
Biostatistics (2009), 10, 2, pp. 390–403
doi:10.1093/biostatistics/kxn045
Advance Access publication on February 6, 2009

A Bayesian model for evaluating influenza antiviral
efficacy in household studies with asymptomatic infections

YANG YANG∗

Program of Biostatistics and Biomathematics, Division of Public Health Sciences,
Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA

yang@fhcrc.org

M. ELIZABETH HALLORAN, IRA M. LONGINI, JR

Program of Biostatistics and Biomathematics, Division of Public Health Sciences,
Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA and

Department of Biostatistics, University of Washington,
Seattle, WA 98195, USA

SUMMARY

Antiviral agents are an important component in mitigation/containment strategies for pandemic influenza.
However, most research for mitigation/containment strategies relies on the antiviral efficacies evaluated
from limited data of clinical trials. Which efficacy measures can be reliably estimated from these studies
depends on the trial design, the size of the epidemics, and the statistical methods. We propose a Bayesian
framework for modeling the influenza transmission dynamics within households. This Bayesian frame-
work takes into account asymptomatic infections and is able to estimate efficacies with respect to protect-
ing against viral infection, infection with clinical disease, and pathogenicity (the probability of disease
given infection). We use the method to reanalyze 2 clinical studies of oseltamivir, an influenza antiviral
agent, and compare the results with previous analyses. We found significant prophylactic efficacies in
reducing the risk of viral infection and infection with disease but no prophylactic efficacy in reducing
pathogenicity. We also found significant therapeutic efficacies in reducing pathogenicity and the risk of
infection with disease but no therapeutic efficacy in reducing the risk of viral infection in the contacts.
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1. INTRODUCTION

Simulation studies have suggested that antiviral agents such as oseltamivir can be helpful in mitigating
potential influenza pandemics (Longini and others, 2005; Ferguson and others, 2005; Halloran and others,
2008). These findings rely on current knowledge about the antiviral agents’ efficacies and characteristics
of influenza, such as transmission capacity and natural disease history, obtained from clinical studies
in seasonal epidemics. However, the estimability of efficacy measures and the reliability of the efficacy
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estimates depend on the design of the studies, the size of the epidemics, and the method used. While it is
impossible to change the design and scale of existing studies, new statistical methods may provide new
insights about antiviral efficacies and characteristics of influenza. In this manuscript, we propose a new
approach that makes use of more clinical information than previous methods. We use the approach to
reanalyze 2 trials of oseltamivir and compare our findings with published results.

The risk of person-to-person viral transmission depends on the treatment status of both the infective
case and the susceptible contact. Let Ruv denote the risk if the treatment status is u for the infective case
and v for the susceptible contact, u, v = 0 (no), 1 (yes). Following the notation in Halloran and oth-
ers (2007), AVES = 1 − (R01/R00) measures the antiviral efficacy in reducing susceptibility, AVEI =
1 − (R10/R00) measures the antiviral efficacy in reducing infectiousness, and AVET = 1 − (R11/R00) is
called the total efficacy. Depending on the primary end point for analysis, one may use (AVESd, AVEId,
AVETd) for infection with disease (symptomatic) and (AVESi, AVEIi, AVETi) for infection (symptomatic
or asymptomatic). The antiviral efficacy in reducing pathogenicity, the probability of illness given infec-
tion, is usually measured by AVEP. Table 1 summarizes the different antiviral efficacy measures intro-
duced here and in the subsequent sections. A more comprehensive introduction of efficacy measures can
be found in Halloran and others (1997).

The 2 household-based oseltamivir trials were both conducted in North America and Europe but during
different outbreak seasons, one in 1998–1999 and the other in 2000–2001 (details in Table 2). We label the
early trial as Osel II and the late one as Osel I. Households were ascertained by the onset of influenza-like
illness (ILI) in an index case. Both studies randomized contacts to oseltamivir or placebo at the household
level (same treatment in a given household). Osel II did not treat the index cases, whereas Osel I treated the
index cases and any contact when symptoms developed, regardless of assigned treatment group. Contacts

Table 1. Definitions of antiviral efficacy measures for different end points, depending on the antiviral
treatment status of an infective case and a susceptible contact

Antiviral Formula†‡ Interpretation
efficacy

AVESi 1 − R01/R00 Efficacy in reducing susceptibility to viral infection when the contact is treated.
AVEIi 1 − R10/R00 Efficacy in reducing infectiousness causing viral infection when the case is treated.
AVETi 1 − R11/R00 Total efficacy in reducing risk of viral infection when both the case and the contact

are treated.

AVESp 1 − η01/η00 Efficacy in reducing pathogenicity in the contact when the contact is treated.
AVEIp 1 − η10/η00 Efficacy in reducing pathogenicity in the contact when the case is treated.
AVETp 1 − η11/η00 Total efficacy in reducing pathogenicity in the contact when both the case and the

contact are treated.

