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Human immunodeficiency virus (HIV) researchers often use calendar periods as an imperfect proxy for highly
active antiretroviral therapy (HAART) when estimating the effect of HAART on HIV disease progression. The authors
report on 614 HIV-positive homosexual men followed from 1984 to 2007 in 4 US cities. During 5,321 person-years,
268 of 614men incurred acquired immunodeficiency syndrome, 49 died, and 90were lost to follow-up. Comparing the
pre-HAART calendar period (<1996) with the HAART calendar period (�1996) resulted in a naive rate ratio of 3.62
(95% confidence limits: 2.67, 4.92). However, this estimate is likely biased because ofmisclassification of HAART use
by calendar period. Simple calendar period approaches may circumvent confounding by indication at the cost of
inducing exposure misclassification. To correct this misclassification, the authors propose an instrumental-variable
estimator analogous to ones previously used for noncompliance corrections in randomized clinical trials. When the
pre-HAART calendar period was compared with the HAART calendar period, the instrumental-variable rate ratio was
5.02 (95% confidence limits: 3.45, 7.31), 39% higher than the naive result. Weighting by the inverse probability of
calendar period given age at seroconversion, race/ethnicity, and time since seroconversion did not appreciably alter
the results. These methods may help resolve discrepancies between observational and randomized evidence.

acquired immunodeficiency syndrome; bias (epidemiology); causality; confounding factors (epidemiology); HIV

Abbreviations: AIDS, acquired immunodeficiency syndrome; CL, confidence limits; HAART, highly active antiretroviral therapy;
HIV, human immunodeficiency virus; ITT, intent to treat.

Observational studies have shown a protective effect of
highly active antiretroviral therapy (HAART) on time to ac-
quired immunodeficiency syndrome (AIDS). The studies re-
ported byDetels et al. (1) and Porter et al. (2) combine to yield
an inverse-variance weighted summary hazard ratio of 2.89
(95% confidence limits (CL): 2.19, 3.79) comparing a pre-
HAART calendar period with the HAART calendar period.
These studies used calendar period as a proxy for actual
HAART use to circumvent confounding by indication (3).
To the extent that calendar period is a misclassified version
of actual HAART exposure, estimates using calendar period
may be subject to information bias (M. A. Hernán, Harvard
School of Public Health, unpublished manuscript, 2009).

Randomized clinical trials have also shown a protective
effect of HAART on time to AIDS or death. Trials reported

by Hammer et al. (4) and Cameron et al. (5) combine to
yield an inverse-variance weighted summary hazard ratio
of 1.91 (95% CL: 1.57, 2.33) comparing a non-HAART
regimen consisting of 2 nucleoside reverse transcriptase
inhibitors with a HAART regimen consisting of the same
2 nucleoside reverse transcriptase inhibitors plus a protease
inhibitor. Randomized clinical trials are generally analyzed
by using an intent-to-treat (ITT) approach, which compares
endpoints as randomly assigned, irrespective of postrandom-
ization compliance (6, p. 16). In the presence of noncompli-
ance, this ITT approach typically produces null-biased
estimates of the difference between 2 treatment arms. Meth-
ods exist to correct ITTestimates for noncompliance (7–14).
For example, correcting the result of Hammer et al. for non-
compliance by using inverse probability-of-censoring
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weights increased the hazard ratio from 1.98 (95% CL: 1.30,
3.01) to 2.21 (95% CL: 1.34, 3.66) (15).

Using observational data from the Multicenter AIDS
Cohort Study (16), we adapted existing noncompliance
correction methods (8, 17) to correct for information bias
due to use of an imperfect instrument. We extended the
method (8) to estimate the rate (i.e., number of events
divided by person-time at risk) instead of the risk (i.e.,
number of events divided by number of people at risk) and
to account for measured covariates using inverse probability
weights (18).

MATERIALS AND METHODS

Study population

The Multicenter AIDS Cohort Study is an ongoing pro-
spective cohort study of the natural and treated history of
human immunodeficiency virus (HIV) infection in 6,972
homosexual men enrolled starting in 1984 (16). Participants
were seen semiannually in 4 US urban centers: Baltimore,
Maryland/Washington, DC; Chicago, Illinois; Pittsburgh,
Pennsylvania; and Los Angeles, California. During their
study visit, they underwent a physical examination; pro-
vided biologic specimens, including a blood sample for
CD4þ T-lymphocyte count, levels of plasma HIV RNA,
and serologic HIV antibody tests on seronegative men;
and completed an extensive interviewer- or computer-
administered questionnaire. The questionnaire gathered
information about medication use and medical history. In-
stitutional review boards approved all protocols, and written
informed consent was obtained for all participants. Our
present analysis concerns the 614 men in the study who
seroconverted between enrollment and April 2007.

