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Previously, estimation of genotype misclassification of single nucleotide polymorphisms (SNPs) as encountered
in epidemiologic practice and involving thousands of subjects was lacking. The authors collected representative
data on approximately 14,000 subjects from 8 studies and 646,558 genotypes assessed in 2005 by means of
matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Overall discordance among 57,805
double genotypes from routine quality control was 0.36%. Fitting different misclassification models by maximum
likelihood assuming identical misclassification for all SNPs, the estimated misclassification probabilities ranged
from 0.0000 to 0.0035. When applying the misclassification simulation and extrapolation (MC-SIMEX) method for
the first time to genetic data to account for the misclassification in a reanalysis of adiponectin-encoding (APM1)
gene SNP associations with plasma adiponectin in 1,770 subjects, the authors found no impact of this small error
on association estimates but increased estimates for a more substantial error. This study is the first to provide
large-scale epidemiologic data on SNP genotype misclassification. The estimated misclassification in this example
was small and negligible for association estimates, which is reassuring and essential for detecting SNP as-
sociations. In situations with more substantial error, the presented approach using duplicate genotyping and the
MC-SIMEX method is practical and helpful for quantifying the genotyping error and its impact.

bias (epidemiology); genetics; genotype; likelihood functions; polymorphism, single nucleotide

Abbreviations: HWE, Hardy-Weinberg equilibrium; MALDI-TOF MS, matrix-assisted laser desorption ionization time-of-flight mass
spectrometry; MC-SIMEX, misclassification simulation and extrapolation; SNP, single nucleotide polymorphism.

Because high-throughput single nucleotide polymor-
phism (SNP) genotyping is technically feasible today and
is readily applied in large epidemiologic studies with thou-
sands of subjects, there is currently a focus in genetic epi-
demiology on the analysis of SNPs and their associations
with diseases or disease markers. However, consistent rep-
lication of SNP association signals is a concern. One possi-
ble source of bias is error in the genotype (see the Appendix
for a short introduction to genetic terminology).

The general effect of errors in predictor variables of re-
gression models is to bias estimates and decrease power
(1–4). While nondifferential misclassification in a dichoto-

mous covariate usually induces a bias towards the null (5),
the trichotomous covariate case is usually not as predictable
(6). There have been numerous studies of the effect of
genotyping error on linkage (7, 8), linkage disequilibrium
(9), tagging SNPs (10), multiple dimension reduction meth-
ods (11), genotype and haplotype distribution (12–15),
haplotype assignment (16), and family-based association
(17–20). The investigations on how genotyping error affects
population-based association have pertained mostly to case-
control studies and have applied restricted association mod-
els like the chi-squared test or the Armitage trend test that do
not allow for covariate adjustment (21–27). There have been
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few studies for logistic (28) or linear (29) regression models,
which apply restricted error models.

The sources of genotyping error are manifold and have
already received a great deal of attention (30). When the
error cannot be estimated from pedigrees but needs to be
derived for unrelated subjects, assumptions or validation/
replication data are needed. The use of Hardy-Weinberg
equilibrium (HWE) is much debated (31, 32). Validation
data implying the availability of a gold standard would be
ideal (33), and this approach has already been proposed
(25), but it may not be advisable because of the lack of
a perfect gold standard genotype and the potential for over-
correcting when a nonperfect standard is used (34). Use of
replication from multiple genotype assessments (>2) has
been illustrated with small-scale experimental (30) or sim-
ulation (28) data, but in practice duplicate genotyping is
usually only available for 5–10% of the subjects from rou-
tine quality control. Previous attempts to estimate the error
from duplicate genotypes involved a limited number of dis-
cordant genotype pairs such as 2 (27) or 30 (29) and a re-
stricted error model. To our knowledge, estimation of
genotyping error has never been based on routine data from
a set of representative epidemiologic studies.

One reason for the lack of previous studies might be that
the genotyping error was expected to be small. A situation
that is the pride of the laboratory and the joy of the epidemi-
ologist is a problem for the statistician, for a number of rea-
sons: 1) a likelihood with the maximum close to 0 and steep in
the vicinity of the maximum is a challenge for robust estima-
tion; 2) huge genotype data sets are required in order to obtain
sufficient numbers of discordant repetitions; and 3) the impact
of such a small error on association estimates is expected to
be negligible. So why bother? Well, the error cannot be
deemed to be small in routine genetic epidemiologic associ-
ation studies before the error has been estimated in such
studies. It could well be that rather small experiments in
which investigators know the purpose of error assessment
contain completely different errors than large studies in which
thousands of subjects are routinely genotyped. Methodolog-
ical investigations of the impact of genotyping error have
often assumed large error sizes of 1%–10%—an error size
possibly stemming from former times, when sophisticated
standard operating procedures or robotics were not available.