AVEP 1 − η�1/η�0 Traditional antiviral efficacy in reducing pathogenicity in the contact when the
contact is treated, regardless of the antiviral status in the case.

AVESd 1 − R01η01
R00η00

Efficacy in reducing susceptibility to symptomatic infection when the contact is

treated.

AVEId 1 − R10η10
R00η00

Efficacy in reducing infectiousness causing symptomatic infection when the case is

treated.

AVETd 1 − R11η11
R00η00

Total efficacy in reducing risk of symptomatic infection when both the case and the

contact are treated.

† Ruv is the risk of viral infection with antiviral status u for the case and v for the contact.
‡ ηuv is the probability of ILI given infection with antiviral status u for the case and v for the contact.
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Table 2. Data from 2 randomized efficacy trials for oseltamivir. Households with influenza-negative index
cases are excluded

First analysis Osel I Osel II
Hayden and others (2004) Welliver and others (2001)

Households 173 161
Population† 557 564
Treatment for illness Oseltamivir None
Duration of medication

Illness treatment 5 days N/A
Prophylaxis 10 days 7 days

Follow-up (symptom diary) 30 days 7–14 days
Index cases 183 161
Contacts 374 403

Negative swab at baseline 360 391
Control‡ 38(6)/171 37(22)/188
Oseltamivir‡ 19(2)/189 15(2)/203

† Three households with index cases <1 year old are excluded from Osel II, and 132 contacts �12 years old are
excluded from Osel I for comparability between studies.
‡ The number of influenza infections and, in parentheses, the number of influenza infections with �1 ILI episodes
out of influenza-negative contacts at baseline.

kept symptom diaries during the follow-up period. Nasal/throat swabs were taken for culture from each
participant on day 1 (ascertainment day) and when ILI developed. Blood samples were drawn from each
participant on day 1 and at the end of the study to determine the hemagglutination-inhibiting antibody
(HI) titer level. Figure 1 illustrates the time frames for the symptom diary and specimen collection.

Based on the study designs, Osel I mainly provides information about R10 and R11 and Osel II mainly
provides information about R00 and R01. In the first analyses of the 2 studies comparing cumulative in-
cidences of symptomatic cases between treatment groups, Welliver and others (2001) reported AVESd

and AVESi for Osel II and Hayden and others (2004) reported 1 − 1−AVETd
1−AVEId

for Osel I. Yang and others

(2006) combined the 2 studies to estimate AVESd, AVEId, and AVETd per daily contact by modeling
symptomatic infections. Halloran and others (2007) considered asymptomatic infection in the contacts
and obtained estimates for (AVESd, AVEId, AVETd), (AVESi, AVEIi, AVETi), and AVEP from the com-
bined studies. In Halloran and others (2007), the cumulative incidence rates were restricted to days 1–7
to represent secondary attack rates by the index case and the number of secondary asymptomatic infec-
tions was imputed based on the assumption that asymptomatic and symptomatic infections are similarly
distributed over time. This assumption may be unrealistic if AVEp is not trivial because the prophylaxis
groups would likely have a higher proportion of asymptomatic infections before day 7 compared to the
proportion of symptomatic infections.

We propose a Bayesian model taking into account asymptomatic infections to analyze the 2 oseltamivir
studies. This model can be extended to general household data with symptom sequence and lab test re-
sults available. We also propose a set of efficacy measures for pathogenicity, the estimates of which can
be used in conjunction with those for AVESi, AVEIi, and AVETi to derive estimates for AVESd, AVEId,
and AVETd. In addition, our model estimates the infectivity level over time of an infected person un-
der some parametric assumptions. Bayesian methods have been developed in recent years to model the
spread of infectious diseases, but only a few are applicable to influenza in the household setting (O’Neill
and others, 2000; Cauchemez and others, 2004; Ferguson and others, 2005). However, none of these
methods consider asymptomatic infection.
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Fig. 1. Time line of symptom diary and specimen collection for Osel I (below) and Osel II (above). Day 1 is the
ascertainment day when enrollment of the household occurred, baseline specimens were collected, and symptom
diaries started. Day -6 is the earliest day when infection could have occurred by assumption.

2. METHODS

2.1 Data structure

Consider a study conducted on H households, household h of size nh , and observed on a daily basis. We
refer to the subject i in household h as subject (h, i). We refer to the enrollment day as the ascertainment
day of the index case and the first day of an ILI episode in an individual as the symptom onset day.
Without loss of generality, we align all households by setting the ascertainment days as day 1. Let Th be
the stopping day of observation on household h. During the follow-up period, {1, 2, . . . , Th}, a series of
symptom onsets are observed for some contacts, that is, household members who are not index cases. For
now, we assume at most one ILI episode can be observed for each subject. Let t̃hi be the symptom onset
day of subject (h, i) and t̃hi = ∞ if no ILI is observed.

