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Abstract Advances in functional magnetic resonance
imaging (fMRI) technology and analytic tools provide a
powerful approach to unravel how the human brain com-
bines the diVerent sensory systems. In this perspective, we
outline promising future directions of fMRI to make opti-
mal use of its strengths in multisensory research, and to
meet its weaker sides by combining it with other imaging
modalities and computational modeling.

Introduction

The potential to measure whole-brain volumes in about 2 s
and its non-invasiveness make functional magnetic reso-
nance imaging (fMRI) indispensible in human cognitive
neuroscientiWc research. fMRI enables mapping large-scale
brain activation (Huettel et al. 2004) as well as interaction
patterns (Friston et al. 1997; Roebroeck et al. 2005), which

yield essential exploratory knowledge on brain functioning
at the systems level (Logothetis 2008). Interestingly, these
mappings are not restricted to the cortex, but may for
instance include cortical–subcortical interaction patterns.
This is highly relevant since in addition to the superior col-
liculi (Stein and Meredith 1993), the thalamus and thalamo-
cortical interactions in particular may be important for
multisensory integration (Schroeder et al. 2003; Hackett
et al. 2007; Cappe et al. 2009).

A weak point is that the hemodynamic nature of the
fMRI signal (the “Blood Oxygenation Level Dependent” or
BOLD signal) makes it an indirect and relatively sluggish
measure, and therefore inadequate to capture fast dynamic
neural processes. Methods measuring human brain activity
more directly and with temporal resolution in the range of
neural dynamics, such as scalp and intracranial electro-
encephalography (EEG) and magneto-encephalography
(MEG), provide only limited coverage and have lower spa-
tial accuracy (except intracranial EEG, but this method is
invasive and depends on patient populations). Therefore,
the advantages of fMRI should be optimally exploited and
combined with these complementary methods. In the pres-
ent perspective, we will outline recent advancements in
fMRI technology, design and analytical approaches that can
promote a deeper understanding of our brain’s ability to
combine diVerent sensory systems.

First, we will discuss why multisensory research poses
extra challenges on how to interpret fMRI results at the
neuronal level. A major challenge is the problem of
choosing appropriate (statistical) criteria for deciding to
what extent a voxel or region is involved in integration.
Typically, fMRI studies on multisensory integration
compare fMRI responses to multisensory stimulation
(e.g., audiovisual) to their unisensory counterparts (sepa-
rate auditory and visual stimuli), using univariate General
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Linear Models (GLMs) at each voxel (Friston et al. 1994).
Because none of the proposed metrics of multisensory
integration (see below) that can be applied to estimated
beta values is ideal, alternative designs and analytical
tools need to be explored. One alternative type of design
is to make use of repetition suppression eVects, as is done
in fMRI-adaptation (Grill-Spector and Malach 2001).
Other designs that can oVer more Xexibility are multifac-
torial designs in which multiple factors can be simulta-
neously manipulated, e.g., semantic and temporal
correspondence of multisensory inputs (Van Atteveldt
et al. 2007), or both within- and between-group factors
(Blau et al. 2009). While these approaches are based on
voxel-wise estimates, multi-voxel pattern analysis
(MVPA) approaches (Haynes and Rees 2005; De Martino
et al. 2008) jointly analyze data from multiple voxels
within a region. By focusing on distributed activity pat-
terns, this approach opens the possibility to separate and
localize spatially distributed patterns, which would be
potentially too weak to be detected by single-voxel (uni-
variate) analysis. As recently applied to classify sensory-
motor representations (Etzel et al. 2008), it will be very
interesting to apply MVPA analogously to sensory-sen-
sory representations to test whether representations of
events in one modality generalize to other modalities.

Besides methodological improvements, the potential
beneWts of technological advancements will be discussed.
Scanners with ultra-high magnetic Weld strengths (¸7
Tesla) provide enough signal-to-noise for functional scan-
ning at sub-millimeter spatial resolution, which may
allow to directly map distributed representations at the
columnar level (Yacoub et al. 2008). To exploit higher
spatial resolution scans also at the group-level, we will
discuss the use of advanced, cortex-based, multi-subject
alignment tools, which match corresponding macro-ana-
tomical structures (gyri and sulci) across subjects. Finally,
since the eventual goal is to understand dynamic pro-
cesses and neuronal interactions, which take place in a
millisecond time-scale, advancements in combining fMRI
with more “temporal” methods will be outlined. For
example, because of its whole-brain coverage and non-
invasive nature, fMRI can be used to raise speciWc new
predictions that can be veriWed by other methods such as
human intracranial recordings which have both spatial
and temporal resolution, but limited coverage and practi-
cal restraints. A relevant example is a recent intracranial
study demonstrating the cortical dynamics of audiovisual
speech processing (Besle et al. 2008), testing predictions
raised by previous fMRI (lacking temporal precision) and
scalp EEG studies (lacking spatial precision). We will
conclude by discussing the role of computational model-
ing in integrating results from multisensory neuroimaging
experiments in a common framework.

