() American Journal of Epidemiology
M © The Author 2008. Published by the Johns Hopkins Bloomberg School of Public Health.

All rights reserved. For permissions, please e-mail: journals.permissions @ oxfordjournals.org.

Vol. 168, No. 8
DOI: 10.1093/aje/kwn205
Advance Access publication August 27, 2008

Practice of Epidemiology

Power for Genetic Association Study of Human Longevity Using the Case-Control

Design

Qihua Tan, Jing Hua Zhao, Dongfeng Zhang, Torben A. Kruse, and Kaare Christensen

Received for publication April 24, 2008; accepted for publication June 12, 2008.

The efficiency of the popular case-control design in gene-longevity association studies needs to be verified
because, different from a binary trait, longevity represents only the extreme end of the continuous life span
distribution without a clear cutoff for defining the phenotype. In this paper, the authors use the current Danish life
tables to simulate individual life span by using a variety of scenarios and assess the empirical power for different
sample sizes when cases are defined as centenarians or as nonagenarians. Results show that, although using
small samples of centenarians (several hundred) provides power to detect only common alleles with large effects
(a >20% reduction in hazard rate), large samples of centenarians (>1,000) achieve power to capture genes
responsible for minor effects (5%—10% hazard reduction depending on the mode of inheritance). Although the
method provides good power for rare alleles with multiplicative or dominant effects, it performs poorly for rare
recessive alleles. Power is drastically reduced when nonagenarians are considered cases, with a more than 5-fold
difference in the size of the case sample required to achieve comparable power as that found with centenarians.

association; case-control studies; computer simulation; genetics; longevity

The potential of the genetic association analysis in studying
human diseases is well recognized given its increased power
for detecting common genetic variants conferring susceptibil-
ity to complex phenotypes. Because of its convenience regard-
ing sampling and data analysis, the case-control design has
also been frequently applied to study genetic association with
human longevity, with centenarians or nonagenarians as cases
versus young controls (1). As a complex trait, human life span
can be modulated by multiple genetic and nongenetic factors
(2), with most of them contributing probably only small effects
(3). Moreover, twin studies suggest only a moderate genetic
component to human life span variations (4) but with an in-
dication of increased importance at the oldest ages (5). In
addition, different from a binary trait, longevity represents only
the extreme end of the continuous distribution of life span
without a clear cutoff for defining the phenotype. In this situ-
ation, an immediate concern is the efficiency or power of the
case-control design in associating genes with human longevity.

Although many candidate genes have been reported as
being related to longevity, to date only 1 gene (APOE (apo-
lipoprotein E)) has been consistently confirmed (2). In the
genetic association study of complex diseases in humans,
small sample size is a frequent problem responsible for in-

sufficient power to detect minor-effect genes (6). Similarly,
1 major factor that explains the inconsistency in gene-
longevity associations is that a sizable proportion of the
studies could have been underpowered by the small sample
sizes used. Such a situation calls for verification of the case-
control design in studying longevity to provide useful
information for researchers in planning their studies.

In this paper, we use the current life table for the Danish
population to generate individual life span by using a variety
of scenarios with respect to mode of inheritance, risk, and
frequency of the gene allele of interest and to assess the
empirical power for different sample sizes when cases are
defined as centenarians or as nonagenarians. Results for
various scenarios are compared and discussed to provide
guidelines for the design of future studies.

MATERIALS AND METHODS
The Danish life table

Instead of introducing a theoretical or parametric sur-
vival model, we take the population survival from the latest
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Danish life table and introduce the proportional hazards
model to derive the baseline survival distribution (refer to
the information below). The data are available in the Human
Life-Table Database maintained at the Max-Planck Institute
for Demographic Research in Rostock, Germany (http://
www.lifetable.de/cgi-bin/datamap.plx). In this life table,
sex-specific survival times are provided for each age group
with a life expectancy at birth of 76 years for males and 80
years for females. For our simulation purposes, we take the
mean survival for the total population.