Let yyyhi represent all relevant lab test information including specimen collection dates, the tests used,
and the test results. Therefore, {Th, t̃hi , yyyhi : i = 1, . . . , nh, h = 1, . . . , H} constitute the observed data.
The infection dates, denoted by {t̂hi : i = 1, . . . , nh, h = 1, . . . , H}, are the latent data.

2.2 Modeling viral transmission

We assume that, starting from day Th < 1, all subjects in household h are exposed to a constant rate of
infection, γ0, from casual contact with people in the local community. In reality, Th is not observable, but
we do not need to, as explained in section 2.4. We speculate that the infectivity (infectiousness) level of an
infected person is closely related to the virus-shedding activity and thus the viral load in vivo. Figure 2(a)
shows the log viral loads over 7 days in 6 people challenged with an attenuated influenza virus, time 0
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Fig. 2. (a) Viral load (log10) over time in 6 subjects challenged with an attenuated influenza at time 0. The solid black
line is the mean curve. (b) Fitting the mean viral load (log10) over time in 6 subjects (solid line) with a beta density
curve f (a, b) (dashed line). The shape parameters a = 2.08 and b = 2.31 are least squares estimates. The relative
infectivity curve estimated by the Bayesian model is f (4.68, 4.90) (dotted line).

being the infection time (Murphy and others, 1980). After enforcing the area under the mean curve to be
unity over (0, 1), we found that fBeta(2.08, 2.31), obtained by the least squares method, provides a decent
fit as shown in Figure 2(b). Let � be the duration of the infectious period, assumed known. According to
Figure 2(a), � = 7 days is a reasonable choice for influenza. Let xxxhi (t) indicate the vector of covariates
of subject (h, i) on day t , and let βββS and βββI be the effects associated with covariates of the susceptible
and infective person. We regard the community as a member of each household and index it by 0. Actual
household members in household h are indexed by 1, . . . , nh . The covariate-adjusted hazard of influenza
infection that an infectious person j imposes on a susceptible person i in household h at time t is

λh, j→i (t) =
{

γ1 f
( t−t̂h j

�

∣∣a, b
)

exp{βββ ′
S xxxhi (t) + βββ ′

I xxxhj (t)}, j > 0 and j �= i,

γ0 exp{βββ ′
S xxxhi (t)}, j = 0.

(2.1)

where f (·|a, b) is a beta density function with shape parameters a and b referred to as the relative
infectivity curve. The interpretation of γ1 is the average baseline person-to-person infection rate over

the infectious period because γ1 = 1
�

∫ t̂hi +�

t̂hi
γ1 f

( t − t̂hi
�

∣∣a, b
)
dt . A similar idea of modeling the time-

dependent infectiousness level was used in Ferguson and others (2005), where a lognormal curve trun-
cated at a maximum of 10 days was adopted. We assume for now that asymptomatic and symptomatic
cases share the same relative infectivity curve and γ1. The sensitivity of the results to this assumption
will be considered in the data analysis. In expression (2.1), the covariate effects are assumed to be the
same for exposure from the community as for exposure within household, but different effects could be
assumed. The total hazard of influenza infection for a susceptible person (h, i) at time t is then given
by λhi (t) = ∑

j �=i λh, j→i (t), and the probability of escaping influenza infection during day t for person

(h, i) is qhi (t) = exp
{ − ∫ t

t−1 λhi (τ )dτ
}
.

2.3 Modeling pathogenicity

Let ξhi (t) be the probability that subject (h, i) develops ILI given infection on day t . For simplicity, we
assume that ξhi (t) depends only on antiviral treatment status. When ξhi (t) depends on other covariates,
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the efficacy measures described below will be specific to covariate levels. Let rhi (t) denote the antiviral
treatment status for subject (h, i) on day t , 1 for yes and 0 for no. For the community, rh0(t) = 0 for all t .
Let us consider a simpler scenario first. Suppose there is only a single infectious subject j in household h
and disregard the community for now. A possible model for pathogenicity is

logit(ξhi (t)) = α00 + α10rhj (t) + α01rhi (t). (2.2)

Let ηuv = logit−1(α00 + vα01 + uα10), the probability of ILI given infection for antiviral status u for
the infective and v for the susceptible, u, v = 0, 1. Analogous to the definitions of antiviral efficacies in
reducing the probability of infection, we can define AVESp = 1 − η01

η00
, AVEIp = 1 − η10

η00
, and AVETp =

1 − η11
η00

to denote the antiviral efficacies in reducing pathogenicity for different treatment combinations
for the susceptible and the infective (Table 1). It can be shown that the following relationships hold:

1 − AVESd = (1 − AVESi)(1 − AVESp),

1 − AVEId = (1 − AVEIi)(1 − AVEIp), and (2.3)

1 − AVETd = (1 − AVETi)(1 − AVETp).

