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For most associations of common single nucleotide polymorphisms (SNPs) with common diseases, the genetic
model of inheritance is unknown. The authors extended and applied a Bayesian meta-analysis approach to data
from 19 studies on 17 replicated associations with type 2 diabetes. For 13 SNPs, the data fitted very well to an
additive model of inheritance for the diabetes risk allele; for 4 SNPs, the data were consistent with either an additive
model or a dominant model; and for 2 SNPs, the data were consistent with an additive or recessive model. Results
were robust to the use of different priors and after exclusion of data for which index SNPs had been examined
indirectly through proxy markers. The Bayesian meta-analysis model yielded point estimates for the genetic effects
that were very similar to those previously reported based on fixed- or random-effects models, but uncertainty about
several of the effects was substantially larger. The authors also examined the extent of between-study heteroge-
neity in the genetic model and found generally small between-study deviation values for the genetic model
parameter. Heterosis could not be excluded for 4 SNPs. Information on the genetic model of robustly replicated
association signals derived from genome-wide association studies may be useful for predictive modeling and for
designing biologic and functional experiments.

Bayes theorem; diabetes mellitus, type 2; meta-analysis; models, genetic; polymorphism, genetic; population
characteristics

Abbreviations: AUC, area under the receiver operating characteristic curve; OR, odds ratio; SNP, single nucleotide polymorphism.

When the association between a genetic marker and a trait
is evaluated in a population-based study, there is rarely a pri-
ori biologic evidence supporting a particular genetic model
of inheritance for the risk allele. Investigators may present
and analyze the results of genetic association studies in vari-
ous ways. If the risk is the same for heterozygotes, carrying
1 copy of the high-risk allele a, as for homozygotes, then the
underlying genetic model is dominant, and therefore the
data are dichotomized into ‘‘carriers’’ versus ‘‘noncarriers.’’
If 2 copies of a are required for the risk to be different from

the baseline risk, then the genetic model is recessive. The
additive model assumes that on a log scale, the risk in car-
riers of 2 copies of a is double the risk in heterozygotes.
Usually a strong preference for 1 genetic model is unjusti-
fied (1). Exceptions exist, as in the case of null genotypes of
enzyme-coding genes, where extensive data on enzymatic
activity may be available, but typically the model of inher-
itance used is suggested by convenience or even tradition in
the research field. For example, it is common in the analysis
of associations with rare susceptibility alleles to analyze
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data assuming a dominant model, perhaps because it is
recognized that a recessive-model analysis would have
negligible statistical power. Usually the rationale used in
choosing 1 particular model is not discussed at all.

In theory, one could try to examine the fit of different
models to the data. However, the ability to draw inferences
from a single study’s data is limited. A meta-analysis of
many studies improves the power to demonstrate associa-
tions consistently and may also allow for a stronger explo-
ration of how the available data fit different models of
inheritance, along with obtaining a summary effect size.
In this regard, a Bayesian model has been suggested; the
genetic model in a meta-analysis is represented by an un-
known parameter which, when estimated across studies,
allows us to learn about the underlying model (2–4).

Until now, this method has been applied primarily to
meta-analyses of genetic associations from the candidate
gene era (3, 5). This has posed difficulties in exploiting its
full potential, given the poor replication record of such as-
sociations (6). If an association is not confirmed, modeling
of the best-fitting genetic model may produce a fit to the
noise and errors in the data rather than the true underlying
biology. However, the advent of genome-wide association
studies (7) and large-scale consortia (8) has transformed the
evidence on genetic associations. For several diseases, we
now have robust evidence on a number of common genetic
variants. Using data from associations with robust statistical
support and large-scale evidence from many data sets, one
can revisit the question of genetic model fit more efficiently.
This can yield some useful insights into the underlying bi-
ology of the identified associations and may also be infor-
mative with regard to the best analysis plan for genome-
wide association studies. In the setting of an agnostic ap-
proach, investigators often pick 1 genetic model for analyz-
ing the data. Most often this is the additive (per-allele or
codominant) model, because of statistical power consider-
ations, and thus most associations derived from genome-
wide association studies are usually presented as per-allele
risks (9). It would be useful to examine whether other mod-
els might fit these data equally well or better.

