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SUMMARY

Finite mixtures of Gaussian distributions are known to provide an accurate approximation to any unknown
density. Motivated by DNA repair studies in which data are collected for samples of cells from different
individuals, we propose a class of hierarchically weighted finite mixture models. The modeling framework
incorporates a collection of k Gaussian basis distributions, with the individual-specific response densities
expressed as mixtures of these bases. To allow heterogeneity among individuals and predictor effects, we
model the mixture weights, while treating the basis distributions as unknown but common to all distribu-
tions. This results in a flexible hierarchical model for samples of distributions. We consider analysis of
variance–type structures and a parsimonious latent factor representation, which leads to simplified infer-
ences on non-Gaussian covariance structures. Methods for posterior computation are developed, and the
model is used to select genetic predictors of baseline DNA damage, susceptibility to induced damage, and
rate of repair.

Keywords: Comet assay; Finite mixture model; Genotoxicity; Hierarchical functional data; Latent factor; Samples of
distributions; Stochastic search.

1. INTRODUCTION

Molecular epidemiology studies increasingly make use of samples of cells from immortalized cell lines
corresponding to different individuals. Typically, the number of cells collected can be large even when
the number of individuals (cell lines) is small to moderate. Although analysts often simplify the data by
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focusing on distributional summaries, the natural response for a study subject is a random distribution.
The focus of inference is then on assessing how the random distribution changes across cell lines and with
predictors. As in functional data analysis (Ramsay and Silverman, 1997), in which the response for an
individual is a random function, it is appealing to limit parametric assumptions.

Our motivation is drawn from a study using single-cell electrophoresis (comet assay) to study genetic
factors predictive of DNA damage and repair. The cell lines employed in this study come from the STET,
a resequencing project including 90 unrelated male and female individuals from different ethnic back-
grounds. For these individuals, unique combinations of single nucleotide polymorphisms (SNPs) were
used to define haplotype categories for 20 candidate DNA repair genes. Single-cell electrophoresis, also
known as comet assay (Östling and Johanson, 1984; Singh and others, 1988), was then used to mea-
sure the frequency of DNA strand breaks in cell lines for the 90 STET individuals. Replicate samples
(100 cells) from each cell line were allocated to 1 of 3 groups: (1) analyzed without treatment, (2) ana-
lyzed immediately after exposure to a known genotoxic agent (hydrogen peroxide, H2O2), or (3) analyzed
after allowing 10 min for DNA repair following exposure to H2O2.

The comet assay is commonly used in genotoxicity experiments to quantify DNA damage arising from
single-strand breaks and alkyl labile sites on the individual cell level. Figure 1 shows 2 cells analyzed with
the comet assay. Cells with few strand breaks have a spherical shape, while those with a high frequency
of strand breaks present a tail of DNA streaming out from the nucleoid, forming a comet-like appearance.
Summary statistics of the amount of DNA in the tail are used as surrogates for the amount of damage.
Motivated by the results of Dunson and others (2003), we focus in this article on one particular surrogate.

The Olive tail moment (Olive and others, 1990) is defined as the percentage of DNA in the tail of
the comet multiplied by the length between the center of the comet’s head and tail as is automatically
calculated from the cell image by standard software like KometTM or Vis CometTM.

To demonstrate the challenges involved in the analysis, we present in Figure 2 the distribution of the
Olive tail moment for one of the cell lines in the sample at 3 time points of the Olive tail moment each
based on 100 cells. Note that these distributions are non-Gaussian, violating the assumptions of typical
analysis of variance (ANOVA) models, and that the shape of the distribution changes dramatically. An-
other issue is that our interest focuses not on estimating these distributions but in studying heterogeneity
among individuals in susceptibility to damage and repair rates. Also, we do not expect samples at differ-
ent times points to be uncorrelated. Indeed, cells from individuals with large initial damage might show
increased susceptibility to damage, or individuals suffering a lot of damage might recover at a faster rate.
Finally, we note that it is not possible to examine the same cells before and after damage because cells
are destroyed in applying the comet assay. Therefore, longitudinal methods are not helpful in this setup.
In summary, flexible models for random distributions are needed, which should allow for the inclusion of
highly structured hierarchical models in order to account for the special characteristics of the data.

Fig. 1. Comet images of typical lymphoblastoid cells following no treatment (left panel) or following treatment with
10 µM H2O2 for 20 min (right panel).
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Fig. 2. Histograms and smoothed kernel estimates for the distribution of the Olive tail moment for individual 12 based
on 100 cells at each of the 3 observed time points.
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In modeling hierarchical functional data, one can potentially allow heterogeneity among individuals
in curve data by using a spline and/or wavelet model with individual-specific basis coefficients (Bigelow
and Dunson, 2005; Thompson and Rosen, 2008; Morris and Carroll, 2006). When the data consist of
random distributions instead of random curves, this approach can be modified by specifying the random
distribution as a mixture of a finite number of basis distributions. In particular, mixtures of Gaussians
provide an appealing choice; finite mixtures of a moderate number of Gaussians can produce an accurate
approximation of any smooth density.