When there are multiple infectious sources, including the community, we define an average treatment
status over all infectious sources weighted by the daily cumulative hazards, that is, r̄h(t) =∑nh

j=0

h, j→i (t)

h,i (t)

rhj (t), where 
h, j→i (t) = ∫ t
t−1 λh, j→i (τ )dτ and 
h,i (t) = ∫ t

t−1 λh,i (τ )dτ . Other weight-
ing scheme could also be used. Then, we simply replace rhj (t) in (2.2) with r̄h(t). The underlying assump-
tion of this model is that, while the number of infectious sources affects the probability of infection,
exposure to multiple infectious sources does not increase ξhi (t) as compared to exposure to only a
single infectious source, if the infectious sources receive the same treatment. However, other potential
pathogenicity modifiers such as the number of infectious sources could be adjusted for as additional
covariates.

Given the infection day t̂hi and that the infection is symptomatic, we assume that the duration of
the incubation period of subject (h, i), t̃hi − t̂hi , follows a known discrete distribution Pr(t̃hi |t̂hi ). Our
simulation work suggests that the distributions of the incubation period and the infectious period cannot
be estimated together in this model setting (unpublished results).

2.4 Joint posterior probability

Define ωωω = (γ0, γ1, βββS, βββI, α00, α01, α10, a, b) as the collection of all parameters to be estimated. Let
T̃h denote the index case’s symptom onset day, and we assume that Th < T̃h � 1. The joint probability
concerning influenza infection and the development of ILI for person (h, i) starting from T̃h + 1 is

Lhi (t̂hi , t̃hi |ωωω, {t̂h j : j �= i})

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∏Th

t=T̃h+1
qhi (t), t̂hi > Th,{ ∏t̂hi −1

t=T̃h+1
qhi (t)

}{1 − qhi (t̂hi )} × ξhi (t̂hi ) × Pr(t̃hi |t̂hi ), T̃h < t̂hi � Th and t̃hi < ∞,{ ∏t̂hi −1
t=T̃h+1

qhi (t)
}{1 − qhi (t̂hi )} × (1 − ξhi (t̂hi )), T̃h < t̂hi � Th and t̃hi = ∞,

Pr(t̃hi |t̂hi ), t̂hi � T̃h and t̃hi < ∞,

(2.4)

where t̃hi = ∞ indicates that the infection is asymptomatic. The probability histories of escapes, infec-
tions, and pathogenicity before T̃h + 1 are dropped, but the components for the incubation period are
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retained, to adjust for selection bias as each recruited household has at least one case, that is, the index
case (Yang and others, 2006). The selection bias issue can be viewed as a left truncation problem for the
number of infections in a household, as 0 number of infection will never occur with this design. Without
this adjustment, the estimates of γ0, α00, α01, and α10 will be biased because index cases have already been
infected and developed symptoms without antiviral treatment. Households with lab negative index were
also recruited and followed in the oseltamivir studies, but we discard these households for analysis be-
cause appropriate adjustment for selection bias for these households is not possible unless the mechanism
of generating noninfluenza-caused ILI is also modeled.

Define C(yyyhi |t̂hi ) to indicate whether yyyhi is compatible with t̂hi (1, yes; 0, no). For example, if yyyhi
shows a positive swab on day 1, then C(yyyhi |t) = 0 for t � 1 as the infection time should be no later
than day 1 to produce a positive baseline lab test. The values of t with C(yyyhi |t) = 1 are study specific
and depend on how the lab test results indicate the range of possible infection dates, which often involves
untestable assumptions. Let π(ωωω) be the joint prior distribution of the parameters, which is the product
of individual prior densities (online supplementary materials available at Biostatistics online). Define the
sets t̂tt = {t̂hi : i = 1, . . . , nh, h = 1, . . . , H}, t̃tt = {t̃hi : i = 1, . . . , nh, h = 1, . . . , H}, and yyy = {yyyhi : i =
1, . . . , nh, h = 1, . . . , H}.

The joint posterior probability of the parameters and latent infection days is proportional to the full
probability of all random quantities:

Pr(t̂tt, ωωω|yyy, t̃tt) ∝ Pr(yyy, t̂tt, t̃tt, ωωω) = π(ωωω) ×
H∏

h=1

nh∏
i=1

Lhi (t̂hi , t̃hi |ωωω, {t̂h j : j �= i})C(yyyhi |t̂hi ). (2.5)

2.5 Markov chain Monte Carlo sampling

We use Markov chain Monte Carlo sampling to find the joint and marginal posterior distributions for all
parameters. The random walk style Metropolis–Hastings algorithm () is used to sample each parameter in
ωωω (sampling scheme in the online supplementary materials available at Biostatistics online). The sampling
of the latent infection days is guided by how it will change the probability of all escapes and infections
in the household. Denote by hi the set of candidate infection days for subject (h, i). To differentiate
information between symptomatic and asymptomatic infections, we assume that whether a given infection
is symptomatic or asymptomatic is determined as the following:

“Set hi = {t : C(yyyhi |t) × Lhi (t, t̃hi |·) > 0 and Pr(t̃hi |t) > 0}. If hi is not empty, then person (h, i)
is considered a symptomatic case; otherwise, the infection is asymptomatic and hi = {t : C(yyyhi |t) ×
Lhi (t, t̃hi |·) > 0}.”