Statistical inference in multisensory fMRI: 
how to deWne integration?

Deciding whether a neuron is “multisensory” on basis of
single cell recordings is relatively straightforward, using
directly acquired data on how the recorded neuron responds
to diVerent types of stimulation (unisensory, multisensory).
Integration is thought to occur when the response to a com-
bined stimulus (e.g., audiovisual) is diVerent from the
response predicted on basis of the separate responses (e.g.,
auditory and visual). The initially employed criterion is that
a neuron’s spike count during multisensory stimulation
should exceed that to the most eVective unisensory stimulus
(Stein and Meredith 1993). An interesting observation is
that some multisensory neurons respond super-additively:
the response to multisensory stimuli not only exceeds the
maximal unisensory response, but even the summed (or
additive) response to both (or multiple) sensory modalities
(Wallace et al. 1996).

When dealing with fMRI data, the decision of when a
voxel or region is multisensory is far more complicated. An
important reason is that instead of single neurons (or small
units), the responses of several hundred thousand neurons
are combined in the signal of one fMRI unit (voxel). This is
a problem because voxels are quite unlikely to consist of
homogeneous neural populations. Instead, the large sample
of neurons can be made up of mixed unisensory and multi-
sensory sub-populations (Laurienti et al. 2005), and multi-
sensory sub-populations on their turn can consist of
multisensory neurons with very diverse response properties
(additive, super- or sub-additive; Perrault et al. 2005).
Therefore, the voxel-level response can have many diVerent
origins at the neural level. For example, an enhanced BOLD
response for multisensory relative to unisensory stimulation
can be due to “true” multisensory neurons integrating stimu-
lation from two or more sensory modalities, but it can just as
well be explained by driving two unisensory sub-popula-
tions instead of one. If the latter scenario would be true, one
might wrongly infer multisensory integration at the neuronal
level. A super-additive BOLD response is less prone to such
false inferences (Calvert 2001), but it is unlikely to be
observed because of the same heterogeneity of response
types (unisensory, super-additive, sub-additive) that may
cancel each other out at the voxel level (Beauchamp 2005b;
Laurienti et al. 2005). Observation of an enhanced (whether
super-additive or not) BOLD response during multisensory
stimulation, therefore, has to be carefully interpreted and
will most likely be based on a mixture of multisensory and
unisensory responding neurons.

Moreover, the BOLD response does not increase linearly
with increasing neuronal population activity but reaches a
ceiling level, i.e., it saturates (Buxton et al. 2004; Haller
et al. 2006). Whereas the dynamic range of single neurons
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can have intrinsic functional properties (Perrault et al.
2005), the limited dynamic range of the BOLD response is
a characteristic of the vascular system (for instance, limited
capability of vessel dilation) and therefore confounds neu-
rofunctional interpretations. In other words, BOLD satura-
tion might conceal increased neuronal population responses
to multisensory stimulation, especially when unisensory
stimuli already evoke substantial responses (Fig. 1a). This
may result in false negatives, since integration at the neuro-
nal level is not well reXected at the voxel level.

Statistical criteria: diVerent classiWcations 
in diVerent situations

When using fMRI studies to identify multisensory integra-
tion regions in the human brain, we have to seek for means

to objectively deWne integrative fMRI responses. Several
statistical criteria have been suggested to infer multisensory
integration from fMRI data (Calvert 2001; Beauchamp
2005b; Laurienti et al. 2005; Driver and Noesselt 2008;
Stevenson et al. 2008) ranging from stringent to liberal,
respectively: the criterion of super-additivity, the max crite-
rion and the mean criterion. The super-additivity criterion
states that the multisensory response should exceed the sum
of the unisensory responses to be deWned as integrative.
The max criterion is deWned in analogy to the criterion used
to infer multisensory enhancement or suppression on the
single neuron level (Stein and Meredith 1993) and states
that the multisensory fMRI response should be stronger
than the most eVective unimodal response. The most liberal
criterion is the mean criterion, stating that the multisensory
response should exceed the mean of the unimodal
responses. Typically, integration is deWned by a positive