Our proposed approach is based on generalizing finite mixtures of Gaussians to place a hierarchical
regression model on the mixture weights, while keeping the basis distributions constant across groups.
A conceptually related approach for functional data analysis has recently been presented by Behseta and
others (2005). In this paper, we focus on multilevel probit regression models, incorporating latent factors
to allow flexible modeling of dependence. The idea of placing a regression model on the mixture prob-
abilities is borrowed from the latent class modeling literature. Although latent class regression methods
have previously been applied to functional data (Muthen and Shedden, 1999), to our knowledge such
approaches have not been used to obtain flexible models of samples of distributions.

There is a growing Bayesian literature on models for dependent random distributions, most based
on generalizations of the Dirichlet process (Ferguson, 1973, 1974; Sethuraman, 1994). Some relevant
examples include the dependent Dirichlet process (MacEachern, 1999, 2000), which has spawned the
works of DeIorio and others (2004) and Gelfand and others (2005), the order-dependent Dirichlet process
(Griffin and Steel, 2006), the hierarchical Dirichlet process (Teh and others, 2006), and the linear com-
bination of draws from independent Dirichlet processes (Müller and others, 2004, Dunson and others,
2007). However, although most of these methods are rather general in nature and provide full support
on the space of absolutely continuous distributions, practical application and interpretation in large and
complex hierarchical settings like the DNA repair study can be difficult. Indeed, these approaches do not
allow for a hierarchical model specification like the one we describe in this paper.

As mentioned by several authors, including Mengersen and Robert (1996), Richardson and Green
(1997), and Green and Richardson (2001), finite mixture models provide an accurate approximation to
fully nonparametric Bayes approaches in many cases, with some distinct advantages. In developing our
finite mixture model, we were motivated in particular by 2 issues: (1) interpretability and (2) ease of
computation, given that the data in the National Institutes of Environmental Health Sciences (NIEHS)
DNA repair study consist of information for over 20 000 cells. Fully nonparametric Bayes methods that
allow the number of mixture components to be unknown tend to be both computationally intensive and
subject to difficulties in interpreting latent class category-specific results, as the class definitions change
across Monte Carlo Markov chain (MCMC) iterations.

The paper is organized as follows. Section 2 develops the general formulation of the hierarchically
weighted finite mixture (HWFM) models and discusses prior elicitation, while Section 3 describes specific
choices of the hierarchical structure in the context of the DNA repair study. Section 4 describes efficient
computational implementations for this class of models. In Section 5, we apply the HWFM models to
answer relevant questions on the DNA repair study. Finally, Section 6 contains a brief discussion on this
class of models and the application at hand, as well as possible extensions.

2. HIERARCHICALLY WEIGHTED GAUSSIAN MIXTURES

2.1 Finite mixtures

Consider initially the case in which data consist of i.i.d. draws from a single unknown distribution,

so that y j
iid∼ f , for j = 1, . . . , m. For example, the data y = (y1, . . . , ym)′ may consist of measures

of DNA damage for m untreated cells drawn from a single cell line. In this i.i.d. case, we focus on
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the following model:

f (y) =
K∑

k=1

ωk N (y | θk, σ
2
k ), (2.1)

where k ∈ {1, . . . , K } indexes the component number, ωk is a probability weight on the kth component(
0 < ωk < 1,

∑K
k=1 ωk = 1

)
, and {θk, σ

2
k } are the normal mean and variance for the kth component

density.
In order to generalize (2.1) to allow covariates and hierarchical dependency structures, one can po-

tentially choose a hierarchical regression structure for the weights {ωk} and/or the component-specific
parameters {θk, σk}. However, by fixing the set of component-specific parameters, the components corre-
spond to common, data-defined, latent classes that can be easily interpreted in the context of each specific
application. For example, in exposing samples of cells to genotoxic agents, it is not possible to treat all
cells with the same dose due to the inability to spread the compound equally over the entire cell culture
tray, and a subset of cells may remain effectively untreated. Hence, at a given dose, the response dis-
tribution can be realistically modeled as a mixture of the distributions at lower doses and an innovation
distribution. Similar behavior occurs as repair times vary, with cells that repair more rapidly mimicking
cells that have suffered little damage but have slower rates of repair. In this setting, we find it appealing
to visualize a set of (unknown but fixed) basis distributions, N (·|θk, σ

2
k ), for k = 1, . . . , K , representing

different levels of cellular damage, with weights that vary depending on experimental conditions (before
or after exposure, repair time) and measured/unmeasured genetic factors.

Prior to exposure to the genotoxic agent, the distribution of DNA damage among cells in the different
cell lines could be characterized by assigning relatively high weight to component densities that allocate
high probability to values close to 0. In contrast, after exposure, the weights on stochastically larger
components would be expected to increase. Also, in characterizing the distributions of DNA damage
following repair, the weights on stochastically larger basis densities may be relatively small for cell lines
established for individuals having high rates of repair. Thus, by allowing the specific weights to vary
across the different cell lines, heterogeneity can be accommodated.

