); thus, & = o is thought to be scientifically
implausible by experts. Also note that

ot =oxi(r="310),

where ¢ = o imputes interval midpoints. Compared with
single imputation for interval-censored observations fol-
lowed by Kaplan-Meier estimation (33), our approach al-
lows CNAR assumptions for dropouts and uses appropriate
censoring sets for deaths. In ALIVE, CAR-based analyses
suggested no association between baseline needle-sharing
and HIV seroconversion. These conclusions are robust to
elicited assumptions about coarsening, and results make
scientific sense because of the dynamic nature and potential
reporting bias of needle-sharing.

Drawbacks to the proposed approach include difficulty
specifying g,(?), the subjective, potentially challenging na-
ture of elicitation, and the need for statistical methods be-
yond those available in most off-the-shelf statistical
packages. Additionally, while we found conclusively no ev-
idence of a relation between baseline self-reported needle-
sharing and HIV seroconversion, some sensitivity analyses
may be inconclusive. For example, making the assumption
of ¢, = 0 and ¢, = —log(1.5) for ¢ = 1, 2, 3 (values
outside the elicited range) suggests higher cumulative in-
cidence for needle-sharers than for nonsharers (P = 0.015;
data not shown).

Despite drawbacks, one cannot escape subjective inesti-
mable assumptions for coarsened data (34). We hope that
performing sensitivity analysis using elicited expert infor-
mation will facilitate communication between biostatisti-
cians, epidemiologists, and substantive experts about
implicit assumptions made in standard statistical methods
and their plausibility in epidemiology. Our ultimate goal is
improved reporting of sensitivity analysis for coarsened
data.
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