Our aim in this paper was to explore the potential of Bayes-
ian meta-analysis to inform us about the underlying genetic
model for 17 single nucleotide polymorphisms (SNPs) that
have robust statistical support for an association with type 2
diabetes. Type 2 diabetes is a prime paradigm in which a large
number of common variants have already been identified
with a successful application of large-scale collaborative re-
search. We analyzed data from the DIAGRAM [Diabetes
Genetics Replication and Meta-Analysis] consortium that in-
corporate, through meta-analysis, data from 3 genome-wide
association studies and from replication data sets (10–14).

MATERIALS AND METHODS

Type 2 diabetes data

The field of type 2 diabetes genetics has witnessed rapid
progress in the identification of robustly associated suscep-
tibility loci over the last few years. The list of established
disease-associated variants continues to grow. We examined

genotype data from 19 case-control studies for 17 of these
established type 2 diabetes loci (see Web Table 1, posted
on the Journal’s Web site (http://aje.oxfordjournals.org/)).
We obtained data generated principally through the efforts
of the DIAGRAM consortium. Details on the contributing
data sets can be found elsewhere (10–14). For each study, we
used the raw genotype data in cases and controls. The data
sets were derived from 3 genome-wide association studies
(10–12) and additional replication teams. Results regarding
the strength of association for each of these polymorphisms
in each of the discovery genome-wide association studies are
provided elsewhere (14). For the 3 genome-wide association
studies, SNPs were excluded if the controls violated Hardy-
Weinberg equilibrium at P < 0.000001 (P < 0.0001 in the
Wellcome Trust Case Control Consortium study), given the
large multiplicity of analyses; the threshold for Hardy-
Weinberg equilibrium testing in the replication data sets
was P < 0.001 (P < 0.05 in the Nurses’ Health Study).

Statistical methods

We extended a model initially suggested by Minelli et al.
(2). Consider a biallelic locus, with A being the ‘‘low-risk’’
allele and a the allele associated with higher risk of type
2 diabetes. The association of the locus with the disease
is then reflected in 2 odds ratios (ORs); choosing the homo-
zygotes AA as a reference group, ORAa is the odds ratio for
the heterozygotes and ORaa is the odds ratio for the homo-
zygotes aa in comparison with the reference group. The
underlying genetic model refers to the relation between
these 2 odds ratios. In a general case, log(ORaa) ¼
klog(ORAa), with k ¼ 1 for a dominant model, k ¼ 0.5
for an additive model, and k ¼ 0 for a recessive model for
the diabetes risk allele. However, one may argue that k may
be left unspecified and let the data inform the model. Each
study, however, provides only 1 genotype-specific estimate
of the effect and therefore only 1 estimate of k.

If there is little rationale assuming that the genetic model
would vary across studies, a fixed-effects summary estimate
of k could be obtained from a meta-analysis. However, if
there are reasons to believe that the model of inheritance
might vary across studies (if, for example, the studies refer
to different ethnic groups), a hierarchical random-effects
model for k can be fitted.

The meta-analysis model is outlined below. We fit it
within a Bayesian framework to take advantage of its flex-
ibility. An important asset is its ability to incorporate full
uncertainty in all model parameters (including the hetero-
geneity parameter s2 and the genetic model parameter k).
Eventually, it is possible to estimate the probability of each
genetic model’s being the true one.

Genetic model-free meta-analysis model

The evaluated type 2 diabetes studies had a case-control
design, and therefore they would be appropriately analyzed
using a retrospective likelihood approach. Consider the 2
vectors of the observed distribution of the cases and controls
for the 3 genotypes (AA, Aa, aa), cai ¼ ðcaAAi; caAai; caaaiÞ
and coi ¼ ðcoAAi; coAai; coaaiÞ, for a study i. The basic
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parameters to model are 2 probability vectors for the 3
genotypes, given the case or control status (15). The like-
lihood is multinomial for both cases and controls. In study
i, the cases (denoted ca) and the controls (denoted co)
relate to the parameters pca

i ¼
�
pcaAAi; p

ca
Aai; p

ca
aai

�
and pco

i ¼�
pcoAAi; p

co
Aoi; p

co
aai

�
with

P
j¼AA;Aa;aa

pcaji ¼ 1 and
P

j¼AA;Aa;aa

pcoji ¼ 1

through the multinomial likelihoods

cai ~Multi
�
pco

i ;
X
j

caji

�
and coi ~Multi

�
pco

i ;
X
j

coji

�
:

As discussed above, it is not necessary to assume a particular
inheritance model. We can parameterize the 2 log odds
ratios as logðORAaÞ ¼ kili and logðORaaÞ ¼ li.

