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Competing events can preclude the event of interest from occurring in epidemiologic data and can be analyzed
by using extensions of survival analysis methods. In this paper, the authors outline 3 regression approaches for
estimating 2 key quantities in competing risks analysis: the cause-specific relative hazard (.sRH) and the subdis-
tribution relative hazard (sqRH). They compare and contrast the structure of the risk sets and the interpretation of
parameters obtained with these methods. They also demonstrate the use of these methods with data from the
Women'’s Interagency HIV Study established in 1993, treating time to initiation of highly active antiretroviral therapy
or to clinical disease progression as competing events. In our example, women with an injection drug use history
were less likely than those without a history of injection drug use to initiate therapy prior to progression to acquired
immunodeficiency syndrome or death by both measures of association (.sRH = 0.67, 95% confidence interval:
0.57, 0.80 and ((RH = 0.60, 95% confidence interval: 0.50, 0.71). Moreover, the relative hazards for disease
progression prior to treatment were elevated (.sRH = 1.71, 95% confidence interval: 1.37, 2.13 and ;qRH = 2.01,
95% confidence interval: 1.62, 2.51). Methods for competing risks should be used by epidemiologists, with the
choice of method guided by the scientific question.

competing risks; epidemiologic methods; mixture model; proportional hazards; regression; survival analysis

Abbreviations: AIDS, acquired immunodeficiency syndrome; CIF, cumulative incidence function; .sCIF, cause-specific cumulative
incidence function; .sRH, cause-specific relative hazard; HIV, human immunodeficiency virus; s4CIF, subdistribution cumulative
incidence function; s4qRH, subdistribution relative hazard; WIHS, Women'’s Interagency HIV Study.

In time-to-event analyses, the occurrence of the event of
interest is often precluded by another event. The canonical
example is the study predictors of cause-specific mortality,
whereby a death due to the primary cause of interest (e.g.,
cancer-related deaths) is precluded by death due to other
causes. In this competing risks setting (1-3), individuals
are observed from study entry to the occurrence of the event
of interest, a competing event, or censoring. Competing
risks are common to epidemiologic research (4-7), and rec-
ognition dates to the 1700s when Bernoulli estimated mor-
tality rates (1, 8, 9).

The complement of the Kaplan-Meier survival curve may
not appropriately estimate the cumulative incidence when
competing events are censored (10—13). Both nonparametric
(2, 10, 14, 15) and regression (8, 16, 17) methods exist for
analyzing data with competing events. Although the non-

parametric approaches have been well described, 2 widely
used measures from regression approaches, the cause-
specific relative hazard (,;RH) and the subdistribution
relative hazard (,4(RH), have not been well described in
the epidemiology literature (18).

The purpose of this paper is 3-fold. First, we provide
intuition for the .(RH and ((RH by considering the con-
struction of risk sets and interpretation of the underlying
hazard function. Second, we describe 3 different regression
models for the analysis of epidemiologic data with com-
peting risks. Third, we illustrate the use of these methods in
an analysis that explores the association of injection drug
use with the time to 2 competing outcomes in a cohort of
human immunodeficiency virus (HIV)-infected women:
initiation of combination antiretroviral therapy and the oc-
currence of acquired immunodeficiency syndrome (AIDS)
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or death prior to initiating combination antiretroviral
therapy.

MATERIALS AND METHODS
Key measures in a competing risk framework

Five interrelated building blocks underpin standard (non-
competing) survival analysis: the time scale ¢ (e.g., age,
calendar time, disease duration, or study duration); the risk
set; the hazard function A(f); the cumulative incidence func-
tion (CIF) F(¢); and its complement, the survival function
S = 1 — F(t). In a competing risks framework, each of
these components remains of central importance but modi-
fied, depending on how the competing event is handled. We
consider an event of interest (event 1) and only 1 competing
event (event 2), although one may extend to more events.
We assume no measurement error, noninformative censor-
ing, and no unmeasured confounding. Henceforth, 7 will be
defined as the minimum time to either event 1 or event 2
(T = min(Ty, T, C), where T} and T, correspond to time to
event 1 and event 2, respectively, and C corresponds to the
censoring time).

A framework for competing risk regression

The regression approaches described below focus on 2
definitions of hazard, the cause-specific and the subdistribu-
tion hazards. The corresponding .;RH may be better suited
for studying the etiology of diseases, whereas the (4RH has
use in predicting an individual’s risk or allocating resources.