We aimed to gather a representative set of large epidemi-
ologic studies with double SNP genotypes to provide an
approach to estimation of genotype misclassification in
these routine data, and to characterize the model and the
size of the error as it can be expected in practice. It was
a further objective to elucidate the impact of such misclas-
sification on genetic association estimates in a real example
by applying a practical method: the recently developed mis-
classification simulation and extrapolation (MC-SIMEX)
approach (35), which has not yet been used for genetic data.

MATERIALS AND METHODS

Collecting double genotypes

We collected genotype information on all studies with at
least 1,000 subjects and 5% double genotypes that had been

assessed by laboratory personnel of the Genome Analysis
Center of the Helmholtz Zentrum München by matrix-assisted
laser desorption ionization time-of-flight mass spectrometry
(MALDI-TOF MS) during 2004–2005. There were 2 possible
sources of double genotypes: either the DNA of 1 subject
was put on 2 positions of the same microtiter plate for routine
quality control (routine doubles) or a microtiter plate was
processed a second time because of an insufficient call rate
in the first run (trouble-shooting doubles). The SNPs in our
analysis had met laboratory quality-control requirements
(sufficient call rate, polymorphic, and clear spectrometer
signals), as they do to be cleared for association analysis.
The final data set comprised 8 studies, including 5 distinct
samples from the KORA (Kooperative Gesundheitsforschung
in der Region Augsburg) studies (36), a Utah study (37), the
SAPHIR Study (Salzburg Atherosclerosis Study to Identify
Persons with High Individual Risk) (38), and the German
part of the AIRGENE (Air Pollution and Inflammatory
Response in Myocardial Infarction Survivors) Study (39).
All of the studies included had been conducted according
to the principles expressed in the Declaration of Helsinki.
The investigators in these individual studies had either the
written informed consent of all participants for genetic analy-
ses or approval from their institutional review boards for
genetic analyses.

Genotypes

For the kth SNP, k ¼ 1, . . ., K, XðkÞ is a subject’s true
genotype, and Z

ðkÞ
1 is the firstly and Z

ðkÞ
2 the secondly (if

available) observed genotype (omitting indices for the sub-
jects). We denote true and error-prone genotype probabili-

ties by pðkÞ ¼ ðpðkÞ0 ; pðkÞ1 ; pðkÞ2 Þ with pðkÞi ¼ ProbðXðkÞ ¼ iÞ
and p*ðkÞ ¼ ðp*

ðkÞ
0 ; p*

ðkÞ
1 ; p*

ðkÞ
2 Þ with p*ðkÞ

i ¼ ProbðZðkÞ
1 ¼ iÞ,

respectively. For the latter, the observed genotype frequencies,

p*ðkÞ ¼ ðp*
ðkÞ
0 ; p*

ðkÞ
1 ; p*

ðkÞ
2 Þ, are a consistent maximum likeli-

hood estimate based on the likelihood

Y

k

p*
ðkÞnp*

ðkÞ
2

2 p*
ðkÞnp*

ðkÞ
1

1 p*
ðkÞnp*

ðkÞ
0

0 :

Discordance matrix

For each SNP k, k ¼ 1, . . ., K, we derived the number of
concordant or discordant observed genotype pairs

RðkÞ ¼ ðrðkÞij Þ
i;j¼0;1;2

(discordance matrix) with r
ðkÞ
ij being

the number of subjects with Z
ðkÞ
1 ¼ i and Z

ðkÞ
2 ¼ j. Summing

the r
ðkÞ
ij over i and j yields the total number of observed

genotype pairs, for each k ¼ 1, . . ., K, giving rise to the
restriction

P
i;j r

ðkÞ
ij ¼ N. Without ordering of measure-

ments, the matrix is triangular (Table 1). The overall discor-
dance was computed as the number of discordant pairs
across all SNPs relative to the total number of genotype
pairs. The SNP-wise discordance was computed accord-
ingly per SNP.

Quantification of Genotype Error 879
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Misclassification matrix and the problem of
identifiability

The misclassification problem can be represented by
a 3 3 3 matrix for each SNP containing the misclassification
probabilities, pijðkÞ, which are the probabilities of misclas-
sifying a true genotype X ¼ j as Z ¼ i, i; j ¼ 0; 1; 2, for SNP
k, k ¼ 1, . . ., K. Solving this problem in general requires
more than 2 measurements, but repeated genotyping for
routine quality control is not usually performed more than
twice. Thus, statistical procedures requiring more than
2 measurements cannot be applied (28, 30). This leaves us
with the problem of making this 3 3 3 misclassification
problem identifiable with double measurements. ‘‘Not iden-
tifiable’’ means there are more parameters to estimate than
information available: In the case of K SNPs, the presence of
9 parameters per SNP in the matrix minus 3 due to each
column summing up to unity leaves 6K parameters to esti-
mate. The observed number of subjects with genotype pairs

i and j (i, j ¼ 0, 1, 2, i < j), r
ðkÞ
ij , and the restriction

P
i;j r

ðkÞ
ij ¼ N for each SNP k leave 5K independent

observations.
We achieved identifiability by assuming the misclassifi-

cation probabilities to be the same for all SNPs and thus to
be independent of k. The general misclassification matrix

Y
¼ ðpijÞi;j¼0;1;2 ¼ ðProbðZ ¼ ij X ¼ jÞÞi;j¼0;1;2

on the 3-level genotype (i.e., SNPs with nonmissing minor
allele homozygote category) with the 3 constraints
1 ¼

P
j¼0;1;2 pij, i ¼ 0; 1; 2, thus involved 6 unknown

parameters ðp01; p02; p10; p12; p20;p21Þ (Table 2).