Then the 3 genetic models can be identified as follows.

Dominant: k ¼ 1, so that mutant homozygotes and
heterozygotes have the same disease odds.

Codominant: k ¼ 0.5, so that homozygotes have double
the odds (on the log scale).

Recessive: k ¼ 0, suggesting that heterozygotes have no
higher disease odds than wild-type homozygotes.

Generally it should be reasonable to assume that risks are
inherited in a similar way in different populations, so we have
a common effect for k in our analyses; that is, ki ¼ k, and we
will refer to this as model 1, which represents our main analy-
sis. To allow for heterogeneity in the underlying inheritance
model across studies, we also examined as sensitivity analy-
ses random effects, where random ki parameters underlie
each study, and these are drawn from a common distribution,
where ki may be restricted to lie between 0 and 1 (i.e.,
ki ~N

�
kR; s2

k

�
I
�
0; 1

�
(model 2)) or could be more unre-

stricted and thus also take negative values and values above
1 (i.e., ki ~N

�
kU ; s2

k

�
(model 3)). When ki is restricted to lie

between 0 and 1, the risk conferred by heterozygosity is
forced to range between no risk and the risk conferred by
homozygosity. With more unrestricted values of ki, addi-
tional possibilities are allowed; for example, heterozygotes
may have a protective effect while homozygotes have in-
creased risk (negative values of k), or heterozygotes may
have more increased risk than homozygotes (k > 1).

The case probabilities are parameterized in terms of the
log odds ratios and the probabilities in the controls:

pcaAAi ¼ pcoAAi
��
pcoAAi þ exp

�
kli

�
pcoAai þ exp

�
li
�
pcoaai

�
:

pcaAai ¼ exp
�
kliÞpcoAai

��
pcoAAi þ exp

�
kli

�
pcoAai þ exp

�
li
�
pcoaai

�

pcaaai ¼ expðliÞpcoaai
��
pcoAAi þ exp

�
kli

�
pcoAai þ exp

�
li
�
pcoaai

�
:

:

A fixed-effects meta-analysis may be undertaken assuming
li ¼ l for each i or a random-effects meta-analysis
assuming li ~Nðl; s2Þ, with s measuring the extent of
heterogeneity.

Prior distributions and model fit

We used minimally informative normal priors centered at
0 for the location parameters li; l. For the probabilities pca

i ,

we used priors that approximated the Dirichlet distribution
and gave equal prior probabilities of the diabetes condition

to all 3 genotypes (pcoj ¼ dj=
P
j
dj; dj ~Beta

�
1; 1

�
for j ¼

AA;Aa; aa). For the heterogeneity standard deviation, we
placed a half-normal prior s ~Nð0; 1Þ; s > 0.

For the genetic model parameter k, which is the focus of
our research, we implemented 4 prior probabilities. The first
3 use the flexible Beta distribution (previously used by
Minelli et al. (2)) that returns k values between 0 and 1:

a) k~Betað1; 1Þ;
b) k~Betað0:5; 0:5Þ;
c) k ~Betað0:7; 0:7Þ.

The first prior has a flat uniform shape between 0 and 1.
However, when the model is recessive or dominant (i.e., k is
at the edges of the distribution), the first prior (prior a) tends
to shift the parameter values toward the mean of the distri-
bution (0.5). Therefore, the second prior, Beta(0.5, 0.5),
gives higher probabilities at the upper and lower ends of
the interval. This prior has the drawback that when the true
model is additive, it tends to shift the estimate towards the
edges of the distribution. The third prior represents a com-
promise between the above 2 situations; we used the third
prior in the main analysis and the other 2 in sensitivity
analyses.

