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The conventional method of detecting gene-environment interactions, the case-control analysis, suffers from low
statistical power. In contrast, the case-only analysis/design can be powerful in certain scenarios, although violation
of the assumption of independence between the genetic and environmental factors can greatly bias the results. As
an alternative, Bayes model averaging may be used to combine the case-control and case-only analyses. This
approach first frames the case-control and case-only analyses as variations of a log-linear model. The weighting
between these 2 models is then a function of the data and prior beliefs on the independence of the 2 potentially
interacting factors. In this paper, the authors demonstrate via simulations that when there is no prior information on
the independence of the genetic and environmental factors, this approach tends to be more powerful than the case-
control analysis. Additionally, when the genetic and environmental factors are not independent in the population,
bias is substantially reduced, with a corresponding reduction in type I error in comparison with the case-only
analysis. Increased power or increased robustness to violations of the independence assumption may be obtained
with more appropriate prior specification. The authors use an example data analysis to demonstrate the advan-
tages of this approach.

Bayesian estimation; Bayesian model; case-control studies; epidemiologic methods; interaction

Abbreviations: BMA, Bayes model averaging; FREQ, frequenin homolog (Drosophila); MAOA, monoamine oxidase A; MSE, mean
squared error; SNP, single nucleotide polymorphism; VNTR, variable number of tandem repeats.

There is growing evidence that gene-environment interac-
tions play an important role in complex diseases with a genetic
basis (1–8). The conventional method of detecting interac-
tions, the case-control analysis, is known to suffer from low
statistical power (9, 10). The case-only analysis (and its anal-
ogous log-linear approach) has been proposed for detection of
interaction effects with a substantial gain in power (11–15).
However, the validity of the case-only design depends greatly
upon the assumption that the 2 interacting factors are inde-
pendent in the underlying population. Previous investigations
(16, 17) have shown that the case-only design is highly sus-
ceptible to bias arising from nonindependence between the
2 interacting factors in the underlying population.

Generally, prior knowledge of the 2 factors is used to
decide the appropriateness of the independence assumption.
However, a decision based solely on prior knowledge can

lead to uncertainty as to which analytical approach is most
appropriate. Alternatively, some investigators have proposed
statistically testing the independence of the factors within
a representative population and then using the appropriate
analysis based on the inference (17–19). This depends
greatly on the criteria used to determine evidence for non-
independence and can still lead to increased type I error (20).

Here we propose the use of Bayes model averaging
(BMA) to combine case-control and case-only analysis.
The data and prior belief in the independence of the 2 po-
tentially interacting factors are used to generate weights
between the models. In this paper, we describe the combined
approach; perform a simulation experiment to gauge its per-
formance in terms of estimation bias, type I error, and power
under various scenarios; and apply the method to a real data
example.
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MATERIALS AND METHODS

The case-control analysis

Assume we have a case-control sample with a disease
outcome Y, a genetic factor G, and a dichotomous environ-
mental factor E. In a case-control analysis, the departure
from a multiplicative interaction model can be examined
in the following logistic model:

logitðPrðY ¼ 1jG;EÞÞ ¼ aþ bGþ cE þ rGE:

This model can also be viewed as a reduced but equivalent
version of the full log-linear model (21), in which the log-
arithm of the expected numbers of persons in each cell of the
2 3 2 3 2 table of G, E, and Y is modeled as

logðljY;G;EÞ ¼ a0 þ b0G1 þ c0E þ r0GE þ aY

þ bGY þ cEY þ rGEY : ð1Þ

In both models, b, c, and r are exactly the same parameters
modeling the main effect of G, E, and the G3 E interaction,
respectively. In the log-linear model, b0, c0, and r0 model
the joint distribution of G and E in the controls.

The case-only analysis

With the assumption of G 3 E independence, the case-
only analysis may be used to detect the interaction based on
the following model:

logitðEjY ¼ 1;GÞ ¼ c* þ r*G:

Similarly, Umbach et al. (15) proposed a variation of the full
log-linear model, in which they demonstrated that the as-
sumption of G3 E independence can be specified by setting
r0 in equation 1 equal to 0, resulting in the following model:

logðljY ;G;EÞ ¼ a0 þ b0Gþ c0E þ aY þ bGY

þ cEY þ r*GEY : ð2Þ

When the independence assumption holds, r* is approxi-
mately equivalent to r (15).