To sample an infection day t , we use the conditional probability

Pr(t̂hi = t |t̂hi ∈ hi , ·) = Lhi (t, t̃hi |ωωω, {t̂h j : j �= i}) ∏
j �=i Lhi (t̂h j , t̃h j |ωωω, {t̂hk : k �= j})∑

s∈hi
Lhi (s, t̃hi |ωωω, {t̂h j : j �= i}) ∏

j �=i Lhj (t̂h j , t̃h j |ωωω, {t̂hk : k �= j}) . (2.6)

3. RESULTS

For the oseltamivir trials, we adjust for age group, in addition to antiviral treatment, in the transmission
model as age is known as a modifier for susceptibility (Yang and others, 2006). The 2 age groups are
adults (�18 years old) and juveniles (>12 and <18 years). Children contacts �12 years old were not en-
rolled in Osel II and are therefore excluded from Osel I for comparability of the analysis combining the
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studies. Let zhi denote the age group (1, adult; 0, child). The adjustment for covariates are attained by re-
placing βββ ′

S xxxhi (t) with rhi (t) log(θRx ) + zhi log(θAge) and βββ ′
I xxxhj (t) with rhj (t) log(φRx ) + zhj log(φAge)

in (2.1). The antiviral efficacies are given by AVESi = 1 − θRx and AVEIi = 1 − φRx , and we assume
multiplicativity such that 1 − AVETi = (1 − AVESi)(1 − AVEIi). Flat priors are used for all parameters
except for the shape parameters of the relative infectivity curve. The details about the prior distributions,
the assumptions used to determine C(yyyhi |t̂hi ), and thus hi for these trials are given in the online supple-
mentary materials available at Biostatistics online. We report the posterior medians and the 95% credible
sets (CS) for all parameters.

3.1 Primary analysis

The primary results are summarized and compared with previous analyses in Table 3. As γ ≈ 1 − e−γ

when γ is small, the estimates of γ0 and γ1 also reflect the daily baseline probability of infection by the
community and the average daily baseline person-to-person transmission probability within a household,
respectively. Baseline here refers to untreated children. However, due to the exclusion of children �12
years, the child group in our analysis is actually composed of juveniles. The Bayesian estimates for the
baseline infection rates are smaller than the maximum likelihood estimates for the daily probabilities of
symptomatic infection among adults in Yang and others (2006), partially because of different assumptions
about ILI episodes and lab test results.

The antiviral prophylaxis given to the exposed susceptibles was protective against both influenza in-
fection in general and infection with disease but was not able to reduce pathogenicity in the exposed
susceptibles substantially. Our estimate of AVESi, 0.62, is close to the estimates in Halloran and others

Table 3. Comparison between Bayesian estimates and previous findings. Distribution of the incubation
period is {1 day, 0.21; 2 days, 0.58; 3 days, 0.21}. Bayesian estimates are presented as median(95% C S)

and the likelihood-based estimates are presented as MLE(95% confidence interval)

Parameter Bayesian Halloran and others (2007)† Yang and others (2006)‡

γ0 0.00046(0.00006,0.0017) 0.00055(0.0003,0.001)
γ1 0.019(0.0096,0.037) 0.022(0.014,0.034)
η00 0.50(0.33,0.67) II: 0.57(0.44,0.69)
η01 0.29(0.097,0.57) II: 0.12(0.05,0.28)
η10 0.082(0.017,0.22)

AVESi 0.62(0.39,0.77)

(
I : 0.48(0.17,0.67)
II : 0.64(0.36,0.80)

)
AVEIi −0.18(−0.93,0.30) 0.16(−0.33,0.46)
AVESp 0.41(−0.28,0.81) II: 0.79(0.45,0.92)
AVEIp 0.84(0.53,0.97)

AVESd 0.77(0.45,0.93)

(
I : 0.81(0.35,0.94)
II : 0.91(0.64,0.98)

)
0.85(0.52,0.95)

AVEId 0.81(0.42,0.96) 0.81(0.45,0.93) 0.66(−0.10,0.89)
θAge 1.06(0.64,1.91)
φAge 1.05(0.64,1.71)
a 4.68(1.44,16.86)
b 4.90(1.92,15.57)
d 3.88(3.03,4.48)