2.2 Hierarchical structure

Consider now observations that are indexed by categorical variables, such as cell line (i = 1, . . . , n)
and treatment group (t = 1, 2, 3). In order to allow the mixture weights to vary with treatment groups
and (initially unmeasured) cell line–specific factors, one can define a model for the latent class indicator
ξi t j ∈ {1, . . . , K } for the j th cell in the t th treatment group for the i th cell line. Note that ξi t j = k denotes
that the cell belongs to the kth mixture component.

A computationally convenient and flexible structure is provided by the continuation ratio probit model:

ωi tk = Pr(ξi t j = k) =
⎧⎨
⎩

�(αi tk)
∏k−1

u=1{1 − �(αi tu)}, if k < K ,∏K−1
u=1 {1 − �(αi tu)}, if k = K ,

where �(·) denotes the standard normal distribution function. Note that this model allows a different
weight for each component in the mixture for every cell line × treatment group combination, effectively
allowing the distribution of the cellular damage to change freely. The use of the probit transformation to
define the weights allows us to restate the model using normally distributed latent variables (see Section 4),
enabling us to incorporate most of the standard Bayesian machinery into the model for the distribution.
Additionally, the probit transformation induces a natural scale in the transformed weights that simplifies
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prior elicitation, as discussed below. The use of a continuation ratio probit model is reminiscent of the

stick-breaking construction for the weights of the Dirichlet process (Sethuraman, 1994). Indeed, if αi tu
iid∼

N(αi tu |0, 1), then �(αi tu) ∼ Uni[0, 1] = Be(1, 1) and we recover a special case of the finite stick-
breaking construction in Ishwaran and James (2001), creating independent priors for each cell line at
each experimental condition. By allowing for different dependence across the αs, we allow the shape
of the distributions to be dependent across individuals and experimental conditions while allowing for
flexible and rich weight structures. Similar approaches, using a multinomial logit model, have been used in
machine learning to construct spatially weighted mixtures for image segmentation (Figueiredo and others,
2007) and in latent class analysis (Muthen and Shedden, 1999).

For the parameters of the normal component, we propose standard, conditionally conjugate priors

θ1 ∼ N
(
θ1|ζθ1 , κ

2
θ1

)
,

θk |θk−1 ∼ N
(
θk |ζθk , κ

2
θk

)
1(θk>θk−1), k = 2, . . . , K ,

σ 2
k ∼ IG(σ 2

k |aσ , bσ ),

where N(·|θ, σ 2)1A denotes the normal distribution with mean θ and variance σ 2 restricted to the set A.
Order constraints on the parameters of the mixture components have been regularly used in the literature
to ensure identifiability (see, e.g. Mengersen and Robert, 1996, and Richardson and Green, 1997) by
attempting to prevent label switching due to the inherent symmetry of the parameter space in mixture
model. However, label switching is not a concern for us since we are not interested in component-specific
inference (Stephens, 2000). Instead, introducing an order constraint on the means allows us to interpret
the components of the mixtures as corresponding to increasingly higher levels of cellular damage, as
described above.

The specific form for the transformed weights αi tk has so far been left open, which endows the model
with a great deal of flexibility and generality. In general, we assume that the vector of transformed weights
ααα follows a parametric distribution, possibly dependent on a set of hyperparameters ηηη, that is, ααα ∼ p(ααα|ηηη).
Choosing p to be a Gaussian distribution will typically yield conditionally conjugate distributions, sim-
plifying computation through Gibbs sampling. In Section 3, we discuss 3 interesting choices for such
models, in the context of the DNA repair studies.

2.3 Bayesian model selection and mixture priors

In this section, we present a brief review of Bayesian model selection; for a more detailed discussion see
Kass and Raftery (1995). Given 2 models M1: p(y|φφφ1) and M2: p(y|φφφ1) with associated prior distribu-
tions p1(φφφ1) and p2(φφφ2), the Bayes factor of model 1 versus model 2 is defined as

B21 =
∫
�2

p2(y|φφφ2)p2(φφφ2)dφφφ2∫
�1

p1(y|φφφ1)p1(φφφ1)dφφφ1
.

Let πi denote the prior probability of model i . Given prior odds for model 2 versus model 1, π2/π1,
these can be updated using the Bayes factor to yield posterior odds, O21 = B21π2/π1. The posterior
odds measures the relative strength of the evidence in favor of each model provided by the data. In-
deed, posterior odds can be transformed to posterior probabilities for each of the models by noting that
Pr(M1|y) = (1 + O21π2/π1)

−1. Posterior probabilities over 0.76 provide substantial evidence in favor of
M1, while probabilities over 0.99 provide decisive evidence (Jeffreys, 1961; Kass and Raftery, 1995).