Error models

The automated high-throughput MALDI-TOF MS plat-
form (Sequenom, San Diego, California) was used with an
example genotyping signal (shown in Figure 1). One or
2 signals are detected when the amplitude exceeds a prespe-
cified detection level for 2 equal (homozygous) alleles or 2
different (heterozygous) alleles. The unavoidable white
noise gives rise to specific genotyping error models:

Model A: A true signal falls short of the detection level
resulting in allelic dropout, which implies that 1) a hetero-
zygous subject is more likely to be misclassified as ho-

mozygous (1 of the 2 signals vanished) than the other way
around, 2) a subject homozygous for 1 allele is unlikely to
be misclassified as homozygous for the other, and 3) a ho-
mozygous subject is more likely to be coded as missing
than a heterozygous subject (18).

Model B: The ‘‘zero-corner model’’ (19) assumes 0 prob-
ability for a homozygous genotype’s being misclassified
as the other homozygous genotype (an extreme case of
model A2 above).

Model C: The ‘‘symmetrical model’’ assumes no system-
atic ordering of the major and minor alleles in the assay. It
implies that the probability of misclassifying a true ho-
mozygous genotype as heterozygous or of falsely classi-
fying a heterozygous genotype as homozygous does not
depend upon whether an allele is the minor or major allele
of the homozygous genotype.

Model D: The ‘‘allele-independent model’’ assumes that
the probability of misclassifying 1 allele for the other is
the same as the other way around (9).

Table 1. Notationa for a Triangular Discordance Matrix for the kth

Single Nucleotide Polymorphism, k ¼ 1, . . ., K

Z1
(k )

Z2
(k )

0 1 2

0 r00
(k)

1 r01
(k) r11

(k)

2 r02
(k) r12

(k) r22
(k)

a Genotype can be coded as 0 (major-allele homozygous),

1 (heterozygous), or 2 (minor-allele homozygous).

Table 2. Notationa for the General Misclassification Matrix

(Unrestricted Model)b

Observed Genotype Z
True Genotype X

0 1 2

0 p00 p01 p02

1 p10 p11 p12

2 p20 p21 p22

a Genotype can be coded as 0 (major-allele homozygous), 1

(heterozygous), or 2 (minor-allele homozygous).
b With p00 ¼ 1� p10 � p20, p01 ¼ 1� p11 � p21, and p02 ¼ 1�

p12 � p22.

Figure 1. Genotyping signal from the matrix-assisted laser desorp-
tion ionization time-of-flight mass spectrometry (MALDI-TOF MS)
genotyping platform for 1 single nucleotide polymorphism (SNP) of
1 person. The x-axis displays the mass of the extension primer prod-
uct and the y-axis the relative intensity of the product. Each of the
2 alleles refers to a product with a specific mass. Therefore, a signal
is detected at either of these 2 positions on the x-axis (homozygous
genotype of either of the alleles) or at both (heterozygous as shown in
the figure). The other signals are white noise.
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The other genotyping error models described in the liter-
ature are closely related to these 4, except for the ‘‘uniform
error model’’ (8), which assumes equal misclassification
probabilities and is mathematically appealing but rather un-
realistic for this genotyping setting.

The 4 error models correspond to restrictions in the mis-
classification matrix:

1. The allelic dropout model: p01 > p10 and p21 > p12, still
involving 6 parameters.

2. The zero-corner model: p20 ¼ 0 and p02 ¼ 0, reducing to
4 parameters.

3. The symmetrical model: p10 ¼ p12, p01 ¼ p21, and
p20 ¼ p02, reducing to 3 parameters.

4. The allele-independent model: Prob(allele A is misclas-
sified into allele a) ¼ Prob(allele a is misclassified into
allele A) ¼ :e, reducing to 1 parameter (Table 3).