Exposure assessment

Antiretroviral therapy use is measured by self-report us-
ing photo-medication cards. At each study visit, participants
were asked about therapy use since their prior visit. We
classify therapy use at each study visit as either HAART
or non-HAART. The definition of HAART was guided by
the DHHS/Kaiser Panel (19) guidelines, and HAART was
defined as in the study by Cole et al. (20). Typical HAART
regimens consisted of 2 or more nucleoside or nucleotide
reverse transcriptase inhibitors in combination with at least
1 protease inhibitor or 1 nonnucleotide reverse transcriptase
inhibitor. Combinations of zidovudine and stavudine with
either a protease inhibitor or a nonnucleoside reverse tran-
scriptase inhibitor were not considered HAART.

Each participant’s person-time was partitioned into 2
calendar periods as defined by Detels et al. (1): pre-
HAART (before 1996) and HAART (1996 and beyond).
We also explored the impact of using 1998 as the cutoff
for the HAART calendar period instead of 1996. An in-
dicator variable for the HAART calendar period serves as
a proxy for HAART use. This indicator appears to fulfill
the 3 assumptions of an instrumental variable (17) and has
been used in such a fashion previously (1, 2, 21–31). First,
calendar periods are associated with therapy use because

therapies were introduced sequentially over time. In Figure 1,
this statement corresponds to the existence of arrow a
from calendar period Z to therapy use X. Second, calendar
period Z cannot be affected by indications for treatment
with therapy. In Figure 1, this statement is represented by
the lack of an arrow from unmeasured confounders U to
calendar period Z. Third, on the basis of the results of
Detels et al., it appears that calendar period Z is indepen-
dent of AIDS Y given indications for and actual use of
therapy. In Figure 1, this statement corresponds to the ab-
sence of an arrow from calendar period Z to AIDS Yand the
absence of variables V affecting both calendar period Z and
AIDS Y. Detels et al. provide compelling evidence (in their
Table 2) that HIV-related non-HAART therapies and health
care utilization, 2 possible explanations for the apparent
effect of HAART, do not differ notably across recent cal-
endar periods.

Nonetheless, beyond indications for and actual use of
therapy, because of the time course of the epidemic, some
variables V may be associated with calendar period Z as
well as being independent predictors of AIDS Y (e.g., age
at seroconversion, race/ethnicity, and infection duration).
Therefore, to relax the third assumption, we use inverse prob-
ability weighting to create a weighted pseudo-population in
which there is no association of the variables V with calendar
period Z, and hence no arrow b from variables V to calendar
period Z. The observations in the weighted population are
weighted by the inverse of the probability of calendar period
given the measured variables V.

Endpoint ascertainment

The endpoint of interest was time from HIV seroconver-
sion to clinical AIDS. The date of HIV seroconversion was

X

V

Z

U

Y

b

a

Figure 1. Diagram showing the association of calendar period Z,
therapy use X, AIDS Y, measured covariates V, and unmeasured
covariates U. Refer to the Materials and Methods section of the text
for more information. AIDS, acquired immunodeficiency syndrome.
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taken to be the midpoint between the date of a participant’s
last HIV-negative and first HIV-positive visits. The median
interval between these 2 visits was 0.52 (interquartile range:
0.49, 0.71) years. The 1993 Centers for Disease Control and
Prevention clinical conditions criteria were used to define
clinical AIDS (32). Therefore, men with CD4 cell counts
of less than 200 cells/mm3 but no clinical conditions were
not considered to have clinical AIDS. Reported cases of
clinical AIDS were confirmed by using physician or hos-
pital record abstractions (16). Men were censored at death,
censored at loss to follow-up (defined as neither dead nor
seen within the last 12 months of study), or administra-
tively censored if still alive at the end of the study period in
April 2007.

Statistical methods

The following notation will be used in this paper: sub-
script i indexes the 1 to N ¼ 614 participants, and subscript
j indexes the 1 to Ji visits for subject i. The maximum
number of visits was 46. Subscript x indexes therapy use,
where 1 is HAART use and 0 is non-HAART use. Subscript
z indexes calendar period, where 1 is the HAART calendar
period and 0 is the pre-HAART calendar period. Dijxz ¼ 1
indicates that participant i incurred the endpoint between
visits j and j þ 1 while using therapy x during calendar
period z, 0 otherwise. Tijxz is the number of person-years
that participant i contributed between visits j � 1 and j
while using therapy x during calendar period z. Vij is a
vector of time-fixed and time-varying covariates including
age at seroconversion, race/ethnicity, and time since
seroconversion.