We further introduce another discrete distribution ap-
proach. This fourth prior reflects situations in which k is
allowed to take discrete values only, those corresponding
to the 3 genetic models. Therefore,

d) k ~ catð0; 0:5; 1Þ, with corresponding probabilities
pR; pC; pD, where we set all models to be equally prob-
able and thus pR ¼ pC ¼ pD ¼ 1=3.

Figure 1 presents the 4 priors.
For the 2 models in which it is assumed that there are

random small differences in ki, the prior on the mean of the
random-effects distribution kR for the restricted case is
a Beta prior kR ~Beta

�
0:7; 0:7

�
. For the unrestricted case,

the prior is reflecting the ability to incorporate heterosis and
negative k values but it is truncated to the interval �1 to 2
(kU ~N

�
0; 1; 000

�
I
�
�1; 2

�
), since values outside of this

very wide range are not very plausible. For the genetic
model heterogeneity standard deviation sk, we placed
a half-normal prior: sk ~Nð0; 1Þ; sk � 0.

We then estimated the posterior distribution of k. For the
first 3 priors, we obtained the median value and its 95%
credibility interval and also evaluated the impact on the
estimated odds ratios and heterogeneity parameter (s). For
prior d, the posterior distribution shows directly the proba-
bility of each model, as the probability that k takes each 1 of
the 3 alternative values.

Table 1 presents schematically all of the alternative mod-
els and their combinations with the priors.

Eight SNPs have been approximated in some studies by
genotyping a nearby SNP in high linkage disequilibrium
(Web Table 1). Since the suggested model might be affected
by the use of proxies, we performed sensitivity analysis by
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including only studies in which the investigators had geno-
typed the main SNP of interest.

We fitted the model with WinBUGS software (16), using
100,000 Markov chain Monte Carlo cycles after 10,000
burn-in iterations. The WinBUGS code can be found at
http://www.dhe.med.uoi.gr/software.htm.

RESULTS

Posterior probabilities for l—main analysis

In Table 2, we present the odds ratios for heterozygotes
and homozygotes and the median values and 95% credibility
intervals for k using model 1 and prior c (i.e., k ~ Beta(0.7,
0.7)); we also show the discrete probability of each of the 3
models of inheritance based on prior d. All odds ratios refer
to the high-risk allele for each SNP, and each meta-analysis
comprises 19 studies, unless stated otherwise. Of the 312
data sets of controls, 30 had P values less than 0.05 in
Hardy-Weinberg equilibrium testing; only 4 had P <
0.001 in such testing.

In the majority of cases, the suggested most likely model
was the additive model. For 4 SNPs, the underlying model
seemed to lie between the additive model and the dominant
model for the risk allele (at the NOTCH2, CDC123/
CAMK1D, TSPAN8/LGR5, and TCF2 loci), with corre-
sponding probabilities supporting the dominant model being
25%, 15%, 11%, and 31%. These are the 4 SNPs for which
the estimated ORaa’s for homozygotes were the weakest,
ranging from 1.10 to 1.16. For 2 SNPs (at the THADA and
WFS1 loci), the model seemed to lie between the additive
and recessive models for the risk allele, with probabilities
supporting the recessive model being 39% and 17%, respec-

tively. In both cases, the ORAa for heterozygotes was weak
(1.07 and 1.05, respectively).

For all 17 SNPs, at least 1 of either the dominant or re-
cessive models could be excluded. Figure 2 shows represen-
tative posterior distributions according to prior c.

Sensitivity analyses using different priors for l

The 3 different priors had some impact on the median k
estimate for model 1 but not on the overall conclusions. In
cases where there was high confidence about the underlying
model (more than 95% probability for a specific model ac-
cording to prior d)—for example, the additive models sug-
gested for PPARG, ADAMTS9, IGF2BP2, CDKAL1, JAZF1,
SLC30A8, CDKN2A/B, HHEX/IDE, TCF7L2, KCNJ11, and
FTO—the absolute differences for the 3 Beta distribution
priors were no more than 0.01 in the median posterior k, no
more than 0.09 in the 2.5% credibility bound, and no more
than 2% in the 97.5% credibility bound. For the other 6
SNPs, the absolute differences in the median k went up to
0.08, and the respective figures for the upper and lower 95%
credibility bounds were 0.05 and 0.05 (see Web Table 2
(http://aje.oxfordjournals.org/)).