The proportional hazards model

To conduct the simulation, we first obtain the baseline
survival function from the Danish population survival by
using the proportional hazards assumption. We assume that
genotype data are available at a marker or tagging single
nucleotide polymorphism locus in complete linkage
disequilibrium with the causative gene. Under this model,
for a given allele with frequency p and relative risk r (in
reference to the other allele, i.e., the baseline or reference

Table 1.
Centenarians as Cases?®
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Figure 1. Allele frequency by age for an allele with a frequency at
birth of 0.20 and relative risks of 0.7 (circle line), 0.8 (solid line), and
0.9 (dashed line).

Power Estimates in Detecting Multiplicative (Additive in Log Scale) Effects With

No. of Centenarians

Relative Risk Heritability h*
100 200 400 600 1,000 2,000

Frequency = 0.05

0.5 1.6% 1.00 1.00 1.00 1.00 1.00 1.00

0.7 0.5% 0.83 0.99 1.00 1.00 1.00 1.00

0.8 0.2% 0.94 1.00 1.00 1.00

0.85 0.1% 0.18 0.43 0.89

0.9 0.4%, 0.09 0.22

0.95 0.1%, 0.06 0.08 0.11 0.17 0.23 0.45
Frequency = 0.2

0.5 5.2% 1.00 1.00 1.00 1.00

0.7 1.5% 1.00 1.00 1.00 1.00

0.8 0.6% 1.00 1.00 1.00 1.00

0.85 0.3% 1.00 1.00 1.00 1.00

0.9 0.1% 0.82 0.92 0.99 1.00

0.95 0.3%, 0.12 0.14 0.36 0.40 0.54 0.90
Frequency = 0.5

0.5 8.3%

0.7 2.4%

0.8 1.0%

0.85 0.5%

0.9 0.2%

0.95 0.59%,
Frequency = 0.8

0.5 5.9% 1.00 1.00 1.00 1.00 1.00 1.00

0.7 1.6% 0.99 1.00 1.00 1.00 1.00 1.00

0.8 0.6% 0.78 1.00 1.00 1.00 1.00 1.00

0.85 0.3% 0.56 0.79 0.99 1.00 1.00 1.00

0.9 0.1% 0.27 0.49 0.76

0.95 0.49, 0.09 0.15 0.25

@ Power estimates over the “stair step” lines are acceptable.
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Table 2. Power Estimates in Detecting Dominant Effects With Centenarians as Cases®

No. of Centenarians

Relative Risk Heritability h?
100 200 400 600 1,000 2,000

Frequency = 0.05

0.5 1.5% 1.00 1.00 1.00 1.00 1.00

0.7 0.4% 1.00 1.00 1.00 1.00

0.8 0.2% 0.37 0.94 1.00 1.00 1.00

0.85 0.9%, 0.22 0.39 0.85 0.97 1.00

0.9 0.49, 0.16 0.22 0.33 0.92

0.95 0.19%, - 0.06 0.17 0.29 0.34
Frequency = 0.2

0.5 4.0% 1.00 1.00 1.00 1.00 1.00 1.00

0.7 1.1% 1.00 1.00 1.00

0.8 0.5% 1.00 1.00 1.00

0.85 0.2% 1.00 1.00 1.00

0.9 0.1% 0.82 0.97 1.00

0.95 0.39%, 0.08 0.16 0.21 0.32 0.41 0.74
Frequency = 0.5

0.5 3.6% 1.00 1.00 1.00 1.00 1.00 1.00

0.7 1.0%

0.8 0.4%

0.85 0.2%

0.9 0.8%,

0.95 0.29%, 0.10 0.21 0.23 0.39 0.71
Frequency = 0.8

0.5 0.8% 0.15 0.80 0.99 1.00 1.00 1.00

0.7 0.2% 0.12 0.37 0.75

0.8 0.1% 0.23 0.56

0.85 0.49, 0.18 0.29

0.9 0.29%, 0.11 0.14 0.17 0.30 0.47

0.95 0.049, 0.06 0.11 0.14 0.16

& Power estimates over the “stair step” lines are acceptable.