Fig. 1 ClassiWcation by diVerent statistical criteria (columns) for
hypothetical brain regions with diVerent unisensory (fMRI) response
proWles (a–c). a Heteromodal response: a signiWcant response to both
unisensory stimulation modalities (auditory and visual). b Auditory-
speciWc response and a weak visual response. c Auditory-speciWc
response and a negative visual response. Bars indicate the fMRI acti-
vation level for diVerent unisensory and multisensory stimulation
conditions: visual (V red), auditory (A green), and two diVerent audio-
visual/multisensory conditions (M1 dark blue; M2 light blue). The dotted

line in the Wrst column (“BOLD max”) represents the maximal fMRI
response due to hemodynamic saturation. The solid lines in columns
2–4 represents the classiWcation criterion: summed unisensory activation
level (A + V) for the super-additivity criterion, maximal unisensory
activation level ([A, V]max) for the “Max” criterion, and mean unisen-
sory activation level (A + V)/2 for the “Mean” criterion. Plus and mi-
nus symbols indicate classiWcation type (super-additivity/enhancement
vs. sub-additivity/suppression) and strength
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outcome using any of the criteria (super-additivity or
enhancement); in this case the stimuli are assumed to
“belong together”. A negative outcome is typically inter-
preted as inhibited processing (sub-additivity or suppres-
sion), which can be viewed as another type/direction of
integration, for stimuli that are assumed to “not belong
together”. No diVerence between multi- and unisensory
responses (additivity, no interaction) is interpreted as no
integration, in case two inputs do not inXuence each other’s
processing in that voxel or region.

To gain insight in how the diVerent criteria reach their
classiWcations, Fig. 1 illustrates their outcomes with respect
to speciWc multisensory (“M”) responses, in regions with
diVerent unisensory (visual and auditory) response proWles.
Region “A” shows a heteromodal response, i.e., the area
responds signiWcantly to both unisensory stimulation types.
This proWle is, for instance, typical for regions in the poster-
ior superior temporal sulcus (STS; see Amedi et al. 2005;
Beauchamp 2005a). Regions “B” and “C” show a sensory-
speciWc (auditory) response (typical for areas in auditory
cortex), with a weak visual response in “B” and a negative
visual response in “C”. The three integration criteria are
applied to the fMRI activity for two diVerent multisensory
(audiovisual) stimulus types “M1” and “M2”. M1 evokes a
strong fMRI response, higher than each of the unisensory
responses, whereas M2 evokes a much weaker response that
does not exceed either of the unisensory responses. As will
be discussed below, the Wgure shows that unisensory
response proWles as well as the BOLD response saturation
level (“BOLD max”) both aVect classiWcation of the fMRI
response to M1 and M2 diVerently for the three criteria.

In region “A”, the sum of the two unisensory responses
exceeds the BOLD saturation level implying that no
multisensory response can show super-additivity. As a
consequence, both M1 and M2 responses are classiWed as
sub-additive (¡), and hence as not or negatively “integra-
tive”, even though M1 is clearly boosted and M2 is not. Both
the max- and the mean criteria classify the response to M1 as
enhanced (+) and M2 as suppressed (¡) relative to unisen-
sory responses. In region “B”, the summed response does not
exceed the BOLD saturation level and hence the response to
M1 is now classiWed as super-additive (+), and the weak M2
response as sub-additive (¡). The max criterion again classi-
Wes the M1 response as enhanced (+) and the M2 response as
suppressed (¡). In contrast, the mean criterion classiWes both
M1 and M2 as enhanced (+), while the M2 response does not
exceed the auditory response. In region “C”, the summed
response is actually lower than each of the unisensory
responses because one of the responses is negative. The
super-additivity criterion classiWes both M1 and M2
responses as super-additive (+), but it is questionable how
meaningful it is to sum the responses when one is negative
(Calvert 2001). The mean criterion also classiWes both M1

and M2 as enhanced, whereas the max criterion still classiWes
M1 as enhanced (+) and M2 as suppressed (+).