Estimating the misclassification matrix via maximum
likelihood

The discordance probabilities, dðkÞij ¼ ProbðZ1 ¼ i^
Z2 ¼ jÞ, i; j ¼ 0; 1; 2, i < j—that is, the probabilities of
observing genotypes i and j for the 2 measurements for
SNP k—relate to the misclassification probabilities pij and
the true genotype probabilities pðkÞi via

dðkÞ00 ¼ pðkÞ2 p2
02 þ pðkÞ1 p2

01 þ pðkÞ0 p2
00

dðkÞ02 ¼ 2pðkÞ2 p02p22 þ 2pðkÞ1 p01p21 þ 2pðkÞ0 p00p20

dðkÞ11 ¼ pðkÞ2 p2
12 þ pðkÞ1 p2

11 þ pðkÞ0 p2
10

dðkÞ01 ¼ 2pðkÞ2 p02p12 þ 2pðkÞ1 p01p11 þ 2pðkÞ0 p00p10

dðkÞ22 ¼ pðkÞ2 p2
22 þ pðkÞ1 p2

21 þ pðkÞ0 p2
20

dðkÞ12 ¼ 2pðkÞ2 p12p22 þ 2pðkÞ1 p11p21 þ 2pðkÞ0 p10p20: ð1Þ

When the true genotype frequencies pðkÞ are known, the like-
lihood for RðkÞ given

Q
, LRð

Q
Þ :¼ Lð

Q
j ðRðkÞÞk¼1;...;KÞ, is

Y

k

ðdðkÞ00 Þ
r00ðkÞ

ðdðkÞ11 Þ
r11ðkÞ

ðdðkÞ22 Þ
r22ðkÞ

ðdðkÞ02 Þ
r02ðkÞ

3ðdðkÞ01 Þ
r01ðkÞ

ðdðkÞ12 Þ
r12ðkÞ

: ð2Þ

The misclassification probabilities were estimated by max-
imizing this likelihood.

When the true genotype probabilities pðkÞ are unknown,
either they can be estimated together with the misclassifica-
tion probabilities (‘‘extended likelihood’’) or assumptions
need to be made. Applying the latter approach, we assumed
that 1) the observed genotype probabilities p*ðkÞ reasonably
approximated the truth (pðkÞ � p*ðkÞ) and 2) p*ðkÞ was esti-
mated by p*ðkÞ with negligible sampling error. Therefore,
we estimated the misclassification probabilities by maxi-
mizing LRðPÞ with pðkÞ � p*ðkÞ (‘‘small misclassification
assumption’’). Again based on this assumption, exact P val-
ues for HWE (see Appendix) were computed using p*ðkÞ.

Maximum likelihood estimates were computed by apply-
ing the Nelder-Mead simplex algorithm (Mathematica,
version 5.0; Wolfram Research, Champaign, Illinois), and
their variances were derived by means of the Fisher matrix.
Genotype misclassification was estimated on the basis of
error models A–D. Likelihood ratio tests were conducted
to compare model fits.

In sensitivity analyses, we evaluated the robustness of
error estimation upon violation of the assumption
pðkÞ � p*ðkÞ, upon exclusion of SNPs with HWE violation,
or upon exclusion of SNPs with sparse data in 1 genotype
category. Furthermore, we explored what our results would
have looked like had we not opted for the small mis-
classification assumption but rather estimated the true
genotype probabilities simultaneously with the misclassifi-
cation probabilities (2K þ 6 parameters to estimate) via the
‘‘extended likelihood’’ given by the product of equation 2 and

Y

k

p*
ðkÞnp*

ðkÞ
2

2 p*
ðkÞnp*

ðkÞ
1

1 p*
ðkÞnp*

ðkÞ
0

0 ;

utilizing the relations p*
ðkÞ
0 ¼ 1 � p*

ðkÞ
1 � p*

ðkÞ
2 , p*

ðkÞ
1 ¼

pðkÞ2 3p12 þ pðkÞ1 3p11 þ pðkÞ0 3p10, and p*
ðkÞ
2 ¼ pðkÞ2 3p22þ

pðkÞ1 3p21 þ pðkÞ0 p20.

Method of correcting association analysis for genotype
misclassification and real data example

To elucidate the impact of the SNP genotype misclassifi-
cation on association analysis, we applied the MC-SIMEX
method (see brief description in Appendix) in a real data
example: We reanalyzed the association of 13 adiponectin-
encoding (APM1) gene SNPs with adiponectin plasma lev-
els in the SAPHIR Study (38), including 1,770 unrelated
healthy subjects. For each SNP, we computed linear regres-
sion association estimates based on log(adiponectin þ 1),
adjusted for body mass index (weight (kg)/height (m)2), sex,
and age, without and with application of the MC-SIMEX
method (using the log-linear extrapolation function).
We assumed a realistic scenario based on the general mis-
classification matrix as estimated and an extreme scenario
created by multiplying the nondiagonal elements of this
matrix by 10.

Table 3. Misclassification Matrix for the Allele-Independent

Modela,b

Observed
Genotype Z

True Genotype X

0 1 2

0 1� 2e
�
1� e

�
� e2 eð1� eÞ e2

1 2eð1� eÞ 1� 2eð1� eÞ 2eð1� eÞ
2 e2 eð1� eÞ 1� 2e

�
1� e

�
� e2

a Genotype can be coded as 0 (major-allele homozygous),

1 (heterozygous), or 2 (minor-allele homozygous).
b e ¼ Prob(allele A is misclassified into allele a) ¼ Prob(allele a is

misclassified into allele A).
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RESULTS

The analyzed sample

The data set contained 646,558 genotypes with 160,454
doubles involving 283 SNPs from over 10,000 subjects in 8
projects. Among these were 70,539 routine doubles. For
62,318 routine doubles, both genotype measurements were
nonmissing; 57,805 of these corresponded to 225 ‘‘3-level’’
SNPs. Table 4 summarizes data on these samples.