Averaging over the case-only and case-control analyses

BMA may be used to obtain a single estimate of interac-
tion effect and avoid the uncertainty in having to select
either the case-control design or the case-only design (22,
23). Specifically, given the observed data D (including Y, G,
E, and other potential covariates), the posterior probability
of the interaction effect is

PrðrjDÞ ¼
X2

k¼1

PrðrjD;MkÞPrðMkjDÞ:

To ensure equal sample sizes and comparable likelihoods,
the log-linear model for each analysis is employed when
calculating the posterior probability of the case-only and
case-control models. PrðMkjDÞ, the posterior probability
of each model, is given by

PrðMkjDÞ} PrðDjMkÞPrðMkÞ;

where PrðMkÞ is the prior probability for Mk. Priors can be
assigned to the case-control model (M1) and the case-only
model (M2) by specifying the relative weight of their prior
probability W ¼ Pr(M1)/Pr(M2) (i.e., the prior odds).
PrðDjMkÞ is the integration of the likelihood of Mk over
all of the parameters /k, estimated through a Laplace trans-
formation (24):

PrðDjMkÞ ¼
Z

PrðDj/k;MkÞPrð/k;MkÞd/k:

r̂k is the estimated interaction effect from Mk, and the ex-
pectation and the variance of the interaction effect are cal-
culated as

EðrjDÞ ¼
X2

k¼1

r̂kPrðMkjDÞ

VarðrjDÞ ¼
X2

k¼1

nh
varðr̂2

k jD;MkÞ þ r̂2
k

i
PrðMkjDÞ

o

� ½EðrjDÞ�2:

Assuming a normal distribution for the interaction estimate,
statistical inference on r is determined via a Wald test,

Z ¼ EðrjDÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðrjDÞ

p :

Simulations

We carried out simulations to illustrate the performance
of the BMA approach. The underlying population is gener-
ated on the basis of the following logistic regression model:

logitðPrðY ¼ 1ÞÞ ¼ logitðp0Þ þ gE þ jGþ kEG:

The baseline disease prevalence rate, p0, is set to 0.05; the
odds ratio for E, which equals expðgÞ, is set to 2; the odds
ratio for G (expðjÞ) is set to 1; and the odds ratio for the
interaction effect (expðkÞ) is set to either 1 or 1.25. The 2
risk factors, E and G, are binary. Their marginal frequencies,
pg and pe, are both set to 0.3. The G 3 E association in the
population is simulated using the following model:

logit
�
Pr
�
G ¼ 1jE

��
¼ logit

�
pg
�
þ hge*

�
E � pe

�
;

in which hge is the logarithm of the odds ratio for the pop-
ulation association between G and E.

For each simulation replicate in each scenario, a popula-
tion of 1,000,000 observations is generated and a 1:1
case-control sample is randomly selected. The empirical
power and type I error rate of the conventional case-control
analysis, the case-only analysis, and the BMA approach
(with W ¼ 1) are compared across various levels of G 3 E
association. To investigate different case-cohort or case-
control designs, we perform simulations in which the total
sample size is held constant with varying case:control ratios,
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in addition to scenarios in which the number of cases is fixed
and the number of controls is adjusted. Further comparisons
of the mean squared error (MSE) and bias for the estimates of
interaction effect are also made with varying hge under the
null hypothesis. MSE is defined as the average squared dif-
ference between the estimate and the interaction parameter k,
and bias is defined as the mean difference between the esti-
mate and k. The effect of using different prior information
on the results of the BMA approach are also compared
across differing values for W.

In all of the analyses, statistical significance is determined
by a 2-sided P value at an a level of 0.05, and 1,000 repli-
cations are simulated for each scenario. The simulation and
analysis are performed in R (25); the specific code is avail-
able from the authors upon request.