The super-additivity criterion seems to be prone to false
negatives in regions such as “A” due to BOLD saturation, and
possibly to false positives in “C” due to a negative response in
one of the modalities. The Wrst bias can be limited by using
“weak” stimuli to prevent BOLD saturation (Calvert 2001;
Stevenson et al. 2008). Note that stimuli at detection threshold
are also recommended from a neural perspective (inverse
eVectiveness; Stein and Meredith 1993), since such stimuli
increase the need for integration. On the other extreme, the
mean criterion seems to be too liberal especially when one of
the unisensory responses is weak (“B”) or negative (“C”),
which reduces the mean in such a way that a multisensory
response exceeds the mean even when weaker than the largest
unisensory response. Therefore, the mean criterion can be
misleading, especially when examining low-level sensory
regions such as the auditory cortex.

In sum, whereas saturation confounds can be avoided by
presenting weak stimuli, both super-additivity and mean cri-
teria seem biased toward classifying a multisensory response
as integrative in sensory-speciWc brain regions (like “B” or
“C”). This is problematic because many recent studies sup-
port involvement of low-level sensory-speciWc brain regions
in multisensory integration (reviewed in Schroeder and Foxe
2005; Ghazanfar and Schroeder 2006; Macaluso 2006;
Kayser and Logothetis 2007; Driver and Noesselt 2008). As
argued in the introduction, an asset of fMRI is that functional
maps can be created over the whole brain. In such whole-
brain analyses, identical statistical tests are performed in all
sampled voxels. Therefore, it is important that a criterion for
multisensory integration is suitable in all voxels, regardless
of diVerent unisensory response proWles. The classiWcation
based on the max criterion seems most robust to diVerent
unisensory response proWles. It can also be argued that this is
a disadvantage, because the classiWcation by itself does not
give any insight in the response in the least-eVective modal-
ity. However, although the other criteria are based on a com-
bination of both unisensory responses, diVerent combinations
can lead to the same threshold. This points out that no matter
which criterion is used, it is of utmost importance to inspect
and report the unisensory response levels (% signal change,
averaged time-courses, or b-estimates) in addition to show-
ing maps for a certain test (Beauchamp 2005b). This is
necessary to fully understand why a criterion has been met by
a voxel or region, and to judge the meaningfulness of a
certain classiWcation.

Because all above discussed criteria for comparing
multisensory to unisensory responses have limitations, an
interesting alternative is to manipulate the congruency of
the diVerent inputs (Doehrmann and Naumer 2008), for
instance with regard to stimulus identity (Van Atteveldt
et al. 2004) or statistical relation (Baier et al. 2006). In this
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type of analysis, two bimodal conditions are contrasted
with each other (congruent vs. incongruent), which elimi-
nates the unimodal component and its accompanying com-
plications from the metric. This comparison follows the
assumption that a distinction between congruent and incon-
gruent cross-modal stimulus pairs can not be established
unless the unimodal inputs have been integrated success-
fully; therefore the congruency contrast can be used as a
supplemental criterion for multisensory integration. An
additional advantage of using congruency manipulations is
that it facilitates inclusion of diVerent factors within the
same design, e.g., temporal, spatial and/or semantic relation
between the cross-modal inputs. Such multi-factorial
designs allow to directly addressing questions regarding
relative contributions and interactions between diVerent
(binding) factors (Sestieri et al. 2006; Van Atteveldt et al.
2007; Blau et al. 2008; Noppeney et al. 2008). Interest-
ingly, between-group factors can also be included in such
models to assess group diVerences in integration, as in a
recent study that revealed defective multisensory integra-
tion of speech sounds and written letters in developmental
dyslexia (Blau et al. 2009).

Unsolved issues and suggested approaches

Whichever statistical criterion applied, the subsequent
interpretation will always be limited because of the hetero-
geneity of the measured voxels. As already pointed out in
the introduction, an observed voxel-level response can have
many diVerent origins at the neuronal level because voxels
are likely to consist of mixed populations of uni- and multi-
sensory neurons (Laurienti et al. 2005; Driver and Noesselt
2008). As a consequence, interpretations following the
above outlined statistical criteria are never exclusive, and
alternative designs and analytical tools need be explored. In
the following, we will discuss alternative designs and
analytical approaches that might circumvent some of the
problems caused by heterogeneity within voxels (fMRI-
adaptation), or make optimal use of spatially heterogeneous
response patterns (MVPA). Finally, technical advance-
ments pushing the limits of high-resolution fMRI will be
considered. As we will see, resolution in the scale of corti-
cal columns is in reach, which might drastically reduce
undesired heterogeneity within the units of measurement.