Bayesian hierarchically weighted finite mixture models 161

Computation of Bayes factors can be a complex task, as they require the calculation of multidimen-
sional integrals. Mixture priors (in contrast to the mixture likelihoods we discussed in Section 2.1) can be
used to simplify this operation by transforming the model comparison problem into an inference problem.
In the context of nested models, it is common to use zero-inflated priors

p(φφφ) = π1 p∗(φφφ) + π210(φφφ),

where p∗(φφφ) is the prior for the parameter of interest under the alternative (more complex) model and
1x (·) denotes the degenerate distribution with all its mass at x . The updated value π2|y corresponds to the
posterior probability of the null model (see George and McCulloch, 1997, and Clyde and George, 2004,
for excellent reviews).

3. HIERARCHICAL MODELING IN DNA REPAIR STUDIES

3.1 Modeling and testing heterogeneity

Our first goal is to formally assess heterogeneity across individuals in the frequency of DNA strand
breaks. Although exploratory analysis of the data reveals some important differences in the shape of
the distributions across subjects, developing a formal test is a necessary preliminary step before building
a more complicated model structure. Besides, the problem of identifying heterogeneity in populations of
distributions is a complex problem that appears in many different applications.

Given this goal, an ANOVA-like structure for the transformed weights and suitable zero-inflated priors
seem a natural choice. Therefore, we consider the model

αi tk = γk + δi + βt + (δβ)i t + (δγ )ik + (βγ )tk + (δβγ )i tk, (3.1)

where {γk} controls the baseline probability of latent class k, {δi } controls the baseline susceptibility
of individual i , {βt } controls the population-wide baseline damage at time t , and the remaining terms
represent dependence of the weights on possible interactions. To ensure identifiability of the parameters,
we let δ1 = β1 = (δβ)11 = (δγ )11 = (βγ )11 = (δβγ )111 = 0, so γu, u = 1, . . . , k, determines the
probability of the kth component for the baseline damage in the first individual in the sample.

In this ANOVA-like structure, hypotheses related to differences between groups, cell line–specific
effects, and interactions can be assessed by considering nested models, with appropriate terms in the linear
predictor excluded. In particular, we are interested in testing differences attributable to cell line effects.
We therefore write γγγ = (γ1, . . . , γK )′ and let λλλ = (λλλ′

(−r),λλλ
′
(r))

′ denote the remaining parameters, with the
subvector λλλ′

(r) = (δδδ′, δδδβββ ′, δδδγγγ ′, δδδβββγγγ )′ denoting coefficients associated with cell line (individual)–specific
effects and λλλ′

(−r) = (βββ ′,βββγγγ ′) measuring differences attributable to repair time. Then, we let

γk ∼ N

(
γk

∣∣∣∣�−1
(

1

K − k + 1

)
, 1

)
,

λλλ(−r) ∼ N(λλλ(−r)|0, I),

λλλ(r) ∼ 0.5N(λλλ(r)|0, I) + 0.510(λλλ(r)).

This prior for γγγ and the identifiability constraints are intended to approximately enforce the same prior
probability for each component. See Section 4.2 for details.

The prior on λλλ(−r) has a ridge regression–type shrinkage structure intended to stabilize estimation,
while the mixture prior for the cell line–specific coefficients λλλ(r) allows us to assess evidence of hetero-
geneity among individuals. Zero values for these coefficients correspond to a null model with no hetero-
geneity. We choose a prior that assigns 0.5 probability to the model with no heterogeneity and choose
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independent standard normal priors for the coefficients included in the model. As we discussed in Section
2.3, related mixture priors have been widely used in model selection problems. Note that only 2 models
are being considered in this particular setup, instead of all possible nested models. This greatly reduces
computational burden and improves the mixing of our algorithm, without detracting from our goal. The
unit prior variance was chosen to assign high probability to a range of plausible values for the regression
coefficients included in the model, taking the probit scale into consideration.

3.2 Modeling heterogeneity in DNA repair

The main interest of the DNA repair study focuses on understanding heterogeneity in the rates of DNA
repair, adjusting for baseline damage and susceptibility to induced damage. To address this goal, we
need to place additional structure on the model: damage levels at different time points cannot be directly
interpreted as the quantities of interest, as they might be correlated.

For this purpose, we replace the cell line–specific terms λλλ(r) in the previous linear predictor in (3.1)
by a factor analytic model containing cell line–specific latent traits

αi tk = γk + βt + (βγ )kt + λλλ′
tηηηi

with {γk} intercepts as before, {βt } group differences, {(βγ )kt } interactions,