Consider an example. A group of diseased individuals are
randomized to treatment A or treatment B, everyone is com-
pliant to treatment protocols, and all are followed until ei-
ther the disease is cured or individuals have an adverse event
requiring discontinuation of treatment. The cumulative in-
cidence for being cured may be estimated as 1 — the Kaplan-
Meier product limit estimator stratified by treatment. Both
curves will be essentially 1.0 by the end of follow-up, as
everyone is followed to 1 of the 2 events. The shift in curves
represents the etiologic association between treatment type
and being cured, in that it reflects the relative change in the
underlying hazard. However, one would not predict that the
probability of being cured was 1.0 for either treatment by
the end of follow-up, as we know that some individuals
have the adverse event and must discontinue therapy. For
prediction, one may require a curve that reflects the pro-
portion cured by the end of follow-up. Additionally, if the
esRHagverse > csRHeure = 1.0 comparing treatment A versus
treatment B, then the adverse event is occurring at a greater
hazard rate in treatment group A. Thus, the proportion of
individuals being cured would be different by treatment
status by the end of follow-up even if the cure rates are
the same. Therefore, the shift in these observed cumulative
incidence curves should represent not only the etiologic
association of treatment with being cured but also the in-
fluence of having a reduced number of individuals remain-
ing at risk for being cured in group A due to a greater
number of adverse events. The lower observed number of
individuals being cured because of a greater proportion of
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adverse events may actually overpower the etiologic asso-
ciation, such that the observed cumulative incidence of
being cured is no longer different between treatment groups.
The nonparametric estimator for competing risks accounts
for these issues. Similarly, the cause-specific and subdistri-
bution hazard approaches reflect these 2 different kinds of
comparison.

The cause-specific hazard

The manner in which risk sets are defined in standard
survival analyses may be modified to allow for competing
events. In standard survival analysis, the risk set is defined
as the group of individuals that have not experienced the
outcome and therefore are at risk for the event of interest at
time . Individuals who have a competing event can be
removed from all later risk sets for the event of interest.
Figure 1 illustrates this approach in discrete time. At time
0, there are 30 individuals at risk. At time 1, 1 individual has
event 1, and another individual has event 2, such that the
risk set for time 2 is now 28 = 30 —1.vent 1 — levent 2. Thus,
individuals with an event 1 or event 2 prior to time ¢ are
excluded from the risk set at time 7.

An estimate of the hazard for event 1 can be described in
the discrete time setting as the number of individuals who
experience the event divided by the number at risk at time z.
For example, at time 3, this would be 3/26 = 0.12, which
estimates the cause-specific hazard, which is formally de-
fined as h;(r) = P(T =1,J =j| T > 1), where J = j indi-
cates whether event 1 (j = 1) or event 2 (j = 2) is being
estimated.

The cause-specific hazard can be extended to continuous
time (8, 19):
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where f,-*(t) = P(T =1t,J =j)is a “sub”’-density function
(““*” indicates an improper, i.e., ‘“‘sub’’-density function
that integrates to <1), and S(¢) reflects the net survival func-
tion of both events 1 and 2, that is, S(t) = P(T > 1) =
exp— fo Soi ) hy(u)du] = exp[— [y h(u)du], where h(z) is
the net hazard for having either event 1 or event 2 (8).

As described in the Web supplement posted on the
Journal’s website (http://aje.oxfordjournals.org/), a like-
lihood function can be constructed from the cause-specific
hazards, whereby individuals who experienced a competing
event are treated as censored (8). Consequently, a propor-
tional hazards model can be constructed for the cause-
specific hazard:

WD) = (ew@B) j=1 2. @)

where hy; is the arbitrary baseline cause-specific hazard, and
B;, j =1, 2 are the corresponding regression coefficients,
where exp(B;) = RH; is interpretable as the relative
change in the cause-specific hazard for the jth event corre-
sponding to a 1-unit increase in the corresponding covariate.
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Cause-specific Hazard: In Discrete Time
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Cause-specific hazard schematic. The risk set starts with 30 individuals (solid circles). Over time, individuals have either event 1

(square) or event 2 (triangle). As individuals have either event, they are removed from the remaining risk sets. The calculation for the cause-specific

hazard is given at the bottom of the figure.

No assumptions of the relation between the competing out-
comes are needed for estimation (2, 8). Estimation may be
accomplished by using standard software. A proportional
hazards model is constructed separately for each event type
in which individuals who experience the competing event
are treated as censored observations. Because the likelihood
may be written such that the competing event is treated
as a censored event, this proportional hazards model is
exactly the same as what some investigators model when
“ignoring” competing events. Alternatively, rather than
separate models, a joint model could be used (20) (refer to
Web supplement).

A Breslow estimator (21, 22) of the cumulative incidence
proportion can be calculated by using the cause-specific
hazard under the (untestable) assumption that the competing
events are independent of each other (3, 18, 23-25). Models
linking covariates to cause-specific hazards as measured by
sRHj—; provide a summary of how a covariate directly
impacts the incidence without considering the effect of the
competing event. Much has been written about how infer-
ences from this approach need to be evaluated cautiously
(8, 26), because the assumption of independent competing
events is strongly needed to underpin the inference that the
cause-specific hazard and corresponding cumulative inci-

dence functions quantify the risk of the event in hypothetical
populations where competing events are eliminated (8).
Therefore, caution must be used in interpreting .;RH as an
increase (decrease) in apparent risk; it is, however, valid to
interpret it as a relative change in the cause-specific hazard
rate.

The subdistribution hazard

In light of the strong assumption of independence be-
tween events to allow interpretation of the cause-specific
cumulative incidence function (.;CIF), the competing risk
literature has focused on an alternative measure of risk: the
subdistribution cumulative incidence function (,qCIF). This
function is defined as the joint probability of an event prior
to time ¢ and that the event is of type j: Fj*(t) = P(T < t,
J =j). Although the (CIF may be estimated from the
sRH;_, extra steps are required as the (CIF is a function
of the net survivor function and therefore directly impacted
by the competing event (27, 28). The ((CIF may be modeled
directly.