Effect estimates and their uncertainty

There was also no material variation in the odds ratio
point estimates or the heterogeneity standard deviation s
with the different priors (Web Table 2). Note that Bayes-
ian estimation of the effects incorporates full uncertainty
in the estimates, including the uncertainty in the hetero-
geneity variance s2, and therefore gives wider intervals
than the random-effects model fitted with frequentist
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Figure 1. Prior probabilities for k, the genetic model parameter. The first 3 priors are based on a Beta distribution (part A), and the fourth prior is
a categorical prior (part B).
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approaches. In the main analysis (using prior c), for 9
genetic variants (at the IGF2BP2, CDKAL1, JAZF1,
SLC30A8, CDKN2A/B, CDC123/CAMK1D, TCF7L2,
KCNJ11, and FTO loci), the lower bound of the 95%
credibility interval for the effect of heterozygosity was
higher than 1.05, and this also applied to the effect for
homozygotes. The 95% credibility intervals for the effect
of NOTCH2 included the null value for both heterozy-
gotes and homozygotes. For the remaining SNPs (in/near
THADA, PPARG, ADAMTS9, HHEX/IDE, TSPAN8/LGR5,
and TCF2), the lower bound of the 95% credibility inter-
val for the effect of heterozygosity was rather low (lower
than 1.05), while the effect of homozygosity was giving
lower bounds up to 1.15.

The variation in these results based on the alternative
priors was not substantial (Web Table 2).

Sensitivity analyses excluding data on proxy SNPs

Table 3 shows sensitivity analysis results for the 8 index
SNPs for which proxies have been used in some studies. In 6
cases (the CDKAL1, JAZF1, HHEX/IDE, TCF7L2, TCF2,
and FTO loci), exclusion of proxies did not seem to result in
material changes regarding the genetic model parameter or
the probability for each genetic model, although the uncer-
tainty in all parameters increased in some cases because of
the reduced total sample size. For NOTCH2, the probability
supporting the dominant model dropped from 25% to 11%.
Confidence for the additive model for IGF2BP2 was slightly
challenged, giving 11% probability for a dominant model.

Heterogeneity in li estimates across studies

We fitted the model allowing the study-specific genetic
model parameters ki to vary randomly with values restricted
between 0 and 1. Table 4 gives results for the median kR of
the distribution and the parameter sk, which shows the mag-
nitude of the genetic-model heterogeneity fitted using prior c.
The median heterogeneity standard deviation was no higher
than 0.14. For NOTCH2, the credibility interval was shifted
downwards (0.32, 0.99 became 0.23, 0.78), and the recessive

Table 1. Alternative Models for the Genetic Model Parameter

Model Effects
Restriction on

Study-Specific li

Prior on the
Fixed/Average l

1 Fixed Not applicable k ~Betað1; 1Þ
k ~Betað0:5; 0:5Þ
k ~Betað0:7; 0:7Þ
k ~ catð0; 0:5; 1Þ

2 Random ki lies within (0, 1) kR ~Betað0:7; 0:7Þ
3 Random No restriction kU ~Nð0; 1; 000ÞIð�1; 2Þ

Table 2. Estimated Odds Ratios for Type 2 Diabetes (With Associated 95% Credibility Intervals) According to the Underlying Genetic Model

(Parameter k), Assuming a Beta(0.7, 0.7) Priora

SNP
Risk
Allele

No. of
Studies

Chromosome
Gene/
Region

ORAa ORaa l Probabilityb, %

2.5% Median 97.5% 2.5% Median 97.5% 2.5% Median 97.5% Recessive Additive Dominant