ηηηi =
⎛
⎜⎝

ηi1

ηi2

ηi3

⎞
⎟⎠ , and � =

⎛
⎜⎝

λλλ′
1

λλλ′
2

λλλ′
3

⎞
⎟⎠ =

⎛
⎜⎝

λ11 0 0

λ21 λ22 0

λ31 λ32 λ33

⎞
⎟⎠ ,

where the upper diagonal terms of � have been set to 0 for identifiability. The factor analytic term, λλλ′
tηηηi ,

accounts for heterogeneity among the cell lines, with ηi1, ηi2, and ηi3 normal latent traits measuring the
i th cell line’s level of initial DNA damage, susceptibility to induced damage, and rate of repair relative to
the other cell lines. Due to the conditional structure, ηi2 can be interpreted as a susceptibility adjusting for
baseline damage, while ηi3 (measuring the change in the distribution along 10 min elapsed since the cells
were damaged) can be interpreted as a repair rate adjusting for baseline and induced damage. Within-cell
line correlation between groups is captured by the parameters λ21, λ31, and λ32. To fix the scale of the
latent traits for identifiability purposes, we let var(ηi t ) = 1 for t = 1, 2, 3. In addition, we initially let
E(ηi t ) = 0 for t = 1, 2, 3, though we will later consider methods for incorporating diplotypes.

Under this structure, the level of heterogeneity among the cell lines is controlled by the magnitude of
the factor loadings parameters λt t , t = 1, 2, 3. The null hypothesis of homogeneity in baseline damage
corresponds to λ11 = 0. The null hypothesis of homogeneity in susceptibility corresponds to λ22 = 0 and
homogeneity in repair rates corresponds to λ33 = 0. Models excluding the main effects by letting λt t = 0
should automatically exclude any correlation effects by also fixing λt t ′ = 0, ∀ t ′ < t , thereby reducing the
number of models for the covariance structure to 30.

Again, by using mixture priors with point masses at 0 for the factor loadings, we can effectively move
within this model space

λt t |Mi ∼
{

N(λt t |0, 1)1(λt t�0), if λt t is included in the model,

1(λt t =0), otherwise,

λt t ′ |Mi ∼
{

N(λt t ′ |0, 1), if λt t ′ is included in the model,

1(λt t ′=0), otherwise,
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in which the sign constraint on λt t is used to ensure identifiability. Because the total number of models
involved is small and predictive densities can be calculated in closed form, we opt for sampling over
the full model space instead of the one-component-at-a-time scheme typical of stochastic search variable
selection (SSVS). This improves the efficiency of the Gibbs sampler, avoiding problems with slow mixing
due to a tendency to remain in local regions of the model space for long intervals. The models are given
equal probability a priori, Pr(Mi ) = 1/30 for all i .

3.3 Haplotype selection

The primary advantage of the model structure presented above is that it contains a single cell line-specific
summary of DNA repair capability capturing the characteristics of the individual distributions. However,
while differences in the repair rates are of interest, the main focus of the study is on relating those differ-
ences to genetic factors.

Suppose that G candidate genes have been preselected for study, with the gth gene having ng vari-
ants in the population. Here, ‘variants’ refer to haplotypes, which are unique combinations of SNPs. An
individual’s diplotype for a specific gene is defined by the pair of haplotypes for that gene, one inherited
from the mother and one from the father. For the 20 genes that were preselected in the NIEHS study, the
number of diplotypes ranges from 3 to 24, with a total of 224. This results in a huge number of unique
combinations of diplotypes for the 20 genes.

Given the small number of subjects and the large number of diplotypes involved in the analysis,
we consider only additive effects of the genes on the latent factor, so that ηi t = uiµµµt , where ui =
(u′

i1, . . . , u′
iG)′ is a vector of indicators of the variant category for each of the G genes and µµµt is a vector

of regression coefficients. Extensions to include interactions are straightforward but would not be useful in
this specific example since the data on interactions are very sparse. Note that uig contains ng −1 indicators
when the gth gene has ng haplotypes, and the intercept term is excluded for identifiability (for the same
reason that E(ηi t ) was set to 0 previously).

Taking advantage of the normal linear regression structure of the models for each of the latent traits, we
can apply Bayesian variable selection methods for subset selection in regression, using once again mixture
priors with point mass at 0 for the regression coefficients. This structure can be formalized through prior
distributions of the form

p(µµµg) = π0Nng (µµµg|0, I) + (1 − π0)10(µµµg),

and a SSVS procedure can then be used to identify genes that can influence the repair capability. If a gene
has no effect on the repair rate, the coefficients for each of the subcategories should be 0. The previous
approach could be easily extended to identify genes associated with higher susceptibilities to damage in
the individuals.

4. INFERENCE

4.1 Posterior computation

By augmenting the observed data with the latent class indicators, {ξi t j }, and with latent normal random
variables underlying each ξi t j , we can obtain a simple Gibbs sampling algorithm for posterior computa-
tion. This algorithm relies on a strategy related to Albert and Chib (1993), but by using a continuation
ratio probit instead of generalized probit structure, we avoid the problems in the updating of the threshold
parameters mentioned in Johnson and Albert (1999). A related strategy was used by Dunson (2006) in
multistate modeling of multiple event data.
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Specifically, let zit jk ∼ N(αi tk, 1) and define ξi t j = k if zit ju < 0 for all u < k and zit jk > 0, with
ξi t j = K if zit ju < 0 for all u � K − 1. The joint posterior distribution of the parameters and latent
variables is proportional to⎡

⎣∏
i,t, j

p
(

yit j |θξi t j , σ
2
ξi t j

)⎤
⎦

[∏
k

p(θk)p(σ 2
k )

] ⎡
⎣∏

i,t, j

p(ξi t j |zi t j )

⎤
⎦

⎡
⎣ ∏

i,t, j,u

p(zit ju |αααi tu)

⎤
⎦ p(ααα|η).