Interpretation of this measure can be understood by re-
turning to the construction of risk sets and hazard functions.
In contrast to the construction of risk sets that eliminate
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Subdistribution Hazard: In Discrete Time
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Figure 2. Subdistribution hazard schematic. The risk set starts with 30 individuals (solid circles). Over time, individuals have either event 1
(square) or event 2 (triangle). As individuals have the competing event (event 2, triangle), they are maintained in the risk set as triangles. Thus, over
time, a greater proportion of the risk set becomes full of triangles that are individuals who have had the competing event prior to that time. The
subdistribution hazard (SDH) for event 1 is given near the bottom of the figure along with the cause-specific hazard (CSH) for event 1 for
comparison. Note that, because individuals are maintained in the risk set, the SDH tends to be lower than the CSH.

individuals who have the competing cause, risk sets were
constructed so that they include both individuals without
any event and those who have had the competing event. It
may be counterintuitive to maintain individuals who had
a competing event in the risk set. However, one can think
of these individuals as a “placeholder’’ for the proportion of
the population that cannot have the event of interest and
place a constraint on this hazard function definition (16).
Figure 2 illustrates this construction with the same popula-
tion as in Figure 1. For example, one individual had the
competing event at time 1 and is therefore maintained in
the subsequent risk sets. Therefore, at ¢+ = 2, the risk set
comprised 29 individuals; at t = 3, a total of 3 individuals
by this time have previously experienced event 2 and are
maintained in the risk set. With increasing #, the risk set
comprised an increasing proportion of individuals who have
had event 2.

With this structure, a different hazard function is defined
as the probability of the event given that an individual has
survived up to time ¢ without any event or has had the
competing event prior to time ¢. This is the subdistribution
hazard (16). For example at r = 3, the subdistribution hazard
is 3/29 = 0.103, which is smaller than the cause-specific
hazard of 0.12 because of the larger risk set.

For the discrete time setting, the subdistribution hazard
is N(@)=P(T=t,J=j|T>tor (T<tand J#))).
In continuous time, the subdistribution hazard is the follow-
ing (16):
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where F;'(1) = P(T <1, J=j), §; () = P(T > 1, ] =),

and fi*(1) = Z)F’T*l(t) are the subdistribution cumulative
incidence, sub*survivor,*and subdensity functions (note that
PUJ =j)=S; () + F; (1)).

An alternative proportional hazards model may be
constructed from the subdistribution hazard, which is
useful because the cause-specific hazard approach does
not necessarily reflect what occurs with the ((CIFs (16).
This occurs because the ((CIF is a function of the cause-
specific hazards for both events 1 and 2 (29, 30) (Web sup-
plement). The proportional subdistribution hazards model
is then:

2t 2) = hoj(r)exp(z" @y), )

where A, is the unspecified baseline subdistribution hazard.
The proportionality assumption may be assessed by plotting
the log(-log(l — F l*(t)) against log(time) stratified by the
covariate, where F; () can be estimated from a nonparamet-
ric estimator for competing risks (2, 10, 14, 15). In the
presence of noninformative censoring, it has been recom-
mended to use a weighted score function to obtain an
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Table 1.

Assumptions, Uses, and Advantages of 3 Different Regression Approaches to Modeling Competing Risks

Approach

Cause-specific Proportional
Hazards Model

Subdistribution Proportional
Hazards Model

Parametric Mixture
Model

Model assumption Assumes proportionality of the
cause-specific hazard, as this
model is exactly the same as
conducting a regular
proportional hazards model in
which individuals with the
competing event are censored
at that time point.

Are these As with all proportional hazards
assumptions models, the analyst should
reasonable? evaluate whether the

proportionality assumption is
met. In practice, this
assumption is often violated.

Nevertheless, the investigator
should acknowledge that there
was some indication of
nonproportionality and report
the .sRH as this is the weighted
average over follow-up.

Alternatively, violation of the
proportional hazards
assumption may be mitigated
by including an interaction
between variables and time to
allow the ;sRH to vary over time.

Assumes that the subdistribution
hazards are proportional®

The assumption that the
subdistribution is proportional
should be assessed.

This can be done by assessing
the residuals that are returned
by the “crr” function in R against
the unique failure times (16).
This is analogous to examining
the Schoenfeld residuals from
a regular proportional hazards
model.

Alternatively, proportionality may
be assessed by evaluating the
log(—log) transformation of the
nonparametric cumulative
incidence function estimators
(2, 10, 14, 15) stratified by
exposure variable. The step
function curves should be
separated by a constant
difference.

Nevertheless, the investigator
should acknowledge that there
was some indication of
nonproportionality and report
the 4RH as this is the weighted
average over follow-up.

When the proportionality
assumption is violated, this may
be mitigated by including an
interaction between variables
and time.