Alternative fMRI design: fMRI-adaptation

The fMRI-adaptation paradigm (fMRI-A) is based on the
phenomenon of reduced neural activity for repeated stimuli
(repetition suppression) and hypothesizes that by targeting
speciWc neuronal populations within voxels, their func-

tional properties can be measured beyond the voxel resolu-
tion (Grill-Spector and Malach 2001; Grill-Spector 2006).
The typical procedure is to adapt a neuronal population by
repeated presentation of the same stimulus in a control con-
dition (fMRI signal reduces), and to vary one stimulus
property and assess recovery from adaptation in the main
condition(s). If adaptation remains (fMRI signal stays low),
the adapted neurons respond invariantly to the manipulated
property, whereas a recovered (i.e., increased) fMRI signal
indicates sensitivity to that property, i.e., that at least par-
tially, a diVerent set of neurons is responding within the
voxel. Within sensory systems, there are many examples in
which fMRI-A revealed organizational structures that could
not be revealed using more standard stimulation designs.
Since (presumably) only the targeted neural population
adapts, its functional properties can be investigated without
being mixed with responses of other neural populations
within the same voxel. In the visual system for example,
heterogeneous clusters of feature-selective neurons (e.g.,
for diVerent object orientations) within voxels were
revealed using fMRI-A (Grill-Spector et al. 1999), whereas
in a more standard stimulation design, the averaged voxel-
response was not diVerent for the diVerent features since all
of them activated a neural population within that voxel.
Interestingly, fMRI-A has also been used to investigate
sub-voxel level integration of features within the visual
modality (Self and Zeki 2005; Sarkheil et al. 2008). Note,
however, that the exact neuronal mechanism underlying
BOLD adaptation is still uncertain (Grill-Spector et al. 2006;
Krekelberg et al. 2006; Sawamura et al. 2006; Bartels et al.
2008.

Human “multisensory” cortex is most likely composed
of a mixture of unisensory and multisensory subpopula-
tions. In a high-resolution fMRI study, Beauchamp and col-
leagues demonstrated that human multisensory STS
consists of mixed visual, auditory and audiovisual subpopu-
lations (Beauchamp et al. 2004). These diVerent neuron
types were organized in clusters on a millimeter scale,
which might indicate an organizational structure similar to
that of cortical columns, as is also indicated by anatomical
work in macaques (Seltzer et al. 1996). Cortical columns
consist of about hundred thousand neurons with similar
response speciWcity, for example, orientation columns in
V1 (Hubel and Wiesel 1974), or feature-selective columns
in inferotemporal visual cortex (Fujita et al. 1992). As out-
lined above, such a heterogeneous organization of unisen-
sory and multisensory neuronal populations below the
voxel resolution (typically around 3 £ 3 £ 3 = 27 mm3),
limits the certainty with which voxel-level responses can be
interpreted in terms of neuronal processes. A clear example
is that an enhanced BOLD response to multisensory stimu-
lation can be due to integration at the neuronal level, but it
can be explained equally well by a mix of two separate
123



158 Exp Brain Res (2009) 198:153–164
unisensory populations. fMRI-A might be helpful to distin-
guish between voxels in multisensory cortex containing
only unisensory neuronal subpopulations and voxels com-
posed of a mixture of uni- and multisensory populations.
DiVerent adaptation and recovery responses could shed
light on the sub-voxel organization: multisensory neurons
should adapt to cross-modal repetitions (alternating modali-
ties, e.g., A-V), while unisensory neurons should not or at
least less (see below). This might be used to disentangle
unisensory and multisensory neural populations. Another
approach is to present repetitions of multisensory stimuli
and vary the (semantic or other) relation between them
(e.g., congruent vs. incongruent pairs), to test whether or
not voxels contain neurons that are sensitive to this relation,
assuming that these should be multisensory (Van Atteveldt
et al. 2008).