® Dashed lines indicate power estimates <0.05.

allele), we can decompose, at any age x, the population
survival 5(x) into genotype-specific survivals for the 3 sub-
populations (7):

5(x) = ps2(x) + 2p(1 — p)si(x) + (1 = p)’so(x). (1)

In this equation, s, (x), 51 (x), and sp(x) are genotype-specific
survival functions for individuals carrying 2, 1, and O copies
of the allele, respectively. In our simulation, a gamma-
frailty model is introduced to take into account the unob-
served hidden frailty contributing to individual survival (8).
In this model, survival for a subpopulation can be further
expressed as a function of the baseline survival s,(x) and
relative risk of the corresponding genotype:

si(x) = [1 = r'o’ln sg()c)](Y

Here, r is the relative risk of the allele, i is the number of
alleles carried by each individual in the corresponding sub-
population, and o7 is the variance of the unobserved frailty
(we set it to 0.1 according to our experience in fitting frailty
models to the Danish life table data). By incorporating equa-
tion 2 into equation 1, we can obtain the baseline survival
function by solving equation 1 with a numeric algorithm (9).

To summarize the effects on survival for the different
combinations of risk and frequency parameters in our sim-
ulation, we calculate the proportion of life span variation
due to genetic effect (63) in the total life span variation o7
in the population (10, 11):

Am J Epidemiol 2008;168:890-896
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Table 3. Power Estimates in Detecting Recessive Effects With Centenarians as Cases?®

No. of Centenarians

Relative Risk Heritability h?
100 200 400 600 1,000 2,000
Frequency = 0.05
0.5 0.49, ---P 0.09 0.49 0.67 0.90 1.00
0.7 0.1%, 0.06 0.15 0.29 0.61
0.8 0.049%, 0.09 0.25
0.85 0.019%, 0.13
0.9 <0.01%, 0.12
0.95 <0.019%, 0.06
Frequency = 0.2
0.5 6.7%, 0.99 1.00 1.00 1.00 1.00 1.00
0.7 1.9%, 0.80 0.97 0.99 1.00 1.00
0.8 0.8%, 0.23 0.83 0.96 1.00
0.85 0.49, 0.11 0.21 0.35 0.91
0.9 0.2%, 0.06 0.11 0.16 0.21 0.31 0.61
0.95 0.1%, 0.06 0.07 0.09 0.13 0.17
Frequency = 0.5
0.5 3.2%
0.7 0.9%
0.8 0.4%
0.85 0.2%
0.9 0.1%
0.95 0.2%, 0.10 0.13 0.32 0.46 0.59
Frequency = 0.8
0.5 4.2% 1.00 1.00 1.00 1.00 1.00 1.00
0.7 1.2% 0.97 1.00 1.00 1.00 1.00 1.00
0.8 0.5% 0.71 0.91 1.00 1.00 1.00 1.00
0.85 0.3% 0.45 0.70 0.98 1.00 1.00 1.00
0.9 0.1% 0.24 0.35 0.65
0.95 0.3%, 0.06 0.08 0.21 0.30 0.44 0.66
@ Power estimates over the “stair step” lines are acceptable.
® Dashed lines indicate power estimates <0.05.
2 /2 i 2
2 > (2 )pa-p(Jatwar) -
W= OS¢ _ i=0 \ ! 0 (3)
o7

i=0

Equation 3 is derived by using the density distribution of life
span for the 3 genotypes at the single nucleotide polymor-
phism locus. It represents the percentage of life span varia-
tion explained by a specific gene, that is, heritability. Here,
1, (x) is the hazard function at age x for genotype i corre-
sponding to s;(x) in equation 2, and e is the life span ex-
pectancy at birth for the total population that can be
calculated from the life table. In equation 3, heritability is
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a function of allele risk and frequency as well as the mode of
inheritance.