γ0 and γ1 correspond to daily probability of symptomatic infection among adults in Yang and others (2006).
† I(II) means the results are solely based on Osel I (II).
‡ Contacts �12 years of Osel I and households with index cases <1 year were included in analysis.
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(2007), 0.48 based on Osel I and 0.64 based on Osel II. Our estimate of AVESd, 0.77, is slightly lower
than the ones reported in Halloran and others (2007), 0.81 based on Osel I and 0.91 based on Osel II,
and in Yang and others (2006), 0.85. Halloran and others (2007) reported 0.56 based on Osel I and 0.79
based on Osel II for the traditional AVEP which depends only on the antiviral prophylaxis status of the
susceptible. In fact, the AVEP estimate based on Osel II is also an estimate for AVESp based on SARs be-
cause all index cases were not treated. Hence, our posterior estimate of AVESp, 0.41, is much lower than
previous estimates. The baseline pathogenicity, when neither the infective nor the susceptible are treated,
is estimated as 0.57 in Halloran and others (2007), higher than our estimate, 0.50.

In contrast, the therapeutic antiviral treatment for the infectives was not effective in reducing the
infectiousness level but was able to reduce pathogenicity and thus able to prevent symptomatic infection
in contacts significantly. The estimate of AVEIi in Halloran and others (2007), 0.16, is also nonsignificant
but has a higher magnitude than our median estimate, −0.18. Our median estimate for AVEId, 0.81, is
similar to 0.81 in Halloran and others (2007) and 0.66 in Yang and others (2006).

Age group did not alter either susceptibility or infectiousness, which can be partially explained by
the exclusion of young children (�12) from both studies in our analyses. To investigate the age effect
on pathogenicity, we changed the logistic model for pathogenicity to logit(ξhi (t)) = α00 + α10r̄h(t) +
α01rhi (t) + βzhi . The estimate for exp(β), the odds of developing symptomatic disease given influenza
infection in adults relative to that in children, is 0.60 (95% CS: 0.18, 2.21), suggesting that infected adults
are somewhat less likely to develop ILI as compared to juveniles. The incorporation of age effect in the
pathogenicity model will make AVESp, AVEIp, AVESd, and AVEId age specific.

The posterior medians for the shape parameters of the relative infectivity curve, 4.68 for a and 4.90
for b, differ from the empirical values, 2.08 and 2.31. However, the estimated time of peak infectivity( a − 1

a + b − 2

)
, 3.30 days (95% CS: 1.93, 4.12), is close to 3.16 obtained from the empirical values. The pre-

dicted relative infectivity curve is shown in Figure 2(b) together with the empirical curve. The wide 95%
CS for a and b obtained under a relatively strong prior demonstrate the limited information about the rel-
ative infectivity curve in the data. If a flat prior is imposed, the estimates for a and b increase substantially
to the 102 scale, suggesting that the data do not provide sufficient information about the variability of
infectiousness over time. Nevertheless, the estimates for all other parameters remain about the same. For
this reason, a and b are assumed known and fixed at their empirical values in all subsequent sensitivity
analyses.

We also estimated the generation time, denoted by d, which is defined as the average time it takes
for an infective, since his/her own infection time, to infect a susceptible person. The posterior median of
d, 3.88, is longer than 2.6 in Ferguson and others (2005) and similar to the serial interval estimates 3–4
days in Viboud and others (2004) and Cowling and others (2009). The serial interval is the length of time
between symptom onsets of the 2 sides of transmission. The gap between our estimate of d and that in
Ferguson and others (2005) could be due to fact that we use a discrete timescale for infection, and thus
the minimum generation time is 1 day.

3.2 Sensitivity analysis

It was speculated that asymptomatic influenza-infected cases are less infectious than symptomatic influenza-
infected cases. We performed sensitivity analyses by changing the infectiousness of an asymptomatic in-
fection relative to a symptomatic infection from 1.0 to 0.5 and then to 0.1, and the results are shown in
Table 4. When we assume that asymptomatic cases are 50% less infectious than symptomatic cases, we
observe an increase in the estimate for γ1 and decrease for φage, with other estimates being fairly stable.
When the relative infectiousness level of asymptomatic cases is further reduced, the model tends to explain
many infections by increasing community-to-person transmission (γ0) instead of increasing person-to-
person transmission (γ1), and nearly all estimates become very sensitive except those for AVESi and θage.
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Table 4. Bayesian estimates by different infectiousness of asymptomatic cases relative to symptomatic
cases. The relative infectivity curve is assumed known and set to fBeta(2.08, 2.31). The distribution of
incubation period is {1 day, 0.21; 2 days, 0.58; 3 days, 0.21}. Estimates are presented as median(95% C S)