Then, Dxz ¼
P614
i¼1

PJi
j¼1

Dijxz is the total number of events oc-

curring while using therapy x during calendar period z

summed over participants and visits. Txz ¼
P614
i¼1

PJi
j¼1

Tijxz is

the total number of person-years contributed while using
therapy x during calendar period z summed over participants
and visits. Let axz be the conditional probability of using
therapy x given calendar period z, as estimated by the pro-
portion of person-time spent using therapy x during calendar

period z: axz ¼ PðX ¼ xj Z ¼ zÞ ¼ Txz
Tþz

, where Tþz ¼
P1
x¼0

Txz.

A standard ITT analysis compares rates between calendar
periods, irrespective of actual therapy use. The ITT estima-
tor of the average causal effect can be written as

bITT ¼
a103

�
D10

T10

�
þ a003

�
D00

T00

�

a113
�
D11

T11

�
þ a013

�
D01

T01

� ¼
Dþ0

Tþ0

Dþ1

Tþ1

:

Our proposed instrumental-variable analysis compares rates
between calendar periods among ‘‘compliers,’’ those who
would have used HAART in the HAART calendar period
and would have used non-HAART in the pre-HAART cal-
endar period. The instrumental-variable estimator, assuming

that calendar period is an appropriate instrumental variable
and that calendar periods are exchangeable, can be written
as

bIV ¼
a003

�
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T00

�
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�
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The ratio on the right-hand side shows bIV in the common
instrumental-variable format (17), with the ITT estimator
divided by an estimator of the association between the in-
strumental variable and the exposure of interest. When there
is perfect compliance (i.e., no one contributes person-time
to the HAART calendar period while not using HAART, and
no one contributes person-time to the pre-HAART calendar
period while using HAART), then a10 ¼ a01 ¼ 0 and the
equation above reduces to bIV ¼ bITT. In Appendix 1 we
present a simulation comparison of the above ITT and
instrumental-variable estimators.

To control for Vij, we build inverse probability of calen-
dar period weights. The weights Wijþz are defined as
Wijþz ¼ P

�
Z ¼ z

��
P
�
Z ¼ zj Vij ¼ v

�
for i ¼ 1 to 614,

j ¼ 1 to Ji, where max(Ji) ¼ 46 and z ¼ 0 or 1. The numer-
ator of the weights is an estimate of the probability of being
in the same calendar period as the observation; it stabilizes
the weights and improves efficiency by restoring the ob-
served distribution of Z to the weighted data (33). The de-
nominator of the weights is an estimate of the probability of
being in the same calendar period as the observation, con-
ditional on a collection of covariates.

The collection of covariates Vij is chosen from the set of
measured covariates possibly associated with both calendar
period and the endpoint based on prior information (e.g.,
existing literature, biology), and data exploration. Both
probabilities for numerator and denominator were fit by
using pooled logistic regression models (34) for the log odds
of calendar period, specifically, logitPðZ ¼ zÞ ¼ c0 and
logitP

�
Z ¼ zj Vij

�
¼ d0 þ d1#Vij, where logit(p) ¼ ln[p/

(1 � p)], c0 and d0 are intercepts, and d1# is the transpose
of the column vector of log odds ratios for the components
of the covariate matrix Vij. Vij included age at randomiza-
tion, race/ethnicity, time since seroconversion, and the prod-
uct of age at randomization and race/ethnicity. Age at
randomization was centered at 35 years and was scaled by
5 years. Race/ethnicity was modeled by using a nonwhite
indicator. Time since seroconversion was centered at 5 years
and was fit by using a restricted cubic spline with knots at
the 5th, 28th, 50th, 72nd, and 95th percentiles. This choice
of knot placement minimizes the influence of the lower and
upper 5% of the distribution and roughly equally splits the
inner 90% (35). A description of the weights is provided in
Appendix 2.

Our weighted instrumental-variable estimator of the
causal rate ratio among compliers is
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wbIV ¼
wa003

�
wD00

wT00

�
� wa013

�
wD01

wT01

�

wa113
�

wD11

wT11

�
� wa103

�
wD10

wT10

�;

where wDxz ¼
P614
i¼1

PJi
j¼1

Dijxz3Wijxz, wTxz ¼
P614
i¼1

PJi
j¼1

Tijxz3Wijxz,

and waxz ¼ wTxz
wTþz

. The leading subscript w indicates a

weighted variable. We used standard formulas (36, p. 238)
to compute approximate 95% confidence limits around the
unweighted ITT estimates. To compute 95% confidence
limits around the other estimates, we resampled the 614
men 500 times (37). We then took the standard deviation
of the 500 resampled estimates on the natural logarithm (ln)
scale as the standard error of the log rate ratio.