Derivation of the full conditional posterior distributions for each of the unknowns in the model follows
by standard algebra. After choosing initial values for the parameters, and given a specific form for p(ααα|ηηη),
the algorithm iterates through the following steps:

Step 1: The latent variables zit jk and ξi t j are updated in block by

1. Sampling ξi t j from a discrete distribution with probabilities

Pr(ξi t j = k| · · · ) = ωi tkN(yit j |θk, σ
2
k )∑K

u=1 ωi tuN(yit j |θu, σ 2
u )

.

2. Generating zit jk |ξi t j from

zit jk |ξi t j , · · · ∼ N (αi tk, 1)1�k , ∀ k � min{ξi t j , K − 1},
with

�k =
{{zit jk |zit jk < 0}, if k < ξi t j ,

{zit jk |zit jk � 0}, if k = ξi t j .

Step 2: The parameters for the normal components in the mixture can be generated from:

1. For the means, the first component is sampled from

θ1| · · · ∼N

⎛
⎝θk

∣∣∣∣
[

1

κ2
θ

+ r1

σ 2
1

]−1 [
ζθ1

κ2
θ

+ h1

σ 2
1

]
,

[
1

κ2
θ

+ r1

σ 2
1

]−1
⎞
⎠ ,

while for k = 2, . . . , K ,

θk |θk−1, · · · ∼N

⎛
⎝θk

∣∣∣∣
[

1

κ2
θ

+ rk

σ 2
k

]−1 [
ζθk

κ2
θ

+ hk

σ 2
k

]
,

[
1

κ2
θ

+ rk

σ 2
k

]−1
⎞
⎠ 1(θk>θk−1),

where rk = ∑T
t=1

∑n
i=1

∑mit
j=1 1(ξi t j =k) and hk = ∑T

t=1
∑n

i=1
∑mit

j=1 yit j 1(ξi t j =k).

2. The variances σ 2
k are a posteriori conditionally independent, yielding

σ 2
k | · · · ∼ IG

⎛
⎝aσ + rk

2
; bσ + 1

2

T∑
t=1

n∑
i=1

mit∑
j=1

(yit j − θk)
21(ξi t j =k)

⎞
⎠ ,

where rk = ∑T
t=1

∑n
i=1

∑mit
j=1 1(ξi t j =k).
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Step 3: Sample ααα from

p(ααα| · · · ) ∝
⎡
⎣ ∏

i,t, j,u

p(zit ju |αααi tu)

⎤
⎦ p(ααα|η).

Data augmentation strategies of this kind allow for implementations that rely only on Gibbs samplers,
rather than on more general MCMC schemes requiring simultaneous proposals of large numbers of pa-
rameters or rejection samplers that could generate even worse mixing issues by forcing us to sample one
parameter at a time.

4.2 Prior elicitation

Consider first eliciting hyperparameters
{
ζθk

}K
k=1 and

{
κ2
θk

}K
k=1 corresponding to the location of the Gaus-

sian components and aσ and bσ corresponding to their variances. These hyperparameters need to be
chosen to ensure that the mixture spans the expected range of observed values with high probability. In
practice, we have experimented with 2 types of choices, with essentially equivalent results: (1) Having all
prior means

{
ζθk

}K
k=1 equal to the global mean (or global median) of all observations in the sample, and

setting all κ2
θk

equal to half the range of the observed data for all k (a rough estimate of dispersion), and

(2) setting ζθk equal to the k/(K + 1) quantile of the sample, with κ2
θk

equal to one-eighth of the range.

Sensitivity was assessed by halving and doubling the values of κ2
θk

under each of these 2 scenarios. Under

a similar argument, aσ and bσ were chosen so that E(σ 2
k ) = bσ /(aσ − 1) is equal to half the range of the

observations. Note that in every scenario we have employed proper priors to avoid identifiability issues
with mixture models. See Mengersen and Robert (1996), Natarajan and McCulloch (1998), and references
therein for a discussion of this point.

Next, we consider the prior structure on the weights ωi tk . As discussed above, the use of a con-
tinuation ratio probit model along with normal priors for the transformed weights is convenient, as it
greatly simplifies implementation of the model. In particular, the transformed mixture weights {αi tk} can
be sampled in step 3 above from conditionally normal distributions. Hyperparameter choice is also sim-
plified. A common assumption in mixture models is that all components have the same probability a
priori. In the current context, this can be approximately enforced by setting E(α j tk) = �−1(1/(K −
k + 1)). Additionally, V(α j tk) ≈ 1 because we expect the continuation ratio �(α j tk) to be between
0.002 and 0.998 with 0.99 probability. Smaller values for V(α j tk) lead to strong restrictions on the set of
weights, discouraging small ones (especially for the first few components in the mixture). On the other
hand, larger variances do not impose restrictions on the set of weights but can adversely affect model
selection.