Application to real data

To illustrate the various approaches in practice, the 3
methods are applied to the Wuhan Smoking Prevention Trial,
in which smoking behavior was defined for urban seventh-
grade students from Wuhan, China, in 1998 (26). The
analysis is limited to 495 male nonsmokers (i.e., controls)
and 495 males that have initiated smoking (i.e., cases). A
variable number of tandem repeats (VNTR) in the mono-
amine oxidase A (MAOA) gene, located on chromosome X,
and 2 single nucleotide polymorphisms (SNPs) have been
genotyped for all participants. The first polymorphism, SNP
1, is unlinked to MAOA and is located in the frequenin
homolog (Drosophila) (FREQ) gene on chromosome 9.
An interaction analysis between this SNP and the MAOA
VNTR represents a scenario in which the 2 factors are in-
dependent in the population. The second polymorphism,
SNP 2, is located in the MAOA gene region and is linked
to the VNTR. An interaction analysis between SNP 2 and
the VNTR represents a situation in which the 2 factors are
correlated in the population. For the VNTR and the 2 SNPs,
the minor allele frequencies are 0.39, 0.16, and 0.27, re-
spectively. Both SNPs are in Hardy-Weinberg equilibrium.
Multiplicative interaction between the 2 SNPs and the
VNTR with regard to smoking initiation is examined with
the case-only, case-control, and BMA approaches. An addi-
tive model is used for SNP 1. Since population substructure
can lead to correlation of 2 unlinked polymorphisms in the
population, 233 ancestry informative markers (27) are used
to estimate the coefficient of ancestry for each individual
(28). In our analysis, there was very little evidence for sub-
structure, since the mean Asian-specific coefficient of an-
cestry was 97.5%.

RESULTS

Type I error and power

Figure 1 shows the type I error and power for the case-
control analysis, the case-only analysis, and the BMA ap-
proach when hge varies from �0.5 to 0.5 with a sample size
of 2,000 cases and 2,000 controls. Figure 1A shows that the
case-only analysis has a greatly inflated type I error when
hge is nonzero, while the type I error rate of the case-control
analysis remains constant. For the BMA approach, the type I

error rate is slightly conservative when there is no G 3 E
association (0.03). When the G3 E association is moderate,
the type I error rate of the BMA approach increases slightly,
albeit at a much lower error rate than in the case-only analy-
sis (the maximum type I error rate is 0.085 when hge ¼ 0.2
or �0.2). As the G 3 E association gets stronger, the type I
error rate of the BMA analysis approaches the case-control
analysis.

Figure 1B shows the empirical power of the case-only,
case-control, and BMA approaches. While its power is not
valid because of the greatly inflated type I error rates when
hge 6¼ 0 (as seen in Figure 1A), results of the case-only
analysis are displayed for reference. As expected, when

Figure 1. Type I error and power of the case-only, case-control, and
Bayes model averaging (BMA) approaches. The odds ratio for the
interaction effect is 1.0 (part A) or 1.25 (part B). The prior weight in
the BMA approach is set toW¼ 1:1, with a sample size of 2,000 cases
and 2,000 controls in the simulation. hge represents the association
between the genetic factor and the environmental factor in the un-
derlying population.
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the assumption of independence is valid (hge¼ 0), the case-
only approach is the most powerful approach, and the power
of the BMA approach is higher than that of the case-control
approach. When the G 3 E association points in the same
direction as the interaction effect (i.e., hge > 0), the BMA
approach is more powerful than the case-control approach.
However, if the G 3 E association points in the opposite
direction (hge< 0), the BMA approach is slightly less power-
ful than the case-control approach. As the G3 E association
increases, the power of the BMA analysis approaches that of
the case-control analysis.

Specifically, for hge ¼ 0.2 with 2,000 cases and 2,000
controls, the type I error is 0.085 and the empirical power
is 0.49 (Figure 1B). Decreasing the number of controls to
1,000 while keeping the number of cases at 2,000 (total n ¼
3,000) increases the power of the BMA approach to 0.51 but
also increases the type I error to 0.11. Likewise, increasing
the number of controls to 4,000 with 2,000 cases (total n ¼
6,000) results in stabilization of the type I error (0.06) with
no noticeable impact on power (0.47). Holding the total
sample size constant (n ¼ 4,000), an altered case:control
ratio (1:3) greatly reduces power (0.35) with a corresponding
reduction in type I error (0.06). In contrast, using a total
sample size of 4,000 and a case:control ratio of 3:1 results
in an increase in power (0.52) and an increase in type I error
(0.12).