RESULTS

Table 1 gives the distribution of events, person-years, and
rates by calendar period and therapy use. Overall, 268 AIDS
events, 49 deaths, 90 losses to follow-up, and 207 adminis-
trative censors occurred during 5,321 person-years. In the
pre-HAART calendar period, 2 of 217 (1%) events and 63 of
2,873 (2%) person-years occurred while the participant was
using HAART and are therefore misclassified. In the
HAART calendar period, 16 of 51 (31%) events and 911
of 2,447 (37%) person-years occurred while the participant
was not using HAART and are therefore misclassified.

The odds of being in the HAART calendar period com-
pared with the pre-HAART calendar period were 1.21-fold
higher (95% CL: 1.18, 1.24) for every 5-year increase in age
at seroconversion, 1.26-fold higher (95% CL: 1.08, 1.45) in
the nonwhite group compared with the white group, and
5.55-fold higher (95% CL: 3.88, 7.94) for every 5-year in-
crease in infection duration.

Table 2 gives the distribution of events and person-time
by calendar period for both the unweighted and weighted
data. When the pre-HAART calendar period was compared
with the HAART calendar period in the unweighted data, the
ITT rate ratio was 3.62 (95% CL: 2.67, 4.92) and the instru-
mental-variable rate ratio was 5.02 (95% CL: 3.45, 7.31).
The rates in the weighted data were similar. Comparing the
pre-HAART to the HAART calendar period in the weighted
data showed that the ITT rate ratio was 3.44 (95% CL: 2.48,
4.77) and the instrumental-variable rate ratio was 4.95 (95%
CL: 3.32, 7.37). Using 1998 as the cutoff for the HAART
calendar period instead of 1996 slightly increased all rate
ratio estimates: the ITT estimate became 3.74 (weighted
estimate, 3.70) and the instrumental-variable estimate
became 5.29 (weighted estimate, 5.13).

Figure 2 shows 3 divisions of events and person-time. We
use this figure as a graphic device to illustrate the calculation
of the unweighted estimators given above as bITT and bIV.
The first row shows the total number of events and total
amount of person-time in the cohort. The second row shows
the division of events and person-time by calendar period.
Within calendar periods, the third row shows the division by
therapy use. For those correctly classified (i.e., x ¼ z), the
fourth row shows how the events and person-time would
have been classified assuming that calendar period z is an
instrument for therapy x. The potential therapy use under
calendar period z ¼ 0,1 is denoted by xz, as seen in Figure 2.

Person-time in the fourth row of Figure 2 is calculated
before the number of events. Person-time for 1 calendar
period is partitioned according to the conditional probability
of using therapy (i.e., axz) in the other calendar period. For
example, in the HAART calendar period and HAART-use
arm, the 1,536.04 person-years are partitioned based on the
conditional probabilities of using HAART (a01) and not us-
ing HAART (a00) in the pre-HAART calendar period
arm: 33:75 ¼ 0:023 1;536:04 and 1;502:29 ¼ ð1� 0:02Þ3
1;536:04. The events for 1 calendar period are then parti-
tioned so that the rate in the ‘‘always takers’’ (or ‘‘never
takers’’) is equal to the noncomplier rate in the other calendar
period. For example, the number of events in the group of
HAART users from the HAART calendar period who would
have usedHAARThad they been in the pre-HAARTcalendar
period is chosen so that the rate in this group is equal to the
rate in the group of HAART users from the pre-HAART
calendar period: 1:07 ¼ ð2=63:13Þ3 33:75. The remaining
events (33.93 ¼ 35 – 1.07) are distributed as HAART users
from the HAART calendar period who would not have used
HAART had they been in the pre-HAART calendar period.

The unweighted ITT estimate comparing the pre-HAART
calendar period with the HAART calendar period can be
calculated by using rates from the second row of Figure 2.
This calculation yields an estimate of 3.62¼ (217/2,873.26)/
(51/2,447.46), equal to that shown inTable 2. The unweighted
instrumental-variable estimate can be calculated by using
rates from the bottom row of Figure 2. The instrumental-
variable estimate is an estimate of the complier-average
causal effect. Specifically, it is the rate ratio for those in
the pre-HAART calendar period who did not use HAART
but would have used HAART had they been in the HAART
calendar period, compared with those in the HAART calendar