Discordance

Table 5 shows the discordance matrix, including routine
as well as trouble-shooting doubles, summarizing over all
283 SNPs. This matrix also highlights that the proportion of
missing genotypes among the first measurements is 15.65%
as opposed to 8.15% among the second, indicating an
undesirable informative ordering of the measurements.
Restricting the data set to the routine doubles, now including
262 SNPs, yielded symmetry (7.56% vs. 7.60%, respec-
tively; Table 5), indicating that missingness was now inde-
pendent of the measurement order.

Our main analysis was based on the 225 3-level SNPs
with 57,805 routine double genotypes, both nonmissing,
which yielded 210 discordant pairs and thus an overall dis-
cordance of 0.36%. Table 6 depicts the discordance across
all SNPs. The scatterplots of the SNP-wise discordance ver-
sus P values from testing for HWE violation (Figure 2, part
A) or versus the minor allele frequency (Figure 2, part B)
show that some of the larger discordances occurred together
with smaller HWE P values, but not all HWE violations
implicated large discordance (Spearman correlation coeffi-
cient (r) ¼�0.1362, P¼ 0.0313). There was no dependency
of the discordance on the minor allele frequency (r ¼
0.0826, P ¼ 0.1927).

Estimation of misclassification probabilities

Table 7 summarizes the misclassification matrices
from maximizing the likelihood LR;p*

�Q �
(equation 2)

for the various misclassification models. For the general
model, the estimated misclassification probabilities
ranged between 0.0001 and 0.0024, and for the allele-
independent model, they ranged between 0.0000 and
0.0020; the other models yielded a similarly small dimen-
sion of the error.

The estimated parameters and 95% confidence intervals
indicated that the allelic dropout characteristics held
(p10 < p01 and p12 < p21); the symmetric model deviated
the least from the general model, as the 95% confidence
interval from only 1 misclassification probability was
disjoint with the corresponding confidence intervals of
the general model. This was supported not only by a
comparison of the number of discordant genotype pairs
observed with the number expected under the various
models but also by the likelihood ratio test of model fit
(Table 8), which yielded no formal rejection of the sym-
metrical model (though a ‘‘borderline’’ P value of 0.07),
but for the ‘‘zero-corner’’ and ‘‘allele-independent’’ models
(P < 10�3).T
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Table 5. Observed Genotype Doubles Including Missing Genotypes as a Separate Categorya

Z1
(k )

Z2
(k )

Total
0 1 2 Missing Genotypes

Routine and Trouble-Shooting Genotype Doubles

0

No. 76,181 156 18 3,934 80,289

% 47.48 0.10 0.01 2.45 50.04

Row, % 94.88 0.19 0.02 4.90

Column, % 87.12 0.32 0.15 30.06

1

No. 80 41,774 43 1,989 43,886

% 0.05 26.03 0.03 1.24 27.35

Row, % 0.18 95.19 0.10 4.53

Column, % 0.09 86.63 0.37 15.20

2

No. 19 160 10,421 564 11,164

% 0.01 0.10 6.49 0.35 6.96

Row, % 0.17 1.43 93.34 5.05

Column, % 0.02 0.33 89.03 4.31

Missing genotypes

No. 11,162 6,132 1,223 6,598 25,115

% 6.96 3.82 0.76 4.11 15.65

Row, % 44.44 24.42 4.87 26.27

Column, % 12.77 12.72 10.45 50.42

Total

No. 87,442 48,222 11,705 13,085 160,454

% 54.50 30.05 7.29 8.15 100.00

Routine Genotype Doubles Only

0

No. 36,202 70 10 1,613 37,895

% 51.32 0.10 0.01 2.29 53.72

Row, % 95.53 0.18 0.03 4.26

Column, % 95.53 0.32 0.18 30.09

1

No. 55 20,746 30 952 21,783

% 0.08 29.41 0.04 1.35 30.88

Row, % 0.25 95.24 0.14 4.37

Column, % 0.15 95.19 0.55 17.76

2

No. 10 37 5,158 320 5,525

% 0.01 0.05 7.31 0.45 7.83

Row, % 0.18 0.67 93.36 5.79

Column, % 0.03 0.17 93.97 5.97

Missing genotypes

No. 1,628 941 291 2,476 5,336

% 2.31 1.33 0.41 3.51 7.56

Row, % 30.51 17.63 5.45 46.40

Column, % 4.30 4.32 5.30 46.19

Total

No. 37,895 21,794 5,489 5,361 70,539

% 53.72 30.90 7.78 7.60 100.00

a Genotype can be coded as 0 (major-allele homozygous), 1 (heterozygous), or 2 (minor-allele

homozygous).
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Robustness of estimation