Estimates: MSE and bias

In Table 1, the MSE and bias of different approaches are
compared across various levels of G 3 E association under
the null hypothesis (k ¼ 0). With no G 3 E association, the
MSE is smallest for the case-only approach and largest for
the case-control approach. The MSE of the BMA (W ¼ 1)
lies between these 2 extremes. As the G 3 E association
increases, the MSE and bias of the case-only approach in-
crease sharply while the MSE of the BMA approach remains
close to that of the case-control approach, although for mod-
est values of G 3 E association in the population, there is
a slight bias in estimates from the BMA approach.

Influence of priors on the BMA approach

Figure 2 shows the effect of different prior weights (W’s
ranging from 0.001 to 1,000) in terms of type I error, em-
pirical power, and bias. When there is no G3 E association,
there is a stable type I error rate across all prior specifica-
tions. Likewise, when the prior weight favors the case-only
model (i.e., W < 1), there is a corresponding and valid

Table 1. Mean Squared Error and Bias of the Estimates of the

Interaction Effecta

uge

Case-Control
Method

Case-Only
Method

Bayes Model
Averaging
Method

MSE Bias MSE Bias MSE Bias

0 0.023 0.003 0.012 0.004 0.015 0.003

0.1 0.021 0.001 0.020 0.100 0.018 0.037

0.2 0.023 0.002 0.049 0.195 0.027 0.039

0.3 0.020 0.001 0.099 0.297 0.027 0.026

0.4 0.023 0.001 0.169 0.398 0.026 0.009

0.5 0.020 0.003 0.261 0.501 0.020 0.004

Abbreviation: MSE, mean squared error.
a The odds ratio for the interaction effect was 1.0. The prior weight

in the Bayes model averaging approach was set to W ¼ 1:1, with

a sample size of 2,000 cases and 2,000 controls in the simulation.

Figure 2. Influence of prior weights on the performance of the Bayes
model averaging approach. W represents the relative weights of the
case-control and case-only models in the Bayes model averaging
approach. Weights to the left on the x-axis (W < 1) favor the case-
only model, while weights to the right (W > 1) favor the case-control
model. The odds ratio for the interaction effect is 1.0 (parts A and C) or
1.25 (part B). The sample size is 2,000 cases and 2,000 controls in the
simulation.

500 Li and Conti

Am J Epidemiol 2009;169:497–504



increase in power. Alternatively, when there is substantial
G 3 E association (hge¼ 0.5), the type I error increases for
extreme priors in favor of the case-only model (W < 0.01),
with a corresponding increase in the empirical power. Note
that the increase in power appears to be much more sub-
stantial than is indicated by the slight increase in type I error.
As the prior better reflects the underlying truth of the G3 E
association (hge¼ 0.5) and begins to favor the case-control
model (W > 1), there is a reduction in the type I error rate
and the power approaches that of the case-control analysis.
When the G 3 E association is modest (hge¼ 0.2), there is
a much greater increase in the type I error and only extreme
priors favoring the case-control model (W > 5) reduce this
to a nearly nominal level. Bias in the estimates follows
a similar pattern, with the most substantial bias occurring
when there is modest G 3 E association in the population
and a prior weight favoring the case-only analysis (W < 1).

Influence of sample size

Figure 3 shows, under the null hypothesis, the influence
of the sample size on the type I error and bias of the BMA
approach when hge varies from 0 to 0.50. No prior informa-
tion on the G 3 E association in the underlying population
(W ¼ 1:1) is assumed. In general, as the G 3 E association
increases up to moderate levels (e.g., hge ¼ 0.2 or 0.3), there
is an increase in bias and type I error. However, when the
G3 E association is strong, the bias and type I error for the
BMA approach are decreased. While the overall bias and
type I error are greatest for small sample sizes, it is the
plateau in this general pattern that is greatly influenced by
the sample size, with the BMA approach being robust to
smaller levels of G3 E association with larger sample sizes.