Table 1. Distribution of Events, Person-years, and Rates by

Calendar Period and Therapy Use

Calendar
Period

No. of AIDS
Events

No. of
Person-Years

Ratea

Non-HAART Therapy

Pre-HAART 215 2,810.12 7.65

HAART 16 911.43 1.76

Total 231 3,721.55 6.21

HAART Therapy

Pre-HAART 2 63.13 3.17

HAART 35 1,536.04 2.28

Total 37 1,599.17 2.31

Total

Pre-HAART 217 2,873.26 7.55

HAART 51 2,447.46 2.08

Total 268 5,320.72 5.04

Abbreviations: AIDS, acquired immunodeficiency syndrome;

HAART, highly active antiretroviral therapy.
a Rates per 100 person-years.
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period who used HAART but would not have used HAART
had they been in the pre-HAART calendar period. This calcu-
lation yields an estimate of 5.02 ¼ (196.6/1,763.39)/(33.93/
1,502.29), equal to that shown in Table 2.

DISCUSSION

In this prospective observational study, the notable
amount of exposure misclassification in the HAART calen-
dar period appeared to null-bias the rate ratio, as one would
expect. Using an instrumental-variable estimator, we found
that exposure to non-HAART increased the hazard of an
AIDS-defining illness 5-fold compared with exposure to

HAART. This result is 39% (5.02/3.62) higher than the
simple calendar-period ITT result typically reported (1, 2, 21–
31). To obtain these results, we extended basic instrumental-
variable methods (8) from the risk difference to the rate ratio in
amanner that facilitatedmeasured-covariate adjustments based
on weighting the number of events and amount of person-time
by the inverse probability of calendar period given age at se-
roconversion, race/ethnicity, and time since seroconversion,
although this latter refinement did not appreciably alter the
results in our example (Table 2).

Our findings rely on the assumption that therapy use is
correctly measured. Recall that antiretroviral therapy use is
measured by self-report in the Multicenter AIDS Cohort

2/63.13 215/2,810.1235/1,536.04 16/911.43

51/2,447.46 217/2,873.26

268 Events/5,320.72 Person-Years

2/63.1316/911.43

z = 1 z = 0

x = 1 x = 0 x = 0x = 1

1.07/33.75 33.93/1,502.29 196.6/1,763.39 18.4/1,046.73

xz = 0 = 0xz = 0 = 1 xz = 1 = 1 xz = 1= 0

MACS Seroconverters

α01 = 0.02α11 = 0.63

Figure 2. Tree diagram showing the division of events and person-time by 1) calendar period z, 2) therapy use x, and 3) potential therapy use xz.
Refer to the Results section of the text for more information. MACS, Multicenter AIDS Cohort Study.

Table 2. Distribution of Events and Person-time by Calendar Period

Calendar
Period

No. of AIDS
Events

No. of
Person-Years

Ratea
Intent to Treat

Instrumental
Variable

Rate
Differencea

95% CI
Rate
Ratio

95% CI
Rate
Ratio

95% CI

Unweightedb

Pre-HAART 217 2,873.26 7.55 5.47 4.31, 6.62 3.62 2.67, 4.92 5.02 3.45, 7.31

HAART 51 2,447.46 2.08 0 1 1

Total 268 5,320.72 5.04

Weighted c,d

Pre-HAART 232.01 3,082.91 7.53 5.34 4.04, 6.64 3.44 2.48, 4.77 4.95 3.32, 7.37

HAART 51.14 2,335.93 2.19 0 1 1

Total 283.15 5,418.84 5.23

Abbreviations: AIDS, acquired immunodeficiency syndrome; CL, confidence limits; HAART, highly active anti-

retroviral therapy.
a Rates and rate differences per 100 person-years.
b Confidence intervals for unweighted intent-to treat estimates were calculated by using standard approximate

formulas (36, p. 238).
c Confidence intervals for weighted intent-to treat estimates and instrumental-variable estimates were calculated

by bootstrap (37).
d Covariates include age at seroconversion, race/ethnicity, time since seroconversion, and the product of age at

seroconversion and race/ethnicity.
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Study. We would expect that violations of this assumption
would result in null-biased estimates of the effect of
HAART on AIDS if the misclassification is nondifferential
and independent of other errors. In a sample of 68 HIV-
infected patients in which self-report was compared with
prescribed treatment obtained from medical record ab-
straction, the kappa statistic was 0.74 (95% CL: 0.55,
0.91) (38). These data suggest that self-reported HAART
is a good, albeit imperfect, proxy for prescribed HAART.
We further rely on the assumption that calendar period is
an appropriate instrumental variable for therapy use. Con-
ditional on controlled confounders, an instrumental vari-
able must be 1) associated with the exposure of interest, 2)
independent of the uncontrolled confounders of exposure
and outcome, and 3) independent of the outcome condi-
tional on the exposure and confounders. The first property
is well documented in the current setting (1, 2, 21–31).
However, properties 2 and 3 remain untestable in our ob-
served data. The use of inverse probability of calendar pe-
riod weights enables us to relax the third assumption so that
the instrument (calendar period) is assumed to be indepen-
dent of the outcome (AIDS) conditional on the exposure
(actual therapy use) and controlled confounders (here, mea-
sured indications for actual therapy use).