Unfortunately, there are several potential pitfalls for
such designs. Whereas in the example from the visual sys-
tem, diVerent neuronal subpopulations are selective to one-
speciWc feature (e.g., maximum response to an orientation
of 30°) or are not selective (e.g., orientation-invariant);
diVerent populations in multisensory cortex can be selec-
tive to “features” in diVerent conditions: visual repetitions
may adapt visual and audiovisual neurons, auditory repeti-
tions may adapt auditory and audiovisual neurons. This can
be problematic because neurons are shown to adapt despite
intervening stimuli (Grill-Spector 2006), so stimulus repeti-
tions in alternating modalities will also adapt unisensory
neurons (although probably to a weaker extent). Another
problem is that a cross-modal repetition (e.g., visual–audi-
tory) may suppress activity of multisensory neurons, but
will also activate new pools of unisensory neurons (in this
example: auditory) in the same voxel with mixed neuronal
populations, which may counteract the cross-modal sup-
pression. In sum, fMRI-A designs to investigate multisen-
sory integration may help interpreting representational
coding at the neuronal level, but great caution is warranted.

Alternative analytical approach: multivariate statistics

While standard hypothesis-driven fMRI analyses using the
GLM process the time-course of each voxel independently,
and data-driven methods, such as independent component
analysis search for functional networks in the whole
four-dimensional data set, several new analysis approaches
focus on rather local, MVPA methods (Haxby et al.
2001; Haynes and Rees 2005; Kamitani and Tong 2005;
Kriegeskorte et al. 2006; De Martino et al. 2008) In these
approaches, data from individual voxels within a region are
jointly analyzed. An activity pattern is represented as a fea-
ture vector where each feature refers to an estimated
response measure of a speciWc voxel. The dimension N of

an fMRI feature vector, thus, corresponds to the number of
included voxels in the analysis. Using standard statistical
tools, distributed activity patterns corresponding to diVerent
conditions may be compared using multivariate approaches
(e.g., MANOVA). Alternatively, machine learning tools
[(e.g., support vector machines (SVMs)] are trained on a
subset of the data while leaving some data aside for testing
generalization performance of the trained “machine” (clas-
siWer). More robust estimates of the generalization perfor-
mance of a classiWer are obtained by cross-validation
techniques involving multiple splits of the data in training
and test sets. To solve diYcult classiWcation problems, non-
linear classiWers may be used but for problems with high-
dimensional feature vectors and a relatively small number
of training patterns, non-linear kernels are usually not
required. This is important for fMRI applications, because
only linear classiWers allow to use the obtained weight val-
ues (one per voxel) for direct visualization of the voxels’
contribution to the classiWcation performance. Linear clas-
siWers, thus, allow to perform “multivariate brain mapping”
by localizing discriminative voxels. By properly weighting
the contribution of individual voxels across a region (local),
multivariate pattern analyses approaches open the possibil-
ity to separate spatially distributed patterns, which would
be potentially too weak to be discovered by univariate
(voxel wise) analysis. Note that the joint analysis of weak
signals from multiple voxels does not require that voxels
within a region behave in the same way, since it extracts
discriminative information within the multivariate signal.
If, for example, some voxels in a local neighborhood show
a weak increase and other voxels a weak decrease when
comparing two conditions, these opposing eVects would
cancel out in a regional average using a standard GLM
analysis, but would well contribute to a measure of multi-
variate information. The gained higher sensitivity allows to
separate similar distributed representations from each other
due to the integration of weak information diVerences
across voxels. Note that a high sensitivity for distinguishing
distributed representations would be important even if a
columnar-level resolution would allow a more direct map-
ping of representational units since representations of
exemplars (e.g., two faces) might only slightly diVer in
their distributed code across the same basic features.

A recent publication (Formisano et al. 2008) has shown
that distributed patterns extending from early auditory cor-
tex into STS/STG contain enough information to reliably
separate responses evoked by individual vowels spoken by
diVerent speakers from each other; performance of trained
classiWers was indicated by successful generalization to
new exemplars of learned vowels even if they were spoken
by a novel speaker. Note that this discriminative power
could not be observed when analyzing responses from
single voxels. Another relevant recent fMRI study
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demonstrated that classiWers (SVMs) that were trained to
separate sensory events using activation patterns in premo-
tor cortex, could also reliably separate the corresponding
motor events (Etzel et al. 2008).