Application to real data

Table 2 shows the results of the case-only, case-control,
and BMA approaches with different weights when they are
applied to the example data. For SNP 1 and the MAOA
VNTR (hge¼ 0), there are consistent estimates across all
analyses (odds ratio ¼ 1.58). The case-only analysis is the
most efficient and results in the smallest observed P value
(P ¼ 0.019). The case-control analysis yields a P value of
0.098. With the assumption that SNP 1 is independent of the
VNTR, the most appropriate prior specification is one that
weighs heavily in favor of the case-only analysis (W ¼
0.01). Here, an estimate and P value similar to those of
the case-only analysis are obtained. In contrast, when ex-
ploring the interaction between SNP 2 and the VNTR (hge 6¼
0), the case-only analysis yields a substantial effect (odds
ratio ¼ 2.06) and a corresponding P value of 0.002. How-
ever, in the case-control analysis, the odds ratio for this
interaction is closer to 1, with a corresponding P value of
0.312. In the BMA analysis, a nonsignificant statistical test
is obtained across all levels of prior information from equal
weight (W¼ 1) to a much greater weight on the case-control
analysis (W ¼ 100). Given that SNP 2 and the VNTR are
located within the same gene region and may be in linkage
disequilibrium, the most appropriate prior weighting may be
that favoring the case-control analysis.

DISCUSSION

While the conventional case-control analysis suffers from
low efficiency when detecting interaction effects (10), the
validity of the case-only analysis/design relies heavily on
the assumption of independence of the 2 interacting factors
(16, 17). Instead of an all-or-nothing choice between the
2 approaches, BMA can be used to average the estimates
of the 2 models based on their posterior probability. Via
simulations, we have shown that in comparison with the
case-only and case-control approaches, the BMA approach
has better overall performance across a variety of scenarios.
This holds true even when little prior information is

Figure 3. Influence of sample size on the type I error and bias of the
Bayes model averaging (BMA) approach. Bias is defined as the mean
difference between the BMA estimate and the true interaction param-
eter, which is set to be 0 in both part A and part B. hge represents the
association between the genetic factor and the environmental factor in
the underlying population. The prior weight in the BMA approach is set
to W ¼ 1:1.
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available regarding the independence of the 2 factors in the
population. In general, the BMA approach leverages the
statistical efficiency of the case-only estimate with the un-
biased properties of the case-control estimate. It is more
powerful than the case-control approach when hge ¼ 0 (albeit
less powerful than the case-only approach), but it is also
robust when there is non-independence of the 2 interacting
factors. Although the BMA estimate can be slightly biased
and the type I error can be slightly inflated when correlation is
modest, as the correlation further increases there is a reduc-
tion in bias and a return to the nominal type I error rate. Thus,
the BMA approach performs well in situations in which the
correlation of the 2 factors can lead to the largest bias and
elevated type I error rates for the case-only approach. The
flexibility of specifying an appropriate prior can further en-
hance the performance of the BMA approach.

By appropriately weighting the case-only and case-
control models, the BMA approach has increased power
and less bias when 2 factors are positively correlated. When
there is correlation between the 2 factors, the nonzero r0 in
the log-linear case-control model leads to a higher posterior
probability for the case-control model. Consequently, when
averaging over the 2 models, the estimate and its standard
error are pulled more towards the case-control results. As
the correlation increases, the overall result is weighted even
more heavily towards the results of the case-control model.
When the direction of the correlation for the 2 factors is
opposite to that of the interaction effect, the case-only result
has less power (Figure 1B). This is due to the combined
impact of the interaction effect and the correlation in the
population on the co-occurrence of the 2 factors in the cases.

The resulting case-only estimate is a balance between the 2
trends and initially results in a decrease in power. As the
negative correlation increases, the case-only analysis detects
this increase and power tends to increase. Since the BMA
approach is dependent upon the case-only estimate, this phe-
nomenon will affect the BMA approach as well. However,
because the BMA approach incorporates the case-control
estimate, these trends are greatly tempered.

As the sample size increases, the data provide more in-
formation on G 3 E association with which the BMA ap-
proach can weight more towards the appropriate model
when averaging the estimates of the 2 models, leading to
less bias and reduced type I error rates in comparison with
analyses with a smaller sample size and similar G 3 E
dependence. As the sample size continues to increase, the
influence of the G 3 E association becomes negligible.
This property makes the BMA approach particularly useful
as sample sizes increase in order to detect potentially weak
interaction effects in genome-wide association studies of
complex diseases. When there exists weakG3E association,
slight increases in the type I error from a case-only analysis
with large sample sizes may have a substantial impact on
the overall results across all polymorphisms. In this situation,
the large sample sizes will enhance the detection of a G3 E
association in the BMA approach and result in more robust
estimates. In general, an increase in the number of cases (or
an increase in the case:control ratio) aids power while also
increasing the type I error. An increase in the number of
controls (or an increase in the control:case ratio) tends to
stabilize the type I error closer to the nominal rate without
a substantial impact on power. Ultimately, the final posterior
estimate will be a function of the total sample size, the ratio
of cases and controls, and the size/direction of both the
interaction effect and the correlation in the population.