Beyond the 3 standard assumptions, our instrumental-
variable estimator, similar to that in Cuzick et al. (8), assumes
exchangeability between calendar periods (17). Specifically,
among the HAARTusers in the HAART calendar period, we
assume that, had these men been observed in the pre-
HAART calendar period, the same proportion of their
person-time would have been on HAART as for the men
observed in the pre-HAART calendar period. A parallel as-
sumption applies to the non-HAART users in the pre-
HAART calendar period. In addition, we assume that the
rate among the HAARTusers in the HAART calendar period
whowould have used HAART had they been observed in the
pre-HAART calendar period is equal to the rate among the
HAART users in the pre-HAART calendar period. We make
the same assumption for the rate among non-HAART users
in the pre-HAART calendar period. This assumption could
be violated if time trends are affecting comparability across
the pre-HAART and HAART calendar periods such as an
HIV-related non-HAART therapy introduced in the HAART
calendar period that decreases the risk of AIDS.

Our findings also rely on the assumption that we have
captured the full set of joint determinants of calendar period
and AIDS in our model for the weights. Our final model
included age at seroconversion, race/ethnicity, time since
seroconversion, and the product of age at seroconversion
and race/ethnicity.

While HAART was available in 1996, it was not widely
used until 1998. For that reason, we also explored the impact
of using 1998 as the HAART cutoff instead of 1996. The
unweighted and weighted ITT estimates were 3% and 8%
higher using 1998 as the cutoff, respectively. The unweighted
and weighted instrumental-variable estimates were 5% and
4% higher using 1998 as the cutoff, respectively.

The present study considered only 2 calendar periods and
2 therapies. Previous studies (1, 2, 21–31) further divided
our pre-HAART calendar period. Specifically, Detels et al.

(1) used 4 calendar periods: no therapy, monotherapy, com-
bination therapy, and HAART. A logical next step would be
to extend our instrumental-variable approach to 3 or more
calendar periods and 3 or more therapies.

In conclusion, instrumental-variable approaches to
noncompliance correction are straightforward (8, 17).
Application of instrumental-variable methods to misclassi-
fication correction is equally straightforward; while well
established in the measurement-error literature (39), it
seems largely unrecognized in settings such as ours where
an appropriate instrument is available (40). For example,
calendar period has been used as an instrument in cancer
research (41), and geographic location has been used as an
instrument in cardiovascular research (42). Furthermore, our
proposed estimator could also be adapted for use in Men-
delian randomization studies (43). These methods may help
to resolve discrepancies between observational and random-
ized evidence in a variety of biomedical fields.
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1. Detels R, Muñoz A, McFarlane G, et al. Effectiveness of potent
antiretroviral therapy on time to AIDS and death in men with
known HIV infection duration. Multicenter AIDS Cohort Study
Investigators. JAMA. 1998;280(17):1497–1503.

2. Porter K, Babiker A, Bhaskaran K, et al. Determinants of
survival following HIV-1 seroconversion after the introduction
of HAART. Lancet. 2003;362(9392):1267–1274.

3. Miettinen OS. The need for randomization in the study of
intended effects. Stat Med. 1983;2(2):267–271.

4. Hammer SM, Squires KE, Hughes MD, et al. A controlled trial
of two nucleoside analogues plus indinavir in persons with
human immunodeficiency virus infection and CD4 cell counts
of 200 per cubic millimeter or less. AIDS Clinical Trials Group
320 Study Team. N Engl J Med. 1997;337(11):725–733.

5. Cameron DW, Heath-Chiozzi M, Danner S, et al. Randomised
placebo-controlled trial of ritonavir in advanced HIV-1 disease.
The Advanced HIV Disease Ritonavir Study Group. Lancet.
1998;351(9102):543–549.

6. Piantadosi S. Clinical Trials: A Methodologic Perspective.
New York, NY: Wiley-Interscience; 1997.

7. Sommer A, Zeger SL. On estimating efficacy from clinical
trials. Stat Med. 1991;10(1):45–52. (Erratum: Stat Med. 1994;
13(18):1897).

8. Cuzick J, Edwards R, Segnan N. Adjusting for non-compliance
and contamination in randomized clinical trials. Stat Med. 1997;
16(9):1017–1029.