Data generation

With the risk and frequency parameters of the allele, the
baseline survival function, and the gamma-frailty distribu-
tion (we set the mean to 1 and variance to 0.1), individual
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Table 4. Power Estimates in Detecting Multiplicative (Additive in
Log Scale) Effects With Nonagenarians as Cases?®

Table 5. Power Estimates in Detecting Dominant Effects With
Nonagenarians as Cases?®

No. of Nonagenarians

200 400 600 1,000 2,000

Relative Risk

No. of Nonagenarians
200 400 600 1,000 2,000

Relative Risk

Frequency = 0.05
0.5 0.75
0.7 0.30

0.97 0.99 1.00 1.00
0.71 0.89 1.00

0.8 0.15 0.23 0.36 0.49

0.9 0.08 0.10 0.12 0.15 0.32
Frequency = 0.2

0.5 1.00 1.00 1.00 1.00 1.00

0.7 1.00 1.00 1.00

0.8 0.83 0.96 1.00

0.9 0.15 0.18 0.34 0.39 0.70
Frequency = 0.5

0.5 1.00 1.00 1.00 1.00 1.00

0.7 0.95 1.00 1.00 1.00 1.00

0.8 0.60 0.86 0.95 0.99 1.00

0.9 0.19 0.27 0.49 0.60 0.87

Frequency = 0.8

0.5 1.00 1.00 1.00 1.00 1.00

0.7 0.79 0.97 1.00 1.00 1.00
0.8 0.39 0.69 0.86 0.97 1.00
0.9 0.16 0.18 0.31 0.46 0.77

Frequency = 0.05
0.5 0.65
0.7 0.23
0.8 0.13
0.9 0.05 0.09 0.13 0.17 0.27

Frequency = 0.2
0.5
0.7
0.8
0.9 0.11 0.16 0.23 0.31 0.56

Frequency = 0.5
0.5

0.98 0.99 1.00 1.00
0.89

0.99 1.00 1.00 1.00 1.00

0.7 0.59 0.81 0.97 1.00 1.00
0.8 0.21 0.43 0.69

0.9 0.06 0.13 0.19 0.26 0.52

Frequency = 0.8

0.5 0.46 0.71 0.86 0.98 1.00
0.7 0.17 0.29 0.42 0.61 0.84
0.8 0.11 0.10 0.18 0.27 0.46
0.9 0.05 0.07 0.09 0.09 0.10

@ Power estimates over the “stair step” lines are acceptable.

life span data can be generated. The cases, consisting of
nonagenarians and centenarians, are considered those who
survived beyond ages 90 and 100 years, respectively. The
young controls are selected randomly from individuals at
age 40 years. Figure 1 displays the allele frequency trajec-
tories for a multiplicative (log-additive) beneficial allele
with an allele frequency of 0.20 at birth when different risk
parameters are assigned (r = 0.7, r= 0.8, r = 0.9) in a stable
population. According to equation 3, these parameter set-
tings correspond to genetic effects that account for 1.5%,
0.6%, and 0.1%, respectively, of the overall variation in life
span. Figure 1 shows that, for alleles associated with differ-
ent risks, our sampling of controls is representative of the
allele frequencies in the young population because of the
low mortality rate at young ages in the contemporary pop-
ulation in developed countries (12). Note that, in a cross-
sectional sampling scheme, the final life span of the sampled
individuals is not observed; some of the young controls
could have survived to very old ages as well.

Power estimation

Various statistical tests are available for analyzing case-
control data, for example, the popular Pearson’s xz statistic,
which is also called the allele test under the assumption of
Hardy-Weinberg equilibrium in gene frequency. Jackson
et al. (13) reported that the allele test can give inaccurate

@ Power estimates over the “stair step” lines are acceptable.

power estimates that differ from the true power by as much
as 20% because of the inflated type I error rate when there is
a deviation from Hardy-Weinberg equilibrium; they recom-
mended using Armitage’s trend test given by Sasieni (14) as
an accurate method for power approximation of the allele
test. By setting the type I error rate (o) to 0.05, we calculate
the power as the proportion of significant tests among all the
tests (based on 200 replications) using the statistic for
Armitage’s trend test calculated as

n(n(2Dy + D) — ny (2D, + Dy +2C, + C1))*
nlnz(n(4D2 + D, +4C, + C1) — (2D2 + Dy +2C, + C])z)’

4)

where n is the total number of centenarians or nonagenar-
ians n; and young controls n, (we assume that an equal
number of cases and controls are sampled so that
n; =np = 0.5n). D, and C, are the homozygous, and D;
and C; the heterozygous, carriers of the allele in the cente-
narians or nonagenarians and in the young controls.