rs10923931 T 19 1 NOTCH2 0.99 1.07 1.15 0.99 1.11 1.28 0.32 0.65 0.99 0 75 25

rs7578597 T 19 2 THADA 1.00 1.07 1.27 1.15 1.26 1.49 0.01 0.29 0.62 39 61 0

rs1801282 C 19 3 PPARG 1.01 1.13 1.34 1.05 1.26 1.56 0.20 0.55 0.71 1 98 1

rs4607103 C 19 3 ADAMTS9 1.01 1.08 1.17 1.09 1.17 1.27 0.09 0.47 0.70 4 96 0

rs4402960 T 19 3 IGF2BP2 1.05 1.11 1.17 1.10 1.20 1.32 0.39 0.55 0.77 0 100 0

rs10010131 G 18 4 WFS1 1.00 1.05 1.11 1.09 1.17 1.26 0.04 0.31 0.53 17 83 0

rs10946398 C 17 6 CDKAL1 1.09 1.13 1.18 1.21 1.29 1.40 0.34 0.48 0.65 0 100 0

rs864745 T 19 7 JAZF1 1.05 1.09 1.15 1.12 1.18 1.25 0.31 0.53 0.76 0 100 0

rs13266634 C 19 8 SLC30A8 1.05 1.12 1.19 1.14 1.21 1.29 0.35 0.58 0.76 0 100 0

rs10811661 T 19 9 CDKN2A/B 1.09 1.22 1.37 1.31 1.46 1.64 0.32 0.53 0.66 0 100 0

rs12779790 G 19 10 CDC123/
CAMK1D

1.05 1.10 1.14 1.08 1.16 1.27 0.34 0.62 0.98 0 85 15

rs5015480 C 19 10 HHEX/IDE 1.03 1.09 1.14 1.12 1.20 1.28 0.24 0.45 0.63 0 100 0

rs7901695 C 17 10 TCF7L2 1.19 1.31 1.45 1.36 1.61 1.91 0.50 0.58 0.66 0 100 0

rs5219 T 19 11 KCNJ11 1.07 1.11 1.16 1.18 1.26 1.35 0.31 0.44 0.59 0 100 0

rs7961581 C 18 12 TSPAN8/
LGR5

1.02 1.07 1.13 1.04 1.12 1.23 0.31 0.59 0.97 0 89 11

rs757210 A 14 17 TCF2 1.01 1.06 1.14 1.01 1.10 1.20 0.32 0.70 0.99 1 68 31

rs8050136 A 19 16 FTO 1.12 1.16 1.21 1.25 1.33 1.41 0.42 0.53 0.66 0 100 0

Abbreviations: OR, odds ratio; rs, reference SNP; SNP, single nucleotide polymorphism.
a All results pertain to 19 studies (14), unless stated otherwise.
b Probabilities of k being 0, 0.5, and 1 (representing the recessive, additive, and dominant models, respectively) according to a categorical prior

(prior d).
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model could be excluded for ADAMTS9. The CDC123/
CAMK1D and TSPAN8/LGR5 upper limits for median k
were lower (0.98 and 0.97 became 0.86 and 0.84, respec-
tively). For all other SNPs, no material changes in the me-
dian k value were observed, and the credibility intervals
were comparable to those from the fixed-effects model. Con-
sequently, no major changes regarding the underlying model
or the estimated odds ratios were observed.

Table 5 shows results from a random-effects model in
which we also allowed k to vary randomly. Important
changes were observed for the NOTCH2 locus, which now
covered possible values for the median k between recessive,
additive, and dominant models and included the heterosis
possibility (see Web Figure 1 (http://aje.oxfordjournals.org/)).
THADA gave a 95% credibility interval that covered the
majority of the allowed negative values, with a considerable
shift of the median from 0.36 to 0.10. ADAMTS9 included

the recessive model, whereas with an unrestricted model the
lowest 95% credibility bound was at 0.26 (Web Figure 1).
For 3 further loci (CDC123/CAMK1D, TSPAN8/LGR5, and
TCF2), the scenario of heterosis could not be excluded.
However, the unrestricted analysis with model 3 seemed
to give results consistent with those from the restricted
model (model 2) and the fixed-effects model (model 1) for
the IGF2BP2, CDKAL1, JAZF1, SLC30A8, CDKN2A/B,
KCNJ11, and FTO loci.