Assumes that the investigator has
correctly specified both the
distribution for the event of
interest and the competing
event

Correctly specifying the
distribution of events is difficult
for any parametric model.

The correct specification of the
distribution may be made more
tenable by utilizing a flexible
distribution that can
accommodate various shapes
of the hazard function.

A generalized gamma distribution
is an example of a flexible
distribution that can
accommodate increasing,
decreasing, arc-shaped-
(increasing then decreasing),
and bathtub-shaped
(decreasing then increasing)
hazard functions.

unbiased estimating equation from the partial likelihood
(Web supplement) (16). This has been implemented in the
CMPRSK library in the R statistical program.

The interpretation of (RH; = exp(¢;) is the relative
change in the subdistribution hazard for a 1-unit increase
in the corresponding covariate. The RH; is directly inter-
pretable as a measure of association for the jth ((CIF, and it
is straightforward to estimate the subdistribution cumulative
incidence by using a Breslow-type estimator to obtain the
cumulative subdistribution hazard and evaluate 1 — exp(cu-
mulative subdistribution hazard) (16).

Comparisons between .sRH and s4RH

The relation between the ((RH;_; and ((RH,_, is a func-
tion of the .RH for the competing event (.;RH;_,), the

Table continues

unspecified baseline cause-specific hazard for both events
(ho1(¢) and hg,(?)), and time (refer to Appendix):

(1 +
sRHj=1 (1) =

(1+

Fl,(1) )
SaX=1)

Fp, (1) )
SEX=0)

X stszl(t)- (5)

Therefore, asituation in which the (;RH;—; = (qRH;,_; is when
hgp = 0. This also suggests that the ;RH;_; will be similar to
«dRH;_; when Ay, is small but that generally .;RH; # «RH;.
When RH;_, # 1, the risk sets for the event of interest
among exposed and unexposed individuals are modified dif-
ferentially. When (;RH;_, > 1, alarger proportion of the risk
set (for event J = 1) for exposed compared with unexposed
individuals have had the competing event (and vice versa for
esRHj—» < '1). Consequently, the ratio between the

Am J Epidemiol 2009;170:244-256



Competing Risk Regression Models 249

Table 1. Continued

Approach

Cause-specific Proportional
Hazards Model

Subdistribution Proportional
Hazards Model

Parametric Mixture
Model

What is the model
useful for?

Yes, the sRH is a measure of
association. It implies that,
among any individuals who
survive all events up to some
unspecified time t, those with
the exposure have a cause-
specific hazard rate of ,RH X
the cause-specific hazard rate
of those who do not have the
exposure.

Measuring the
association?

Evaluating the risk
of the event?

No, the sRH by itself cannot be
used to predict whether the
event will be observed. Whether
the event will be observed is
a function of both the .sRH
associated with the event of
interest and the ;sRH
associated with the competing
event.

«sRH >1 does not necessarily
imply that the 4ClIFeyposed > the
sdClFunexposea @nd vice versa.

What is the model’s
advantage?

It measures the association of an
exposure on the corresponding
event in which the competing
event contributes only by
passively removing individuals
from the risk set.

The model does not have to
correctly specify the
unspecified baseline cause-
specific hazard function.

Yes, the (qRH is a measure of
association. However, it is
a measure of association that is
due to both the association of
the exposure at the event of
interest and the possibly
differential impact of competing
events on the risk set for
exposed and unexposed
individuals.

Yes, because the ;qRH
intrinsically accounts for the
competing event by modifying
the risk set at time , a s4RH >1
indicates that those with
exposure will be seen to have
a quicker time to event in the
study population. Similarly,

a sgRH <1 indicates a longer
time to event for those exposed.

saRH >1 does imply that the

stIFexposed > the X
sdClFunexposed @nd vice versa.

It measures the association of an
exposure to the corresponding
event in which the competing
event actively contributes to the
risk set.

The model does not have to
correctly specify the
unspecified baseline
subdistribution hazard function.

Yes, both the ;sRH and ¢4qRH are
estimable.

Yes, in addition to the s4RH, the
sdCIF is directly estimable.

The model can obtain the .sRH,
the sqRH, and the
subdistribution cumulative
incidence, as well as the cause-
specific hazard and
subdistribution hazards all as
functions of time.

The model does not require the
assumption of proportional
hazards over time.

When correctly specified,
parametric models generally
tend to have more power than
semi- or nonparametric models.

Abbreviations: .sRH, cause-specific relative hazard; s4CIF, subdistribution of the cumulative incidence function; ;qRH, subdistribution relative

hazard.

2 The subdistribution proportional hazards model assumes that the transformation of the subdistribution cumulative incidence functions as
log(—log) transformation results in a constant difference between curves (16).

subdistribution hazards for exposed and unexposed individ-
uals for the event of interest will not be equivalent to the .RH.