A=

RESULTS

We start by assessing the power when centenarians are
chosen and used as cases. In Table 1, we show the estimated
power for detecting multiplicative (log-additive) alleles

Am J Epidemiol 2008;168:890-896
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associated with different risks and frequencies for different
sample sizes. In the second column, we display the esti-
mated proportion of life span variation that can be explained
by a given risk and frequency of an allele. As shown, the
approach has efficient power for identifying a common sin-
gle nucleotide polymorphism allele with a multiplicative
effect that reduces the hazard rate by 20% when a small
number of only 100 centenarians are considered, by 15%
with about 200 centenarians, and by 10% with more than
400 centenarians. When about 2,000 centenarians are avail-
able, the method can detect an allele with a small effect that
reduces the death rate by only 5%. However, power is con-
siderably lower in detecting rare alleles. For example, with
600 centenarians, we can have very high power (0.92) to
identify a relatively common allele (frequency = 0.2) that
reduces the hazard rate by 10%, but comparable power is
achieved for only a relatively rare allele (frequency = 0.05)
that reduces the hazard by 15% (note that for both, h* =
0.1%). The power estimates for the dominant and recessive
alleles exhibit opposite patterns with higher power (compa-
rable with multiplicative effects in Table 1) for dominant
alleles of relatively lower frequencies (<0.5) and for reces-
sive alleles of relatively higher frequencies (>0.5) (Tables 2
and 3). However, all perform less satisfactorily compared
with the multiplicative situation (dashed lines indicate
power estimates <0.05). This is especially true for rare re-
cessive alleles except in some extreme situations (very large
effects that cut the hazard by half, and large sample sizes of
>1,000 centenarians) (Table 3).

Next, we investigate the power when nonagenarians are
chosen and used as cases in testing alleles showing multi-
plicative (Table 4), dominant (Table 5), and recessive
(Table 6) effects. Different from the example with cente-
narians, a sample size of 600 nonagenarians can be used to
detect only a common allele that reduces the hazard rate by
20% with a power estimate of 0.83 (Table 4). For an allele
with a relative risk of 0.9, the required number of non-
agenarians increases to more than 2,000. Power estimates
for the dominant and recessive effects shown in Tables 5
and 6 follow the same patterns as those in Tables 2 and 3.
However, even in favorable situations (frequency <0.5 for
dominant and frequency >0.5 for recessive alleles), large
sample sizes of more than 1,000 nonagenarians are needed
to detect a common allele with a hazard reduction of more
than 20%. In Tables 5 and 6, one can see that nonagenar-
ians cannot be chosen when assessing a dominant allele
with high frequency (>0.8) and a recessive allele with low
frequency (<0.2) unless its effect is unrealistically large or
a very large sample of nonagenarians (>2,000) is avail-
able. Small sample sizes of nonagenarians are useless in
studying longevity unless extremely large-effect genes ex-
ist. Table 6 also shows that the method has no power in
detecting a rare recessive allele when the nonagenarian
samples are used.

DISCUSSION

Using computer simulation, we investigated the power of
the popular case-control design in studying gene-longevity
associations. Our results indicate that centenarians provide
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Table 6. Power Estimates in Detecting Recessive Effects With
Nonagenarians as Cases?®

No. of Nonagenarians

200 400 600 1,000 2,000

Relative Risk

Frequency = 0.05

0.5 - ... 009 016 021
0.7 0.05  0.10
0.8 0.09
0.9 0.06
Frequency = 0.2
0.5 0.38 070 | 0.83 097 1.00
0.7 014 025 032 048 | 0.80
0.8 007 014 016 028 043
0.9 0.07 0.15