Relative infectiousness of asymptomatic infection
1.0 0.5 0.3 0.2 0.1

γ0 0.00046(0.00006,0.0017) 0.00063(0.00009,0.0023) 0.0012 0.0025 0.0062(0.0031,0.011)
γ1 0.021(0.011,0.038) 0.037(0.019,0.067) 0.051 0.054 0.013(0.0003,0.093)
η00 0.49(0.33,0.66) 0.48(0.32,0.65) 0.45 0.38 0.29(0.19,0.43)
η01 0.30(0.095,0.58) 0.31(0.10,0.61) 0.32 0.34 0.35(0.089,0.80)
η10 0.080(0.018,0.22) 0.077(0.015,0.22) 0.076 0.079 0.063(0.0,1.0)
AVESi 0.61(0.36,0.78) 0.61(0.35,0.77) 0.62 0.63 0.54(−0.14,0.86)
AVEIi −0.21(−0.94,0.29) −0.22(−1.0,0.31) −0.29 −0.29 0.28(−12.62,0.98)
AVESp 0.38(−0.32,0.81) 0.35(−0.46,0.79) 0.26 0.099 −0.18(−2.06,0.71)
AVEIp 0.84(0.53,0.96) 0.83(0.49,0.97) 0.83 0.80 0.79(−3.57,1.0)
AVESd 0.77(0.42,0.93) 0.75(0.38,0.92) 0.72 0.68 0.50(−0.46,0.86)
AVEId 0.80(0.38,0.96) 0.80(0.32,0.96) 0.78 0.73 0.81(−5.13,1.0)
θAge 1.07(0.64,1.87) 1.04(0.64,1.74) 1.03 1.02 1.0(0.59,1.77)
φAge 1.05(0.64,1.69) 0.91(0.56,1.55) 0.81 0.76 1.85(0.25,38.50)

To investigate the sensitivity of the posterior estimates to the prior distributions, we impose nonflat
priors on each parameter, while keeping priors of other parameters flat. The nonflat priors take the form

π(x |µ, σ) ∝ exp
{ − ( log(x) − µ)2

2σ 2

}
for parameters with domain (0, ∞) and π(x |µ, σ) ∝ exp

{ − (x − µ)2

2σ 2

}
for parameters with domain (−∞, ∞). We set µ, the mode, to the 1st, 10th, 50th, 90th, and 99th per-
centiles of the posterior distribution based on flat priors, an attempt to make the various extremity levels
of the nonflat priors comparable between parameters. The dispersion, σ 2, is the flat-prior-based poste-
rior variance of the parameter or the log-transformed parameter, depending on the domain. Figure 3 as-
sesses the sensitivity for each individual parameter. The horizontal axis corresponds to the nonflat priors

indexed by the percentile, and the vertical axis is
Qnonflat

2 −Qflat
2

Qflat
2

for parameters with domain (0, ∞) and

exp(Qnonflat
2 ) − exp(Qflat

2 )

exp(Qflat
2 )

for parameters with domain (−∞, ∞), where Q2 stands for the posterior median

and the superscripts denote the type of the prior distribution. This quantity should be close to 0 if the pos-
terior median for the parameter is insensitive to the choice of the prior. Figure 3 shows that the estimates
for γ0, α01, and α10 are relative more sensitive to the choice of prior distribution than other parameters.

Additional sensitivity analyses are performed by changing the ILI definition, distribution of the incu-
bation period, the association between infection time and a positive swab (for identifying C(yyyhi |t̂hi )), and
the prior distributions, with details given in the supplementary materials available at Biostatistics online.
These analyses demonstrate the relative robustness of the estimates for γ1, AVESi (θRx ), θAge, and φAge
to a reasonable scope of model assumptions. In addition, reasonable variation in the distribution of the
incubation period and the association between infection time and a positive swab have no appreciable
impact on the posterior distributions.

4. DISCUSSION

To account for asymptomatic influenza infections, which is the key to the evaluation of the efficacy mea-
sures, we developed a Bayesian framework and reanalyzed the combined data from 2 efficacy studies of
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Fig. 3. Sensitivity of the posterior median to the prior distribution for each parameter, with flat priors for param-
eters other than the focal one. The new prior mode is set, respectively, to the 1st, 10th, 50th, 90th, and 99th per-
centiles of the posterior distribution based on the flat prior. The relative infectivity curve is assumed known and set to
fBeta(2.08, 2.31).

oseltamivir. As pointed out in Halloran and others (2007), these 2 studies were designed to evaluate the
postexposure prophylactic efficacies (AVESi, AVESp, and AVESd) of the antiviral agent, not for the
therapeutic efficacies (AVEIi, AVEIp, and AVEId). Consequently, combining the 2 studies is necessary
for the therapeutic efficacies to be estimable as each study alone does not support such estimation. On the
other hand, combining the 2 studies implies a strong assumption: the 2 populations share the same γ1 and
similar pre-epidemic immunity. However, it may not be fruitful to test this assumption before combining
the studies. Information about the baseline hazard γ1 in Osel I is very limited because (1) all symptomatic
cases including the index cases were treated with the antiviral and (2) the infection times of asymptomatic
cases are too uncertain to provide practically useful information for estimating γ1. As a result, assuming
different γ1 for the 2 studies will certainly not provide information about therapeutic efficacies and will
not necessarily yield more reliable inference about prophylactic efficacies.