9. Robins JM, Tsiatis AA. Correcting for non-compliance in
randomized trials using rank preserving structural failure time
models. Commun Stat Theory Methods. 1991;20(8):2609–2631.

10. Nagelkerke N, Fidler V, Bernsen R, et al. Estimating treatment
effects in randomized clinical trials in the presence of non-
compliance. Stat Med. 2000;19(14):1849–1864.

11. Cole SR, Chu H. Effect of acyclovir on herpetic ocular re-
currence using a structural nested model. Contemp Clin Trials.
2005;26(3):300–310.

12. Vansteelandt S, Goetghebeur E. Sense and sensitivity when
correcting for observed exposures in clinical trials. Stat Med.
2005;24(2):191–210.

13. Robins JM, Finkelstein DM. Correcting for noncompliance
and dependent censoring in an AIDS Clinical Trial with in-
verse probability of censoring weighted (IPCW) log-rank tests.
Biometrics. 2000;56(3):779–788.

14. Greenland S, Lanes S, Jara M. Estimating effects from ran-
domized trials with discontinuations: the need for intent-to-
treat design and G-estimation. Clin Trials. 2008;5(1):5–13.

15. Cain LE, Cole SR. Inverse probability-of-censoring weights
for the correction of time-varying noncompliance in the effect
of randomized highly active antiretroviral therapy on incident
AIDS or death. Stat Med. In press.

16. Kaslow RA, Ostrow DG, Detels R, et al. The Multicenter AIDS
Cohort Study: rationale, organization, and selected characteris-
tics of the participants. Am J Epidemiol. 1987;126(2):310–318.

17. Greenland S. An introduction to instrumental variables for
epidemiologists. Int J Epidemiol. 2000;29(4):722–729.

18. Robins JM, Hernán MA, Brumback B. Marginal structural
models and causal inference in epidemiology. Epidemiology.
2000;11(5):550–560.

19. Department of Health and Human Services/Henry J Kaiser
Foundation. Guidelines for the Use of Antiretroviral Agents in
HIV-1-Infected Adults and Adolescents. 2006 (http://aidsinfo.
nih.gov/ContentFiles/AdultandAdolescentGL05042006050.pdf).

20. Cole SR, Hernán MA, Robins JM, et al. Effect of highly active
antiretroviral therapy on time to acquired immunodeficiency
syndrome or death using marginal structural models. Am J
Epidemiol. 2003;158(7):687–694.

21. Tassie JM, Grabar S, Lancar R, et al. Time to AIDS from 1992
to 1999 in HIV-1-infected subjects with known date of infec-
tion. J Acquir Immune Defic Syndr. 2002;30(1):81–87.

22. Tarwater PM, Mellors J, Gore ME, et al. Methods to assess
population effectiveness of therapies in human immunodefi-
ciency virus incident and prevalent cohorts. Am J Epidemiol.
2001;154(7):675–681.

23. Schneider MF, Gange SJ, Williams CM, et al. Patterns of
the hazard of death after AIDS through the evolution of
antiretroviral therapy: 1984–2004. AIDS. 2005;19(17):
2009–2018.

24. Palella FJ, Delaney KM, Moorman AC, et al. Declining mor-
bidity and mortality among patients with advanced human
immunodeficiency virus infection. HIV Outpatient Study In-
vestigators. N Engl J Med. 1998;338(13):853–860.

25. Moore RD, Chaisson RE. Natural history of HIV infection in
the era of combination antiretroviral therapy. AIDS. 1999;
13(14):1933–1942.

26. Mocroft A, Ledergerber B, Katlama C, et al. Decline in the
AIDS and death rates in the EuroSIDA study: an observational
study. Lancet. 2003;362(9377):22–29.
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APPENDIX 1

Simulation of the Instrumental-Variable Estimator

To explore the amount by which the as-treated, ITT, pro-
posed instrumental-variable, and augmented instrumental-
variable estimators differ from the average causal effect, we
performed 2,000 simulated draws with either a constant or

nonconstant (i.e., increasing) hazard and a sample size of
50, 200, or 400. We analyzed the simulated data by using
each of the methods shown in Appendix Table 1. In each sce-
nario, N men indexed by i each had an event time T ¼
min(V,W) generated by using a Weibull distribution, as
f ðvÞ ¼ akva�1expð � kvaÞ, where a is the Weibull shape pa-
rameter (we use a ¼ 1 or 2 for constant and nonconstant haz-
ards, respectively), k ¼ exp½a3 lnð2Þ3 xþ a3 lnð4Þ3 u�,
X is an indicator for HAART use generated as a Bernoulli

Appendix Table 1. Simulation Results Comparing the Average

Causal Effect, As-Treated, Intent-to-Treat, Instrumental-Variable,

and Augmented Instrumental-Variable Estimators

Sample
Size, No.