Frequency = 0.5
0.5

0.97 1.00 1.00 1.00 1.00

0.7 0.80 0.96 1.00 1.00
0.8 0.29 0.67 0.81 0.97
0.9 0.09 0.15 0.23 0.25 0.53

Frequency = 0.8
0.5

0.99 1.00 1.00 1.00 1.00

0.7 0.63 0.93 0.99 1.00 1.00
0.8 0.31 0.56 0.71 0.88 0.99
0.9 0.07 0.18 0.24 0.36 0.60

@ Power estimates over the “stair step” lines are acceptable.
® Dashed lines indicate power estimates <0.05.

precious resources for such studies. Except for allele fre-
quency and relative risk parameters, power estimates show
different patterns for the different modes of inheritance,
with the multiplicative (log-additive) model being the most
favorable. The patterns of higher power for the low-
frequency dominant alleles and high-frequency recessive
alleles are consistent with the patterns found in case-control
association studies of complex diseases (13, 15). Although
the use of small samples of centenarians (several hundred)
provides power to detect only common gene alleles with
large effects (>20% reduction in the hazard rate), using
large samples of centenarians (>1,000) can achieve power
to capture genes associated with minor effects (a 5%—10%
hazard reduction depending on the mode of inheritance).
Although the method has good power in capturing a rare
allele with a multiplicative or dominant effect, it performs
poorly in testing a rare recessive allele.

By comparing Tables 1-3 with Tables 4-6, one can see
that performance of the case-control association study on
longevity is drastically reduced when nonagenarians are
considered cases. Testing for an allele associated with
a 20% hazard reduction would normally require including
more than 1,000 nonagenarians. In comparison, this can be
accomplished with a sample of only 200 centenarians,
a 5-fold difference in the size of the sample of cases.
Although the different patterns in power estimates for the
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different genetic modes is the same as that shown in Tables
1-3, the results in Tables 3-6 reveal that small samples
(<400) of nonagenarians can be used for testing only
large-effect genes, and a sample of several hundred non-
agenarians may be useless when studying longevity.

As mentioned above, it is interesting that there is more
than a 5-fold difference in the sample size of cases when
using centenarians (Tables 1-3) versus nonagenarians
(Tables 4-6) to achieve comparable power. This information
can be useful for investigators when forming their sampling
strategies by taking into account sample availability and
genotyping expenses. Given the low power for nonagenar-
ians in studying longevity and the rarity of centenarians,
consortiums enabling integration of samples of centenarians
from multiple institutes, such as the Pan-European *“Genet-
ics of Healthy Aging” (GEHA) consortium (http://www.
geha.unibo.it), should be encouraged. On the other hand,
new statistical methods that model the age pattern of geno-
type frequencies are being developed to combine population
survival data with individual genotype and phenotype in-
formation to improve power using the survival analysis
technique (7) and to model the age-dependent genotype
frequency trajectory using the logistic regression model
(16). Different from the case-control design, these methods
do not require a cutoff for defining cases and controls so that
individuals of different ages can be included when fitting
these models. Although promising, these methods are based
on multiple assumptions, some of which can be weak. For
example, the proportional hazards assumption in the sur-
vival analysis model does not hold with an antagonistic
genetic effect that changes over different ages. For allele-
based analysis, all these methods assume Hardy-Weinberg
equilibrium in the allele frequency. Even though Hardy-
Weinberg equilibrium holds in the younger population, it
may not hold in the oldest-old because of the differential
mortality rate for different genotypes.

Similar to the genetic association study of human dis-
eases, the case-control longevity study is also affected by
factors such as population substructure or stratification,
which is not considered in this simulation. Moreover, the
power estimates are for gene alleles in complete linkage
disequilibrium with the causal gene. All these caveats mean
that our results are the upper limits for the different situa-
tions. It is well known that association studies also suffer
from publication bias, with probably a sizable proportion of
reported results being chance findings not replicable in in-
dependent studies. Because the same situation is happening
in the literature on human longevity (2), we hope that our
results will help future researchers design their studies to
reduce such biases.
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