Given that the ;RH; and 4RH; are generally different,
how do we use these measures (Table 1)? In noncompeting
risk settings, the impact of a high (low) relative hazard will
directly translate to an increase (decrease) in cumulative
incidence of the event for the exposed individuals as com-
pared with unexposed individuals. In a competing risk
framework, this is not necessarily true for the .;RH;. The
RH is a measure of association that does not necessarily
directly translate into a measure of risk without the assump-
tion of independence between the competing events. With-
out the assumption of independence or conducting extra
steps to obtain the ((CIF (Web supplement), the .;RH does
not allow comparison of the cumulative incidence of the
event in exposed versus unexposed individuals. Rather, the
sRH is a valid measure of the apparent effect of a covariate
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on the relative instantaneous hazard rate given that individ-
uals have survived both events until time . However, in that
same instant, individuals may have a stronger (or weaker)
relative hazard rate for the competing event.

In contrast, the (4RH is useful for comparing the cumu-
lative incidence for those with and without exposure be-
cause of the direct modeling of the ((CIF. For instance,
a situation could arise where the RH;—; = 1, suggesting
no difference in the cause-specific hazard rate comparing
exposed versus unexposed individuals. However, because
the exposed individuals are more likely to have the compet-
ing event (;RH;—, > 1), the @RH;_; will be <1 (Table 2)
because of the differential modification of the risk sets as
caused by the association between exposure and the com-
peting event. This drives the subdistribution hazard lower
for those with exposure relative to unexposed individuals,
causing RH;—; < 1. While (RH;_; = 1 suggests no
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association, exposed individuals will be less likely to have
the event because of the association of the exposure with the
competing event. Therefore, the (;RH;_; directly measures
the association of an exposure on event 1 as the competing
event contributes only passively by removing individuals
from the risk set, whereas the (RH;_,; is a measure of as-
sociation that reflects both the association of exposure
with event 1 and the contribution of event 2 by actively
maintaining individuals in the risk sets for exposed and
unexposed individuals. Should the association of the
exposure with event 1 be in direct opposition with the
contribution of event 2, the ((RH may be quite different
from the .(RH (Table 2).

A caveat when applying the (4CIF to other populations is
that the transportability of the estimate may be questionable
if the distribution of the competing events differs from the
original population. This is because the risk sets for exposed
and unexposed individuals will be impacted differently by
a change in the distribution of competing events.

A unified regression approach

The 2 primary models developed for estimating .;RH and
s«aRH depend upon proportional hazard assumptions. Be-
cause equations 1 and 3 are not equivalent, a proportional
cause-specific hazards model does not necessarily imply
a proportional subdistribution hazards model (29, 30).
Although time interactions could be included in the model
to account for nonproportionality, this can complicate
interpretation.

An alternative approach is to consider more general
models that do not constrain any of the hazard functions
to be proportional. A mixture of distributions for com-
peting risks was proposed by Cox in 1959 (31) and was later
expanded through decomposing the ((CIF as follows (17):

and constructing likelihood contributions for the ith
individual:

Li = [mfi(6)]" X [(1 — m)fa(t)]"

X [TE,'S] (ti) + (1 - ni)SZ(ti)](liyiiel)a (7)

where ij (1) = (?th(t) forj = 1,2 corresponds to a probability
density function to model the jth event, Si(¢) is the corre-
sponding survivor function P(T > 1|J = j), 7; is the mixture
probability P(J = 1), and vy, and ; are indicator functions
for J = 1 and J = 2, respectively.

Under this formulation, parametric distributions can be
utilized to impose structure for f and © with parameters that
can be linked to covariates. To model f (and S), a flexible
parametric distribution, such as the generalized gamma dis-
tribution, can accommodate various shapes of the hazard
function (32). A binary model can be constructed for the
P(J = j) term to describe the occurrence for 2 events. Re-

gression analysis can proceed by linking covariates to the
parameters of these distributions (Web supplement).

This mixture model approach has a distinct advantage
over other models: Both the cause-specific and subdistribu-
tion relative hazards .;RH; and .4qRH; may be derived and are
not constrained to be constant over time. If a summary (over
time) measure is desired, a time-weighted estimate can be
constructed with confidence intervals obtained by bootstrap
(33). Another advantage of the mixture model is that it is
relatively easy to compare the subdistribution CIF, cause-
specific hazards, or subdistribution hazards stratified by ex-
posure and over time (34). Estimation of the parameters for
the mixture model can be performed in SAS software by
using the NLMIXED procedure and the log-likelihood func-
tion from equation 7.

Application

Prior studies have shown that HIV-infected individuals
with past injection drug use are less likely to initiate effec-
tive therapy than those without (35-38) and are more likely
to die in the era of highly active antiretroviral therapy (5, 38,
39). Yet, the comparison of treatment initiation by history of
injection drug use when it has the potential to be the most
effective (prior to AIDS or death) has not been undertaken.

Study population

The Women'’s Interagency HIV Study (WIHS) was estab-
lished in August 1993 to investigate the impact of HIV in-
fection on US women at 6 sites in New York (2 sites);
Washington, DC; Los Angeles and San Francisco, Califor-
nia; and Chicago, Illinois. Details are provided elsewhere
(40-43). In 1994-1995, 2,054 HIV-positive and 569 HIV-
negative women were enrolled. Follow-up visits occur at
6-month intervals in which data are collected by structured
interviews, physical examinations, and laboratory testing.