DISCUSSION

We applied and extended a genetic model-free Bayesian
approach to investigate the fit of type 2 diabetes associations
to various genetic models of inheritance. Regardless of the
prior distribution used, our analyses found that most of the
common genetic variants that show robust associations with
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Figure 2. Posterior distributions for k for a common (fixed) genetic model using prior c (see text). In the top 3 panels, the additivemodel is themost
probable model and the dominant and recessive models are ruled out. For THADA and WFS1, only the dominant model is ruled out, and for
NOTCH2, CDC123/CAMK1D, TSPAN8/LGR5, and TCF2, only the recessive model is ruled out.

Table 3. Estimated Genetic Model Parameter k (and 95% Credibility Interval) Assuming a Beta(0.7, 0.7) Priora

No. of Studies Gene/Region
l Probabilityb, %

2.5% Median 2.5% Recessive Additive Dominant

15 NOTCH2 0.24 0.50 0.97 0 89 11

15 IGF2BP2 0.43 0.65 0.96 0 89 11

12 CDKAL1 0.30 0.44 0.61 0 100 0

18 JAZF1 0.31 0.54 0.78 0 100 0

5 HHEX/IDE 0.14 0.52 0.82 0 99 1

7 TCF7L2 0.36 0.46 0.59 0 100 0

8 TCF2 0.20 0.70 0.99 2 56 42

18 FTO 0.41 0.52 0.65 0 100 0

a Studies in which proxy single nucleotide polymorphisms were used were excluded.
b Probabilities of k being 0, 0.5, and 1 (representing the recessive, additive, and dominant models, respectively)

according to a categorical prior (prior d).
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type 2 diabetes risk fitted best to an additive model. How-
ever, several exceptions existed, where either recessive or
dominant models for the risk allele also had substantial

support as alternative options, besides the additive model.
At least 1, if not 2, of the 3 main genetic models could be
excluded with considerable certainty for all 17 associations.

Table 4. Median Values (and 95% Credibility Intervals) for kR and the Genetic Model

Heterogeneity Parameter tl, Assuming Random Effects for k and Using the Restricted Model

(Model 2)

Gene/Region
lR tl

2.5% Median 97.5% 2.5% Median 97.5%

NOTCH2 0.23 0.45 0.78 0 0.12 0.29

THADA 0.08 0.36 0.61 0 0.07 0.24

PPARG 0.31 0.55 0.73 0.01 0.14 0.30

ADAMTS9 0.26 0.49 0.71 0 0.10 0.27

IGF2BP2 0.38 0.56 0.75 0.01 0.09 0.25

WFS1 0.13 0.34 0.54 0 0.08 0.25

CDKAL1 0.32 0.47 0.68 0 0.10 0.28

JAZF1 0.32 0.52 0.71 0 0.13 0.30

SLC30A8 0.36 0.56 0.74 0.01 0.11 0.28

CDKN2A/B 0.31 0.51 0.65 0.01 0.05 0.18

CDC123/CAMK1D 0.33 0.57 0.86 0.01 0.09 0.26

HHEX/IDE 0.27 0.46 0.64 0 0.12 0.28

TCF7L2 0.45 0.56 0.68 0.03 0.13 0.25

KCNJ11 0.30 0.44 0.60 0.01 0.08 0.24

TSPAN8/LGR5 0.30 0.53 0.84 0 0.10 0.28

TCF2 0.33 0.63 0.89 0 0.08 0.29

FTO 0.41 0.53 0.66 0 0.06 0.22

Table 5. Median Values (and 95% Credibility Intervals) for kU and the Genetic Model

Heterogeneity Parameter tl, Assuming Random Effects for k and Using the Unrestricted Model

(Model 3)