Several approaches have been proposed as potential sol-
utions to the problems introduced by G 3 E dependence in
the case-only analysis. Some authors have suggested first
testing the G3 E association in the controls and then choos-
ing the analysis strategy based on the G3 E test results (16,
17). Unfortunately, this approach will be very dependent
upon the power for declaring significance from a test within
the controls. The BMA approach is similar in spirit to this
approach, by using the data to provide an estimate of the
correlation between the 2 factors. However, instead of an
all-or-none choice, the BMA approach weights the 2 models
on the basis of evidence for which is more appropriate. An
alternative approach is to adjust for a covariate believed to
lead to the G3 E association in the case-only analysis (20).
While applicable in some situations, this approach relies
heavily on the presence and identification of the intermedi-
ate covariate. Such prior identification of appropriate cova-
riates may be difficult or even impossible in practice.

In an approach similar to that of the BMA analysis pre-
sented here, Mukherjee and Chatterjee (29) proposed an
empirical Bayes approach derived from a retrospective max-
imum-likelihood framework that corresponds to a weighted
average between the case-only and case-control estimators.
In additional simulations mimicking those presented by
Mukherjee and Chatterjee (29) (data not shown), we com-
pared the MSE and bias of the empirical Bayes estimate

Table 2. Interaction Analyses for 2 Single Nucleotide

Polymorphisms With a Variable Number of Tandem Repeats in the

Monoamine Oxidase A (MAOA) Genea

Interaction and Method
Odds
Ratio

95%
Confidence
Interval

P Value

SNP 1 3 VNTR interaction

Case-only 1.58 1.08, 2.32 0.019

Case-control 1.58 0.92, 2.72 0.098

BMA (W ¼ 1:1) 1.58 1.03, 2.43 0.037

BMA (W ¼ 1:10) 1.58 1.07, 2.33 0.021

BMA (W ¼ 1:100) 1.58 1.08, 2.32 0.019

SNP 2 3 VNTR interaction

Case-only 2.06 1.29, 3.29 0.002

Case-control 1.39 0.73, 2.67 0.312

BMA (W ¼ 1:1) 1.63 0.82, 3.26 0.165

BMA (W ¼ 10:1) 1.43 0.74, 2.78 0.290

BMA (W ¼ 100:1) 1.40 0.73, 2.68 0.309

Abbreviations: BMA, Bayes model averaging; SNP, single nucleo-

tide polymorphism; VNTR, variable number of tandem repeats.
a SNP 1, located in the frequenin homolog (Drosophila) (FREQ)

gene, is unlinked with the MAOA VNTR. SNP 2 is located in the

MAOA gene region and thus is linked and correlated with the VNTR

in the population.
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with those of the BMA estimate. Overall, performance was
comparable for the 2 methods.

The BMA approach is applied to real data to illustrate the
extremes in the level of prior knowledge regarding the 2 in-
teracting factors. In the analysis of an SNP located on a dif-
ferent chromosome with the VNTR, there is an observed
consistency in the estimates from the case-only and case-
control analyses. In this scenario, the BMA approach has
a P value similar to that of the case-only analysis. In con-
trast, in the analysis in which there exists correlation be-
tween SNP 2 and the VNTR, there is a discrepancy between
the case-only and case-control estimates. These analyses
indicate the feasibility of the BMA approach in practice.

In summary, the BMA approach can combine case-
control and case-only estimates in gene-environment or
gene-gene interaction analysis. This approach can be more
powerful than the case-control approach when there is no
correlation in the population and much more robust than the
case-only approach when the independence assumption is
violated. Increased power or increased robustness to viola-
tions of the independence assumption can also be modulated
with appropriate prior information on the assumed depen-
dence in the population.
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