The study sample consisted of 1,164 women enrolled in
WIHS, who were alive, infected with HIV, and free of clin-
ical AIDS on December 6, 1995 (baseline), when the first
protease inhibitor (saquinavir mesylate) was approved by
the Federal Drug Administration. Women were followed
until the first of the following: treatment initiation, AIDS
diagnosis, death, or administrative censoring (September
28, 2006). Covariates included history of injection drug
use at WIHS enrollment, whether an individual was African
American, age, and CD4 nadir prior to baseline.

RESULTS

Individuals with and without an injection drug use history
had similar nadir CD4 counts prior to baseline (Table 3).
Women with an injection drug use history were more likely
to be African American and older than those without an
injection drug use history. Although the majority of women
initiated treatment prior to clinical AIDS or death, this pro-
portion was lower among those with a history of injection
drug use. The proportion with AIDS or death prior to treat-
ment was higher among those with injection drug use.

Am J Epidemiol 2009;170:244-256
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Table 2. General Direction of the Time-averaged Subdistribution Relative Hazard for a Given Direction of the Time-averaged Cause-specific
Relative Hazards for Both Events 1 and 22

«sRH4 «sRH> «aRH;® <sRH; Interpretation® <aRH; Interpretation®
<1 <1 >ssRH4 Exposure associated with Because exposure is associated with a decreased cause-specific
a decreased cause-specific hazard rate for the competing event, the s4qRH is greater than what
hazard rate for event one would expect if the exposure were not associated with the
competing event (e.g., .sRH2 = 1), and therefore (¢RHy > sRH;.®
<1 >1 <esRH4 Exposure associated with Because the exposure is associated with an increased cause-specific
a decreased cause-specific hazard rate for the competing event, the ;4RH; is less than what one
hazard rate for event would expect if the exposure were not associated with the competing
event (e.g., .sRH> = 1), and therefore (4RH; < RHj.
>1 <1 >csRH4 Exposure associated with an Because exposure is associated with a decreased cause-specific
increased cause-specific hazard rate for the competing event, the s4qRH; is greater than what
hazard rate for event one would expect if the exposure were not associated with the
competing event (e.g., .sRH2 = 1), and therefore (qRH; > sRH;.
>1 >1 <esRH4 Exposure associated with an Because the exposure is associated with an increased cause-specific

hazard rate for the competing event, the ;qRH; is less than what one
would expect if the exposure were not associated with the competing
event (e.g., sRH> = 1), and therefore s4RH; < sRH;.f

increased cause-specific
hazard rate for event

Abbreviations: .sRH;, cause-specific relative hazard for event 1; .sRH», cause-specific relative hazard for event 2; .qRH4, subdistribution relative
hazard for event 1.

& We refer to the time-averaged relative hazards, as proportionality of the cause-specific hazards does not imply proportionality of the
subdistribution hazards and vice versa. Refer to Latouche et al. (47) and Beyersmann and Schumacher (30) for further details.

® The exact magnitude of the difference between ;sRH, and ;qRH4 depends on the level of .sRH; and ;sRH, and the baseline cause-specific
hazard rate, ho1(), and hox({).

® The sRH; is whether or not the exposure has an association with the event of interest. It cannot be used to make inferences about the
cumulative incidence in the presence of competing risks (e.g., P(T < t, J = j) without additional information regarding the .sRH, and the magnitude
of the baseline cause-specific hazard rate for the competing event.

9 The ¢qRH4 reflects how the exposure is associated with the event of interest by incorporating both the association between the exposure and
the event of interest and the association of the exposure with the competing event (which influences the risk set).

¢ Note that the s4RH; could be >1 if both the association of the exposure with the competing event (,sRH,) was strong enough and the baseline
cause-specific hazard rate for the competing event is of great enough magnitude.

" Note that the sqRH; could be <1 if both the association of the exposure with the competing event (.sRH,) was strong enough and the baseline
cause-specific hazard rate for the competing event is of great enough magnitude.

Figure 3 shows both the estimated cause-specific and
subdistribution cumulative incidences by outcome and in-
jection drug use status. To illustrate the difference between
the cause-specific and ((CIFs, we estimated the (CIF di-
rectly from the .;RH under the assumption of independence

between events (Figure 3, A and C). However, the ((CIF
(Figure 3, B and D) can be estimated from the cause-specific
proportional hazards model by taking extra steps (Web
supplement) (27, 28). In addition, a nonparametric estima-
tion of the subdistribution CIF was obtained by using

Table 3. Characteristics for Women Enrolled in the Women's Interagency HIV Study on December 6, 1995, and

Followed Through September 2006, United States

No History of Injection History of Injection Overall
Drug Use (n = 725) Drug Use (n = 439) (N = 1,164)
Median Intt:g:ga:ile Median Int:'g:;;tile Median Intgg:ga:ile
Nadir CD4 count, no. 348 216-505 352 209-522 349 213-516
Age on December 6, 1995, years 33 29-39 40%* 35-44 36 31-41
No. % No. % No. %
African American 399 55 273%* 62 672 58
Initiated treatment prior to 469 65 210 48 679 58
AIDS or death
AIDS or death prior to treatment 169 23 190 43 359 31