Gene/Region
lU tl

2.5% Median 97.5% 2.5% Median 97.5%

NOTCH2 0.08 0.51 1.60 0.02 0.35 1.27

THADA �0.84 0.10 0.58 0.01 0.16 0.69

PPARG 0.13 0.53 0.77 0.01 0.23 0.64

ADAMTS9 �0.06 0.44 0.72 0.01 0.20 0.72

IGF2BP2 0.38 0.59 0.87 0.01 0.14 0.51

WFS1 �0.05 0.29 0.56 0.01 0.20 0.66

CDKAL1 0.29 0.47 0.67 0.01 0.14 0.43

JAZF1 0.25 0.52 0.76 0.01 0.22 0.57

SLC30A8 0.28 0.56 0.76 0.01 0.18 0.52

CDKN2A/B 0.31 0.52 0.65 0 0.05 0.20

CDC123/CAMK1D 0.35 0.68 1.65 0.01 0.16 0.69

HHEX/IDE 0.17 0.44 0.66 0.015 0.17 0.52

TCF7L2 0.12 0.55 0.72 0.05 0.16 1.12

KCNJ11 0.28 0.44 0.61 0.01 0.10 0.35

TSPAN8/LGR5 0.15 0.56 1.22 0.02 0.35 1.07

TCF2 0.18 0.71 1.45 0.02 0.28 1.15

FTO 0.41 0.53 0.69 0 0.07 0.24
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The 17 SNPs that we analyzed all had considerable sta-
tistical support, with P values less than 2 3 10�7 in joint
analyses (by fixed-effects models and, for most, also by
random-effects models) (13, 14). They also passed several
quality checks, including Hardy-Weinberg equilibrium test-
ing, although modest deviations from such equilibrium were
still possible. Overall, the credibility of these associations
was rather high.

The choice of genetic model in genome-wide association
studies remains open and arbitrary, but most investigators
seem to adopt an additive (per-allele) analysis. Exclusively
recessive-fit and exclusively dominant-fit associations may
be discovered if a more comprehensive analytical approach
is followed. Studies examining variants in linkage disequi-
librium with the causal variant (and not the causal variant
itself) may have higher power to detect an association under
the additive model. Therefore, the established type 2 diabe-
tes variants we are investigating are likely to have a higher
relative representation of such loci.

We also evaluated the possibility of between-study het-
erogeneity in the genetic model. For most SNPs, the median
between-study standard deviation was small or modest, and
its consideration did not much change the overall inferences
about the most likely genetic model. An unrestricted analy-
sis showed that heterosis is not common but still remains
a plausible scenario, since it could not be excluded for 4 of
the 17 SNPs. Given that genome-wide association studies
use target SNPs that are unlikely to be the true culprits,
different linkage disequilibrium may introduce such hetero-
geneity in the genetic model across different populations.
This is not very likely in the examined data, since all study
populations were of Caucasian descent. However, this might
become a more serious issue if populations of different
ancestry were to be examined.

A limitation of a genetic model-free Bayesian model is
that it is driven by the data at hand in identifying the most
likely genetic model. The ability to extrapolate to other data
and populations is an open challenge. Moreover, the pro-
posed modeling should be used primarily for associations
that are already supported by a substantial body of evidence,
based on several studies and conventional meta-analysis
thereof. Application of these methods to data from associa-
tions that are likely to represent false-positives may result in
overfitting to noise signals. In the absence of robust support
for the presence of an association, these analyses should be
recognized as exploratory.

Knowledge of the best-fitting genetic model may be im-
portant in optimizing the use of these markers for predictive
purposes. At the current stage, genetic markers in type 2
diabetes explain only about 2.5% of the risk variance and
would result in a predictive area under the receiver operating
characteristic curve (AUC) of only 0.60, while traditional
predictors (body mass index, sex, and age) already result in
an AUC of 0.78 (17). With many markers accrued, proper
modeling may be potentially useful to increase the predic-
tive ability. However, the Bayesian model that we used fur-
ther highlights the challenges and difficulties of using this
information for predictive purposes. When we considered
the full scale of uncertainty in parameters, the 95% credi-
bility intervals of the odds ratios were considerably large.

For NOTCH2, these intervals even crossed the null. This
means that the effects of these genetic markers in some
populations may be very small or even nonexistent. This
adds an extra note of caution to the possibility of predictive
testing in the general population based on this information
(18).

Although some of the established type 2 diabetes suscep-
tibility loci (like PPARG and KCNJ11) have been known for
several years, the field has not progressed to unequivocal
identification of the truly causal variants. Consequently, sta-
tistical inference regarding the true genetic model under
which these loci act has been difficult. In addition, there is
a paucity of biologic data that might help address the genetic
model question. Identification of the best-fitting model
through Bayesian meta-analysis may be helpful in suggest-
ing how biologic and functional experiments should be set
up and what model should be used in them.
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