Firstly, we explored the impact of violation of the small
misclassification assumption (i.e., deviation of pðkÞ from

p*ðkÞ) on the misclassification probability estimates. We

chose the deviation such that ðp*ðkÞÞ1;...;225 would have been

observed, given an allele-independent error with e ¼ 0:001,
to be in the ballpark of a realistic error. The new pðkÞ were

derived from p*
ðkÞ
1 ¼ ð1 � 4eþ 4e2ÞpðkÞ1 þ 2e� 2e2, p*

ðkÞ
2 ¼

ð1 � 2eÞpðkÞ2 þ ðe� 2e2ÞpðkÞ1 þ e2, and p*0ðkÞ ¼ 1 � p*
ðkÞ
1

� p*
ðkÞ
2 . The misclassification probabilities were again

estimated, maximizing LRð
Q

Þ given the new pðkÞ. For
the general model, the estimated parameters ðp01; p02; p10;
p12; p20; p21Þwere similar ((0.0024, 0.0016, 0.0004, 0.0002,
0.0000, 0.0016) instead of (0.0024, 0.0014, 0.0004, 0.0002,
0.0001, 0.0015)); the e parameter for the allele-independent
model remained basically unchanged at 0.0010. Secondly,
when we excluded the 29 SNPs with HWE violation (P’s <
0.05), the results did not change markedly. Neither did they
change when we excluded SNPs for which fewer than 30
subjects were minor-allele homozygous (leaving 152
SNPs), with the general model parameters being estimated
as (0.0018, 0.0013, 0.0009, 0.0002, 0.0002, 0.0018) and the
e estimate being 0.0012. Finally, when estimating true ge-
notype probabilities together with the misclassification
probabilities, we had to restrict the data to the 152 SNPs
with enough observations in the third genotype category;
this yielded (0.0020, 0.0011, 0.0008, 0.0061, 0.0002,
0.0000) and an e estimate of 0.0012.

Impact of genotyping error in a real data example using
the MC-SIMEX method

Figure 3 summarizes the uncorrected and MC-SIMEX-
corrected b estimates in the example of the 13 3-level APM1
SNPs and their association with plasma adiponectin concen-
trations. A clear change of the b estimates of up to 15%
when correcting for the misclassification was seen only

Table 6. Observed Triangular Discordance Matrixa,b

Z1
(k )

Z2
(k )

0 1 2

0

No. 32,498

% 56.2201

1

No. 123 19,944

% 0.2128 34.5022

2

No. 20 67 5,153

% 0.0346 0.1159 8.9145

a Genotype can be coded as 0 (major-allele homozygous),

1 (heterozygous), or 2 (minor-allele homozygous).
b Restricted to routine double genotypes with both measurements

nonmissing and 3-level single nucleotide polymorphisms (225 single

nucleotide polymorphisms, 57,805 double genotypes).

Figure 2. Dependency of single nucleotide polymorphism (SNP)-wise observed discordance (proportion) of the 57,805 routine double genotypes
with both measurements nonmissing in 225 3-level SNPs versus A) the minor allele frequency of each SNP and B) the P value from testing for
violation of Hardy-Weinberg equilibrium (HWE) for each SNP.
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under the extreme scenario for the 2 SNPs with already-high
uncorrected estimates (SNP4 and SNP13).

DISCUSSION

In this study, we collected 646,558 SNP genotypes de-
rived by MALDI-TOF MS from large epidemiologic studies
including approximately 14,000 subjects altogether. On the
basis of 57,805 double genotypes from routine quality con-
trol, estimated genotype misclassification probabilities were
0.001 and below. These data thus underscore the validity of
SNP genotypes in situations comparable to that of our study.
Note, however, that such a small genotyping error cannot be
expected when quality control is relaxed, when the DNA
quality is inferior, or when more error-prone genotyping
technologies are applied. Furthermore, double genotyping
by the same genotyping platform, using the same primer,
DNA, and aliquot, does not enable one to grasp all possible
sources of genotyping error or the potential mismatch of
subject identifiers. Additionally, the error here does not re-
flect all of the genotypes produced in the laboratory, but
rather reflects only the quality-controlled SNPs presented
to the data analyst in routine practice. Thus, we can only
make conclusions about some aspects of the genotyping
error.

While our example of 13 APM1 gene SNPs (38), applying
the MC-SIMEX correction method (35), pinpointed only
marginal bias in association estimates induced by an error
as estimated by our repeated genotype data, it was also
illustrated that increased genotyping error would decrease
association estimates and that the MC-SIMEX approach can

effectively remove this bias. Because the MC-SIMEX
method can handle a wide range of error and association
models for this trichotomous variable situation also and
because it allows adjustment for other covariates, it can be
recommended for utilization in future genetic association
studies, particularly for conditions that are problematic
and when the error is nonnegligible. If it is not possible to
conduct repeated genotyping which provides independent
replications, re-genotyping by employing a ‘‘gold standard’’
method or formulating a mechanistically motivated error
model are further options for obtaining error estimates. If
none of these 3 options are possible, the sensitivity of asso-
ciation results to different error sizes can be explored (e.g.,
using the MC-SIMEX method). Note, however, that when
replicate genotypes indicate an extremely low error, as ob-
served in our data, methods such as MC-SIMEX are prob-
ably not needed.