Abbreviations: AIDS, acquired immunodeficiency syndrome; HIV, human immunodeficiency virus.
*P < 0.001; **P = 0.017 for comparing those with and without a history of injection drug use.
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Figure 3. Cumulative incidence of treatment initiation prior to acquired immunodeficiency syndrome (AIDS) or death (A and B) and the cumulative
incidence of AIDS or death prior to treatment (C and D) by injection drug use status and type of cumulative incidence (cause-specific, A and C;
subdistribution, B and D; .sPH, from proportional cause-specific hazards model; ;qPH, from proportional subdistribution hazards model). The
mixture model comprised a lognormal distribution for initiation of treatment and a generalized-gamma distribution for the time to AIDS or death prior
to treatment initiation. Cl, confidence interval; .sRH, cause-specific relative hazard; HAART, highly active antiretroviral therapy; IDU, injection drug

use; sqRH, subdistribution relative hazard.

an extension of the Kaplan-Meier methods to competing
risks (2, 44). Regardless of the method (cause-specific pro-
portional hazards model, subdistribution proportional haz-
ards model, or mixture model) used for obtaining the
subdistribution CIF, the estimated subdistributions were es-
sentially equivalent to the extended Kaplan-Meier method

for competing risks (P < 0.001 for both events comparing
those with past injection drug use vs. those without) (2, 44).

The estimates of the .;RH and ((RH from the semipara-
metric and parametric approaches are shown in Table 4
stratified by competing events. The parametric mixture
model provided inferences essentially identical to the
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Table 4. Effect of History of Injection Drug Use on the Proportion and Timing of Incident HIV Treatment Use and
Incident AIDS or Death Among Women Within the Women’s Interagency HIV Study, 1995-2006, United States®

History of Injection Drug
Use Cause-specific
Relative Hazard

History of Injection Drug
Use Subdistribution
Relative Hazard

95% Confidence 95% Confidence

Estimate Estimate

Interval Interval
Time to treatment initiation prior to AIDS/death
Semiparametric proportional hazards model® 0.67 0.57, 0.80 0.60 0.50, 0.71
Parametric mixture model® 0.71 0.59, 0.85 0.60 0.50, 0.71
Time to AIDS or death prior to treatment initiation
Semiparametric proportional hazards model° 1.71 1.37,2.13 2.01 1.62, 2.51
Parametric mixture model® 1.77 1.40,2.27 2.02 1.62, 2.59

Abbreviations: AIDS, acquired immunodeficiency syndrome; HIV, human immunodeficiency virus.

& Models are adjusted for age at study entry, race, and CD4 nadir prior to study entry; the CD4 nadir was included in
the model to adjust for stage of disease in order to be able to appropriately compare those with and without a history of
injection drug use.

® Some indication of proportional hazards assumption may not hold; however, these differences were quantitative
rather than qualitative (i.e., hazards do not cross).

¢ A lognormal (for treatment) and generalized gamma (for AIDS/death) distribution was used for the parametric

mixture model.

proportional hazards models. The (;qRH had a stronger as-
sociation than the .(RH for both events. The .(RHi catment
was equal to 0.67; however, the .;RHaps/qearn Was 1.7.
Therefore, as the subdistribution hazard maintains individ-
uals who develop the competing event in the risk set (equa-
tion 3), this implies that individuals with an injection drug
use history are maintained in the risk set in a greater pro-
portion than those without a history of injection drug use.
Thus, a greater relative change between the cause-specific
and subdistribution hazards would be expected for those
with an injection drug use history than for those without
(i.e., a larger denominator among the injection drug use
group because of a higher AIDS/death hazard rate). There-
fore, the ((RHcatment Should be less than the ..RH catments
which was observed (Table 4).

DISCUSSION

In this paper, we have discussed the 2 common methods
for handling competing risks and their applications to re-
gression settings. The .(RH and the .(CIF are familiar quan-
tities because they reflect measures that are estimated when
individuals with the competing event are censored. How-
ever, we have illustrated the utility of the subdistribution
hazard and CIF as complementary measures of risk.

Should the ;RHA1ps/death have been greater (e.g., 3.0), the
arbitrary baseline hazard for AIDS/death > 0.2 (e.g., a con-
stant 1.1) per year, and the observed RHcatment = 0.67,
then the (¢RH catmen: WOUuld have been lower than the 0.67.
This would imply that, despite a direct association between
injection drug use status and treatment initiation
(¢sRHyreatment = 0.67), individuals with an injection drug
use (IDU) history were less likely to initiate treatment be-
fore disease progression (;qCIFipy < qCIF,oupu as indi-
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cated by qRHeatment < 1.0) and more likely to have HIV
disease progression before therapy. However, the
esRHireatment = 0.67 and the (RHaps/gean = 1.71, which
suggests that AIDS/death should contribute to an even lower
sdRHreatment because those with past injection drug use had
a higher cause-specific hazard rate for AIDS/death. The
similarity of the .;RHearment a0d saRHreatment implies that
disease progression to AIDS/death did not greatly contribute
to a further reduction in the association between injection
drug use history and treatment initiation. This was due to the
relatively low baseline hazard rate for AIDS/death; hy,(7)
ranged from 0.157 to 0.224 per year. Thus, the ((RHearment
is only slightly stronger than that from the cause-specifc
proportional hazards model (0.60 vs. 0.67, respectively).
Beyersmann et al. (29) recently provide an alternative ex-
ample where the difference between .(RH and ((RH is large
and they are in opposite directions.