We concentrate the rest of the discussion on the heterogeneity model described in Section 3.1, but
similar arguments apply to the other models considered in the paper. It is well known that, unlike in
estimation problems, the effect of the prior in model selection does not necessarily vanish as the sample
size grows (Kass and Raftery, 1995). In particular, Bayes factors and posterior probabilities obtained using
noninformative and flat priors tend to overly favor the null model even in large samples due to Lindley’s
paradox. In the heterogeneity model, this means that large variances for the normal component of p(λλλ(r))
can seriously bias the results. Therefore, we avoid variances larger than 1 for these parameters. On the
other hand, the parameters γk or λλλ(−r) are common to both models under consideration, and improper or
flat priors should produce reasonable results. Our sensitivity analysis confirms that model selection results
are not dramatically affected by increasing their variances.
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5. UNDERSTANDING HETEROGENEITY IN DNA REPAIR STUDIES

The data from the DNA repair study were analyzed using the models described in Section 3. Eight mixture
components were judged sufficient to flexibly characterize changes in the density across cell lines and
treatment groups, while limiting the risk of overfitting. Inferences were robust in our sensitivity analysis
for K ranging between 8 and 15, but the quality of the fit, as assessed through the plots described in
Section 5.5, was compromised for K < 8. We considered different options for the hyperparameters ζθk ,
including ζθk = 8 for all k (about the empirical mean of the data) and fixing ζθk to the k/(K +1)th quantile
of the data, all leading to equivalent results. The prior variance was taken to be κ2

θ = 25, so as to cover the
range of the data, while the hyperparameters for σ 2

k were set to aσ = 1.0, bσ = 1/2, so that E(σ 2
k ) = 2 a

priori. Again, results were robust to reasonable changes in these parameters.
The Gibbs sampler was run for 60 000 iterations following a 10 000 iteration burn-in period. Code was

implemented in FORTRAN, and the longest running time was around 26 h on a 2.80-GHz Intel Pentium 4
computer in the case of the haplotype selection model described in Section 3.3. Examination of diagnostic
plots showed adequate mixing and no evidence of lack of convergence. In order to corroborate this ob-
servation, we used the Gelman–Rubin convergence test (Gelman and Rubin, 1992), which compares the
variability within and between multiple runs of the sampler with overdispersed starting values; we mon-
itored the mean, variance, and skewness of the fitted distributions as our parameters of interest. In every
case, confidence intervals for the convergence statistic R contained the reference value 1, as expected for
nondivergent chains. Agreement of fitted and empirical distributions, assessed through quantile–quantile
plots (see Section 6.4), was adequate for most subjects and experimental conditions.

5.1 Simulation study

As a preliminary to the analysis of the DNA repair data set, a simulation study was run addressing some
of the frequency properties of our density comparison approach. The study demonstrated that the models
are indeed capable of detecting differences across populations as long a moderate number of components
are incorporated in the mixture. This is true even for distribution that has similar mean and variances but
differs in higher moments. Additional details can be found in Section 1 of the supplementary material,
available at Biostatistics online (http://www.biostatistics.oxfordjournals.org).

5.2 Modeling and testing heterogeneity in Olive tail moment

The estimated posterior probability of the null hypotheses (homogeneity among the cell lines) was 0.0004,
and the Bayes factor for the alternative hypothesis was ≈2500. Hence, there was clear evidence of hetero-
geneity among the cell lines, justifying a more detailed analysis of the data.

5.3 Modeling heterogeneity in DNA repair

The chain visited only 4 out of 30 models; since sampling was performed over the whole model space
and not one variable at a time, we believe that lack of mixing is not an issue. The model with highest
posterior probability (0.93) contains 4 factor loadings, corresponding to the main effects λ11, λ22, and
λ33, along with the correlation between susceptibility and repair rate λ32. The other models include the
same 4 variables plus λ21, λ31, or both, with respective posterior probabilities 0.03, 0.02, and 0.01. This
reveals clear evidence of heterogeneity in the 3 latent traits, no evidence of dependence between initial
damage and repair rate or susceptibility, and decisive evidence of a negative dependence between the
repair rate and the susceptibility to damage (since Pr(λ32 � 0) ∼= 1). This can be explained by the speed
of the repair mechanisms for oxidative damage, with damage being actively repaired even as cells are
being exposed.
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Fig. 3. Posterior median and 90% posterior credible intervals for the estimated latent repair rate (η̂i3) of the 90 cell
lines in the population under study.