It was a great challenge to us to collect a sufficiently large
data set with routinely performed repeated genotyping to
estimate the genotyping error in epidemiologic practice.
The second challenge was to achieve identifiability of the
3 3 3 genotype misclassification problem with double ob-
served genotypes. We did not want a method requiring more
than 2 genotype repetitions, nor did we want to restrict the
genotyping error model. The first type of method would
have prevented our approach from being applicable to rou-
tine double genotype data; the second would have omitted
the possibility of exploring the misclassification model fit.
We thus assumed the same misclassification for all SNPs.
Our data supported this assumption, since the discordance
did not depend upon the minor allele frequency (see Figure 2,
part B). This assumption is also practical when one is

Table 7. Estimated Misclassification Matrix Under Various Misclassification Modelsa

Observed Genotype Z

True Genotype X

0 1 2

Estimate 95% CI Estimate 95% CI Estimate 95% CI

General misclassification model
(6 parameters, unrestricted)

0 0.999505 0.002428 0.001690, 0.003165 0.001380 0.000431, 0.002330b

1 0.000391 0.000014, 0.0007678 0.996023 0.000229 �0.000450, 0.000907
2 0.000104 �0.000050, 0.000258 0.001549 0.001034, 0.002065 0.9983911

Assuming zero-corner model
(4 parameters)

0 0.999880 0.003465 0.002720, 0.004210 0c

1 0.000120 �0.000179, 0.000419 0.995136 0.002979 0.001207, 0.004751c

2 0 0.001399 0.000880, 0.001917 0.997021
Assuming symmetric model

(3 parameters)
0 0.998740 0.001436 0.000911, 0.001961 0.000264 0.000148, 0.000380c

1 0.000997 0.000257, 0.001736 0.997127 0.000996 0.000257, 0.001736
2 0.000264 0.000147, 0.000380 0.001436 0.000912, 0.001961 0.998740

Assuming allele-independent model
(1 parameter); e ¼ 0.000997

0 0.998008 0.000996 0.000867, 0.001124c 0.0000009 0.0000007, 0.0000013c

1 0.001991 0.001734, 0.002249c 0.998009 0.001991 0.001734, 0.002249c

2 0.0000009 0.0000007, 0.0000013c 0.000996 0.000867, 0.001124c 0.998008

Abbreviation: CI, confidence interval.
a Genotype can be coded as 0 (major-allele homozygous), 1 (heterozygous), or 2 (minor-allele homozygous).
b Does not include 0; thus, the zero-corner model is not supported.
c No overlap with 95% CI of general model.

Quantification of Genotype Error 885

Am J Epidemiol 2008;168:878–889



interested in the overall error across a full set of SNPs rather
than the error of a specific SNP.

We were able to estimate the genotyping error under the
most general error model, while the literature covers rather
restricted models (Table 9). Note that estimation of all 6

parameters was not as robust as desirable, most likely be-
cause of the small error giving rise to only 210 discordant
genotype pairs despite the large sample size. Nevertheless,
the misclassification probability estimates remained very
small throughout, and the fact that we observed discordant

Table 8. Results From Likelihood Ratio Testing for Goodness of Model Fit in a Comparison of the Restricted Models A–D (See Text) With the

General Error Model, Showing the Number of Observed Genotype Pairs and the Number of Discordant Genotype Pairs As Expected Under the

Various Error Models

Model
No. of Discordant Genotype

Pairs (r02, r01, r12)
a

No. of
Parameters

Log-Likelihood
l for Comparison

with General Modelb
Degrees of
Freedom

P Value

Observed 20, 123, 67

General model (model A) 21.5, 122.5, 64.4 6 �46,768.5

Zero-corner model (model B) 0.2, 146.3, 87.4 4 �46,834.1 131.2 2 <10�3

Symmetrical model (model C) 19.9, 122.1, 68.1 3 �46,772.1 7.2 3 0.07

Allele-independent model (model D) 0.1, 168.7, 61.0 1 �46,861 185 5 <10�3

a No. of parameters in restricted model; r02, r01, and r12 refer to the notation in Table 1.
b With k ¼ �2 3 (ln Lrestricted � ln Lgeneral) ~ vdf

2 (6 df).