The properties of the .;RH; (no interpretation to ¢qCIF
without assumption) and 4 RH; (translatable to ((CIF) il-
lustrate the circumstances in which the 2 measures of as-
sociation may be most useful and therefore suggest
a general guideline for use. The .;RH might be more ap-
plicable for studying the etiology of diseases, whereas the
<oRH might be more appropriate for predicting an individ-
ual’s risk for an outcome or resource allocation. For exam-
ple, the use of the antiretroviral drug abacavir has recently
been associated with increased risk of myocardial infarc-
tion (45). Two competing questions can be framed: 1) Is
the use of abacavir directly associated with myocardial
infarction, and 2) regardless of the direct association, are
individuals taking abacavir more likely to experience
a myocardial infarction? For the first question, the .(RH
may be more appropriate, as this measure will assess at any
given time whether the individuals on abacavir have an
increased instantaneous hazard rate for myocardial
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infarction among all individuals that have survived all
events to this time point.

For the second question, the (RH is a better measure of
association. This can be illustrated by assuming that abaca-
vir is not directly associated with myocardial infarction
(csRH =1 for association of abacavir with myocardial in-
farction). It remains possible that investigators may still
expect a higher probability of myocardial infarction among
those taking abacavir if individuals not on abacavir were
more likely to die prior to a myocardial infarction. Conse-
quently, the (zRH for myocardial infarction would be >1 for
those on abacavir, but it is by reducing mortality and keep-
ing individuals alive to be able to experience a myocardial
infarction. The latter knowledge may be useful in policy
decisions.

We recognize that important issues such as left trunca-
tion and causality (46) as they pertain to competing
risks have not been addressed here. Our goals were to de-
scribe and illustrate 2 common measures of association
that may be used in the competing risk setting but that
epidemiologists have avoided. The cause-specific hazard
ratio and subdistribution hazard ratio are distinct, and the
choice of approach should be driven by the scientific ques-
tion. Future research should continue to explore the differ-
ences in approaches and expand the tools to understand and
implement competing risk methods for epidemiologic
data.
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APPENDIX

This appendix further details the relation between the
cause-specific hazard and the subdistribution hazard. Fur-
ther details regarding the methods outlined within the main
text may be found in the Web supplement data, which pro-
vide more rigorous details regarding the methods that may
be useful for some readers but felt to be too technical such
that the main points would be obscured to others. Addition-
ally, the data used in the application are provided a long with
code to implement competing risk analyses in R or SAS.

Relation between .cRH and ((RH

Beyersmann et al. (29) noted that the .(RH is in good
agreement with the ((RH when there is no association of
exposure and the competing event. To illustrate, let X be
a binary exposure variable for 2 competing events. Let the
sRH(?) for event 1 and event 2 be equal to some constant,
RHj and RH,, respectively, and thus both events have
proportional hazards across exposure status. Let the arbi-
trary baseline cause-specific hazard (i.e., when X = 0) for
event 1 and event 2 be hg;(f) and hg,(7), respectively. Then,
the hazards for those with X = 1 are hy(¢) = hg(?) exp(BX) =
hoi(1) X RH; and hix(f) = hoa(t) exp(BX) = hp() X
«sRH> for events 1 and 2, respectively. Let A,(f) be the sub-
distribution hazard for event 1 and Ay;(¢) and A;;(¢) be the
subdistribution hazard for unexposed and exposed individ-
uals, respectively. Beyersmann et al. (29) showed that the
cause-specific hazard has the following general relation (not
considering covariate X) with the subdistribution hazard for

event 1:
hy (1) 1+ S(1) Mi(1),

(A1)

where F (t) is the subdistribution function for event 2, and
S(¢) is the net survival function. Thus, the cause-specific
hazard for exposed individuals may be written as follows:

h]l(t) = (1 -l—#(t)l))}\.u(l)
= ho ([) X sRH;

_ ( Fo(1)

(A2)

14+—2

m) hoi (1) X sRH,

Thus, the .(RH; is as follows:



256 Lauetal.

Note that the subdistribution equals the net survival multiplied
by the cause-specific hazard (i.e., Fp(f) = fé S| X =
0)hoa(u) duand Fio(t) = [y S(u| X = 1)hip(u)du). Thus,
when hg,(7) is close to 0, the fractions within the parentheses
in the numerator and in the denominator both tend toward
0 and .(RH; = ((RH;. Therefore, a low cause-specific hazard
for the competing event can mitigate the effect of alarge .;RH,
that would contribute to the numerator in both the subdistri-
bution, F},(¢) and net survival among exposed individuals,
S(t |X = 1). Additionally, Latouche et al. (47) showed through
simulation the ..RH; ~ (4(RH; when . .;RH, = 1.
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