Hazard and
Estimator

RR ln(RR) (MCSE) SE RMSE

50 Constant

AsT 1.49 0.40 (0.009) 0.42 0.71

ITT 1.53 0.43 (0.009) 0.42 0.68

IV 2.04 0.71 (0.019) 0.83 0.95

IV2a 2.07 0.73 (0.019) 0.83 0.96

Nonconstant

AsT 1.46 0.38 (0.009) 0.40 0.81

ITT 1.61 0.48 (0.009) 0.39 0.71

IV 2.23 0.80 (0.018) 0.80 0.95

IV2 2.28 0.83 (0.019) 0.82 1.00

200 Constant

AsT 1.50 0.41 (0.004) 0.20 0.60

ITT 1.54 0.43 (0.005) 0.20 0.57

IV 1.93 0.66 (0.008) 0.35 0.48

IV2 1.94 0.66 (0.008) 0.35 0.49

Nonconstant

AsT 1.47 0.39 (0.004) 0.19 0.72

ITT 1.61 0.48 (0.004) 0.19 0.62

IV 2.14 0.76 (0.008) 0.36 0.55

IV2 2.15 0.77 (0.008) 0.36 0.57

400 Constant

AsT 1.50 0.41 (0.003) 0.14 0.58

ITT 1.53 0.43 (0.003) 0.14 0.56

IV 1.89 0.64 (0.005) 0.22 0.34

IV2 1.89 0.64 (0.005) 0.24 0.36

Nonconstant

AsT 1.48 0.39 (0.003) 0.13 0.71

ITT 1.61 0.48 (0.003) 0.13 0.60

IV 2.09 0.74 (0.005) 0.24 0.44

IV2 2.10 0.74 (0.005) 0.24 0.45

Abbreviations: AsT, as treated; ITT, intent to treat; IV, instrumental

variable; ln(RR), arithmetic mean of the 2,000 log rate ratios; MCSE,

Monte Carlo standard error; RMSE, root mean squared error of ln(RR)

relative to the Kullback-Liebler Information Criterion parameter

(�ln(1.82) and �ln(1.96) under a constant and nonconstant hazard,

respectively) (44, 45); RR, geometric mean of the 2,000 rate ratios;

SE, standard error for ln(RR).
a Event counts were augmented by 1/2 in each exposure group.
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random variable with probability p ¼ ð1þ
expf�½�lnð42:5Þ þ lnð4Þ3 uþ lnð81Þ3 z�gÞ�1, U repre-
sents the unmeasured common causes of X and T generated
as a Bernoulli random variable with probability p¼ 0.5, Z is
an indicator for the HAART calendar period generated as
a Bernoulli random variable with probability p ¼ 0.5, and
randomcensoring timeW is chosen to yield the expected 45%
censored endpoints. For the average causal effect, we take the
Kullback-Liebler Information Criterion (KLIC) parameter
(44, 45), rather than a3 ln(2), because a3 ln(2) represents
the covariate-conditional causal effect in nonlinear models
when covariate effects are present (46, 47). TheKLIC param-
eters (44) are �ln(1.82) and �ln(1.96) under a constant and
nonconstant hazard, respectively.

As shown in Appendix Table 1, both the as-treated and
ITT estimators are null biased with respect to the average
causal effect but are relatively precise. The instrumental-
variable estimator is less biased, albeit less precise. Aug-
menting the instrumental-variable estimator by adding 1/2
an event to each exposure group did not improve its perfor-
mance. Combining bias and precision shows that, for the
large-sample scenarios explored, the proposed instrumental-
variable estimator outperforms the as-treated, ITT, and aug-
mented instrumental-variable estimators, and, as the sample
size increases, the bias in the proposed instrumental-
variable estimator decreaseswhile the biases in the as-treated
and ITT estimators do not decrease.

APPENDIX 2

Description of the Weights

A box plot of the distribution of the log-standardized in-
verse probability of calendar period weights is displayed in
Appendix Figure 1. The minimum, 1st percentile, 25th per-
centile, median, 75th percentile, 99th percentile, and max-
imum weights were 0.45, 0.67, 0.87, 0.99, 1.13, 3.46, and
32.67, respectively. The mean weight was 1.15 (standard
deviation, 1.31). Truncating (48) the inverse probability of
calendar period weights at the 1st and 99th percentiles
yielded similar results (data not shown).

Appendix Figure 1. Distribution of inverse probability of calendar
period weights.
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