Figure 3. Impact of genotypingerror on theassociation of 13singlenucleotidepolymorphisms (SNPs) of the adiponectin-encoding (APM1) genewith
plasmaadiponectin in 1,770 subjects from theSAPHIRStudy (SalzburgAtherosclerosis Study to IdentifyPersonswithHigh IndividualRisk). The figure
showsbestimatescomputedby linear regressionandadjusted for age, sex, andbodymass index,1)without accounting formisclassification (squares),
2) with correction for realistic misclassification (circles; general error model as shown in Table 7), and 3) with correction for extreme misclassification
(triangles; using misclassification probabilities for the nondiagonal elements 10-fold as large as those for the realistic scenario). The b coefficients
describe the unit increase in log(adiponectinþ 1) comparing the heterozygous carriers (b1) or the homozygous carriers of theminor allele (b2) with the
homozygous carriers of themajor allele. The SNPnumbering refers to the original publication (38). A clear increase in b coefficients is seen only for the
extreme scenario and in cases where the uncorrected estimate was already high (SNP4 and SNP13). Vertical lines, 95% confidence interval.
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genotype pairs with both opposite homozygous genotypes
argues against the ‘‘zero-corner model.’’ Our data suggested
the allelic dropout model to be appropriate and the symmet-
rical model to fit reasonably well while being at the same
time more parsimonious (involving 3 instead of 6 parame-
ters), and provided evidence against further restrictions.

It was a strength of our work that we were able to collect
a large representative set of epidemiologic studies with dou-
ble genotypes as would be encountered in practice. Our
sample was not an experimental data set, and laboratory
personnel were unaware of this project at the time of geno-
typing. We present an approach as it could be applied in
practice: estimating genotyping error from routine double
genotypes and a correction method applicable for linear and
logistic regression, allowing for covariate adjustment, all
genetic effects, and most misclassification models.

It must be considered a limitation that we used catego-
rized genotypes instead of genotype probability scores,
which are more sophisticated from a methodological per-
spective; however, routine association analyses currently
use categories, and the epidemiologic practice was our focus
here. Our conclusions cannot be transferred to differential
error in case-control studies (40) or to more complex genetic
variants such as microsatellite markers implying a higher-
dimensional misclassification problem.

To our knowledge, this study is the first to provide epide-
miologic data with which to estimate and characterize SNP
genotype misclassification as it can be expected in practice.
For the first time in the genetic context, we have applied the
MC-SIMEX method and elucidated it as a method well-
suited to account for misclassification in genetic association
analysis.

We conclude that SNP genotyping error as presented in
our example data—derived from a high-quality laboratory,
with experienced personnel, using an established genotyp-
ing method, and with quality control before association
analysis—is small and possibly negligible for many associ-
ation studies. This is reassuring and is essential for detecting
SNP associations in genetic epidemiology. In cases of very
small genotyping error, as in our data, the particular choice
of error model is not a concern, and a correction of associ-
ation estimates applying methods like MC-SIMEX would
not be needed. Situations may arise in which more substan-
tial error is encountered. Then the implementation of an
allele-independent error model might be appropriate for
a first simplified approach, but extension to more complex
models might be desirable. In addition, our approach to
estimating genotype misclassification from double genotyp-
ing and accounting for this misclassification in the associa-
tion analysis is useful and practical for quantifying the
genotyping error and its impact.
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APPENDIX

A. Genetic terminology

A (human) single nucleotide polymorphism (SNP) is a po-
sition in the DNA where human beings exhibit variation in
just 1 nucleotide as opposed to other polymorphisms involv-
ing a series of nucleotides. Usually, this SNP variation
across subjects involves 2 different nucleotides out of the
4 possible (cytosine, thymine, adenine, guanine) for the
2 alleles that each subject possesses (1 inherited from the
mother and 1 from the father). For example, 1 subject could
have a cytosine (C) and a thymine (T) at 1 SNP position
(subject with a heterozygous genotype); another subject
could exhibit 2 C’s and again another 2 T’s (homozygous
genotypes). If T is the nucleotide that is less often found in
a population sample, T is considered the minor allele. Thus, a
subject’s SNP genotype can be coded as 0 (major-allele ho-
mozygous), 1 (heterozygous), or 2 (minor-allele homozygous).

Genotype frequencies are typically assumed to be in
Hardy-Weinberg equilibrium based on the hypothesis that
humans mate randomly and the genotype of the father
does not depend upon the genotype of the mother. Hardy-
Weinberg equilibrium is thus given when the probability of
the heterozygous genotype equals the product of the prob-
ability of the 2 involved nucleotides. Violation of Hardy-
Weinberg equilibrium is therefore considered a possible
indication of genotyping error with allelic dropout.

B. Misclassification simulation and extrapolation
approach

Use of the misclassification simulation and extrapolation
(MC-SIMEX) approach to account for misclassification in
association analysis involves a simulation and an extrapola-
tion step: Starting from the naı̈ve estimate b̂naive (i.e., the
estimate that does not account for the misclassification) and
assuming that this was derived with underlying misclassifi-
cation

Q
, data with higher levels of misclassification are

simulated. From the estimates resulting from these simu-
lated data, a function (linear, quadratic, or log-linear) is
extrapolated back to the case of no misclassification, yield-
ing the corrected estimator b̂SIMEX

�Q �
. This estimate has

already been shown to be consistent, and variance estimates
have been developed (35).

Quantification of Genotype Error 889

Am J Epidemiol 2008;168:878–889