Figure 3 shows the estimated latent repair rates, ηi3, for each of the cell lines. It is important to
emphasize that these values cannot be interpreted in absolute terms, but only relative to other members of
the same population. For example, individuals 48, 50, 53, and 82 have the higher repair rates compared
with other members of the population, while individuals 4, 15, 22, and 27 have a relatively very low
repair rate. Therefore, only a careful choice of the study population, like in the STET project, allows
generalizations to the general population.

5.4 Haplotype selection

We focus on 20 candidate DNA repair genes for illustration, resulting in a total of 224 parameters charac-
terizing differences among individuals in repair rates. The genes considered, along with their associated
number of diplotypes and posterior probability of influence, are shown in Table 1.

Our prior probability on any gene being significant was set to π0 = 0.5. Results for the factor loading
are similar to those obtained in Section 5.3 and therefore not discussed again. Following convention,
we consider genes with a posterior probability greater than 0.75 as potentially involved in the repair
mechanisms of oxidative damage, yielding 6 candidates: XRCC3, POLG, ADPRT, ERCC6, POLD1, and
ERCC1. At the other extreme, there were 3 genes that had less than 0.25 posterior probability, including
LIG3, POLB, and LIG, which therefore do not seem to play a relevant role in this specific repair process.

Some additional information can be obtained by looking at the joint distribution of the diplotypes
rather than at its marginal distribution. The 2 most visited models include XRCC2, XRCC3, POLD1,
POLG, POLI, ERCC1, ERCC6, and PCNA with a posterior probability of 0.0015 (note that ADPRT is not
in the list) and the second most visited model contains ADPRT, XPA, XRCC2, XRCC3, POLD1, POLD2,
POLG, POLI, ERCC1, ERCC5, ERCC6, FEN1, and PCNA, with a posterior probability of 0.00145,
showing that no combination of genes is clearly preferred to explain the variations across individuals. On
the other hand, XRCC3, POLD1, POLG, and ERCC1 appear in all 15 most visited models, while ERCC6
and ADPRT are also often present among the most visited models (13 and 12 times, respectively), with
no other gene present with similar regularity.

5.5 Assessing model fit

As a way to assess model fit, we computed quantile–quantile plots of the predictive distribution for each
individual against its corresponding empirical distribution. As an illustration, we show in Figure 4 the
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Table 1. List of 20 genes preselected to explain repair rates, with their number of diplotypes and posterior
probability of influence

Gene Number of diplotypes Posterior probability

XRCC3 8 0.89
POLG 7 0.83
ADPRT 20 0.80
ERCC1 9 0.77
ERCC6 24 0.76
POLD1 15 0.75
XPA 20 0.66
POLI 11 0.64
ERCC5 14 0.63
XRCC2 10 0.54
ERCC3 10 0.50
FEN1 3 0.50
XRCC2 10 0.50
PCNA 9 0.49
OGG1 6 0.39
POLL 6 0.33
POLD2 10 0.30
LIG1 16 0.19
POLB 6 0.18
LIG3 10 0.15

resulting plots for one individual at each time point for the model in Section 5.4. Dotted lines correspond
to a 95% probability interval for the quantile of the predictive distribution.

In general, these plots demonstrate a reasonable fit of the model to the data. However, a slight lack
of fit can be observed for some individuals in the high quantiles of the distribution (typically, over 90%),
where the predictive distribution would indicate slightly more extreme values than actually observed.

6. DISCUSSION

Motivated by data from comet assay studies of DNA damage and repair, this article has proposed an ap-
proach for Bayesian hierarchical density regression, allowing an outcome distribution to change flexibly
with multiple predictors and across subjects. The basic idea underlying our method is to use a finite mix-
ture model, with the probability weights following a hierarchical model. Efficient posterior computation
is facilitated by using a continuation ratio probit structure with data augmentation. This scheme enables us
to take advantage of the well-developed literature on Gaussian models and priors developed for variable
selection in linear regression, even though the outcome distributions are clearly nonnormal. In this par-
ticular setting, the low dimensionality allows us to sample over the whole model space at once, ensuring
good mixing and avoiding common pitfalls.

By incorporating latent factors measuring baseline damage, susceptibility, and rate of repair, we were
able to perform inferences on the factors varying across cell lines in the STET database. The finding of
clear evidence of heterogeneity in rate of repair raised our interest in identifying factors explaining the
differences between individuals. Using candidate genes provided by the investigators, we ran a stochastic
search variable selection procedure to identify genes that may be of interest for further study.

Some comments on our SSVS scheme are necessary. Note that our choice of π0 = 0.5 implies that
we expect, a priori, at least 6 genes to be significant with a probability 0.94, which is about the number of
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Fig. 4. Quantile–quantile plot of the predictive distribution from our nonparametric model and their 90% credible
interval versus the corresponding empirical distribution.
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significant genes in our posterior analysis. This would seem to indicate that the relatively large posterior
probabilities obtained might be driven in part by our prior selection. Therefore, our analysis at this stage is
necessarily exploratory but allows us to provide some guidance as to where to focus future more detailed
studies on repair mechanisms.
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