The Bayesian estimates for AVESi, AVESd, and AVEId are close to previously published results, con-
firming the effectiveness of oseltamivir in reducing transmission of both viral and clinical influenza. The
significance of AVESd mainly comes from AVESi, whereas the significance of AVEId mainly comes from
AVEIp, which is revealed by analysis for the first time. The Bayesian estimates for AVEIi also agree with
previous analyses on the absence of the antiviral efficacy in reducing infectiousness.

Additional sensitivity analyses show that estimates for γ1, AVESi, θAge, and φAge are relatively sta-
ble to various model assumptions and prior distributions. Particularly, estimates for all parameters are
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insensitive to reasonable variation in the distribution of the incubation period and the range of potential
infection time that a positive swab can indicate. The sensitivity of the estimates for γ0, η01 (via α01), and
η10 (via α10) to prior distributions reflect to the lack of information in the data for these parameters. The
data contain the least information about the shape parameters, a and b, of the relative infectivity curve,
however, this uncertainty has very limited influence on the estimation of other parameters. In our unpub-
lished simulation studies that model only symptomatic infections, a and b can be accurately estimated
with a sufficient number of cases.

When an efficacy measure is concerned with a postinfection outcome, there may be posttreatment se-
lection bias. In our setting, all efficacy measures except for AVESi involve the evaluation of postinfection
outcomes and the absence of posttreatment selection bias is implicitly assumed. For vaccine studies,
principle stratification can be used to identify the bounds for causal antiviral effects in the presence of
posttreatment selection bias (Gilbert and others, 2003; Hudgens and Halloran, 2006). Methods for causal
inference in antiviral influenza studies are open to future investigation, for which 2 problems warrant con-
sideration: the violation of the stable unit treatment value assumption and the time dependency of antiviral
treatment.

To adjust for selection bias due to case-ascertained enrollment of each household, we truncate the
probability on the index case’s symptom onset date. Cauchemez and others (2004) used the earliest infec-
tion time in the household instead of the index case’s symptom onset time as the cut point. However, in
our situation, the earliest infection might be asymptomatic, which is not the reason why the household was
enrolled. In addition, when the earliest infection time itself is sampled, for example, between 2 candidate
days, t1 and t2, the conditional probabilities correspond to 2 stochastic processes defined on 2 different
domains, (t1, t1 + 1, . . .) versus (t2, t2 + 1, . . .), with one domain nested in the other, likely making the
sampling statistically inappropriate.

The symptom diary generally stops at Th , and consequently, t̃hi may be right censored (symptomatic)
instead of being ∞ (asymptomatic). In (2.4), we ignore the possible right censoring of symptoms af-
ter Th and assume that the infection is asymptomatic. This assumption helps us identify asymptomatic
infections with certainty; otherwise, some parameters such as ηuvs may not be identifiable. In studies
where asymptomatic infections can be accurately ascertained, for example, through periodic lab tests
(instead of symptom driven as in the oseltamivir studies), the right censoring can be appropriately
adjusted for.

In future studies, it is recommended that all subjects keep a complete symptom diary up to the day
of the last specimen drawn for lab confirmation as in Osel I. While there is a time lag between infection
and a 4-fold increase in HI titer level, a complete symptom diary can allow for more comprehensive
sensitivity analysis by varying the value of Th . If it is not possible to obtain a complete symptom diary for
each subject in the study population, then households rather than individuals should be sampled to keep a
complete symptom diary, so that the sampled households can contribute complete exposure history to the
full probability.

Inference can be improved if infection times of asymptomatic cases can be more accurately located.
This goal may be attainable by periodic collection of specimens for lab testing at a higher frequency
given that the sensitivity and specificity of the test are satisfactory. For example, a recent pilot influenza
study was conducted in Hong Kong to evaluate the efficacy of nonpharmaceutical interventions (Cowling
and others, 2009), in which nasal and throat swabs were collected every 3 days from each subject. How-
ever, the low secondary attack rate (0.06) in this pilot study prevents the use of a complex model like ours
for reliable inference about the efficacy measures and the natural history of influenza.

We reiterate that a better designed study is necessary for more reliable evaluation of the effects of
therapeutic treatment on the outcomes in exposed contacts. While oseltamivir and other antiviral agents
are being stockpiled as a mitigation measure for potential influenza pandemic, we recommend the use of
lower values for AVEIi in simulation models to evaluate mitigation strategies.
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