We propose to follow a similar approach to investigate
the multisensory nature of sensory-sensory representations
in multisensory cortex. It would, for example, be interest-
ing to teach classiWers to discriminate responses from mul-
tisensory (e.g., audiovisual) stimuli in order to obtain more
information about how speciWc stimulus combinations are
represented in sensory-speciWc cortex (e.g., visual and audi-
tory association cortex) and multisensory cortex (e.g.,
STS); diVerent training signals (classiWcation labels) could
be used for the same fMRI data by either learning labels
representing the full cross-modal pairs or by using only the
visual or auditory component of a pair. These diVerent
training tasks should reveal which parts in the cortical net-
work would more prominently code for visual, auditory or
the combination of both stimuli; furthermore, if learning
and generalization would be successful, the identiWed rep-
resentations would allow predicting from a single trial
response which speciWc audio-visual combination was pre-
sented to the subject. Such knowledge would be highly rel-
evant for building computational models of multisensory
processing, which will be discussed in the Wnal section.

Increased spatial resolution

Increasing spatial resolution is an obvious approach to
obtain more detailed fMRI data, which might additionally
help to shed some light on the Wne-grained functional orga-
nization of small areas in the human brain (Logothetis
2008). High-resolution functional imaging beneWts from
higher MRI Weld strength since small (millimeter or even
sub-millimeter) voxels still possess a reasonable signal-to-
noise ratio. As an example, a 7 Tesla fMRI study showed
tonotopic, mirror-symmetric maps within early human
auditory cortex (Formisano et al. 2003). The described
tonotopic maps were much smaller than the large retino-
topic maps in human visual cortex, which could therefore
be observed already 10 years earlier with 1.5 Tesla scan-
ners (Sereno et al. 1995). Another example is the study of
Beauchamp and colleagues (2004), in which the authors
used parallel imaging to achieve a spatial resolution of
1.6 £ 1.6 £ 1.6 mm3, providing insight in the more
detailed organization of uni- and multisensory clusters in
posterior STS.

Despite progress in high-resolution functional imaging,
it is unclear what level of eVective spatial resolution can be
achieved with fMRI since the ultimate spatial (and tempo-
ral) resolution of fMRI is not primarily limited by technical
constraints but by properties of the vascular system. The

spatial resolution of the vascular system, and hence fMRI,
seems to be in the order of 1 millimeter since relevant blood
vessels run vertically through cortex in a distance of about a
millimeter (Duvernoy et al. 1981). An achievable resolu-
tion of 0.5–1 mm might be just enough to resolve cortical
columns (Mountcastle 1997). According to theoretical rea-
soning and empirical data (e.g., orientation columns in V1;
Hubel and Wiesel 1974), a cortical column is assumed to
contain about hundred thousand neurons with similar
response speciWcity. A conventional brain area, such as the
fusiform face area, could contain a set of about 100 cortical
columns, each coding a diVerent elementary (e.g., face) fea-
ture. Cortical columns could, thus, form the basic building
blocks of complex distributed representations (Fujita et al.
1992). DiVerent entities within a speciWc area would be
coded by a speciWc distributed activity pattern across corti-
cal columns, like letters or vowels in superior temporal cor-
tex (Formisano et al. 2008). If this reasoning is correct, an
important research strategy would aim to unravel the spe-
ciWc building blocks in various parts of the cortex, includ-
ing individual representations of letters, speech sounds and
their combinations in auditory cortex and heteromodal
areas in the STS/STG. Since neurons within a cortical col-
umn code for roughly the same feature, measuring the brain
at the level of cortical columns promises to provide a rele-
vant level for revealing meaningful distributed neuronal
codes. Recently it became indeed possible to reliably mea-
sure orientation columns in the human primary visual cor-
tex using high-Weld (7 Tesla) fMRI (Yacoub et al. 2008).
This study clearly indicates that columnar-resolution fMRI
is indeed possible—at least when using high-Weld fMRI
combined with spin-echo MRI pulse sequences. If the orga-
nization of uni- and multisensory neuronal populations is
organized at a columnar level, which is hinted at by fMRI
(Beauchamp et al. 2004) and animal work (Seltzer et al.
1996), this would strongly increases the feasibility of
high-Weld fMRI to provide insight in neuronal multisensory
integration because putative multisensory and unisensory
columns could separately be measured, and thus distributed
activity patterns across them could be analyzed.

Making optimal use of spatial resolution in group 
analyses: cortex-based alignment

Inspection and reporting of individual activation eVects is
very important, but some eVects may only reach signiW-
cance when performing group analyses. Moreover, ran-
dom-eVects group analysis are essential for assessing
consistency of eVects within groups, and to reveal diVer-
ences between groups. Unfortunately the typically used
coarse brain normalization in volume space (e.g., Talairach
or MNI space) compromises the gain of high-resolution
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imaging since suYcient spatial correspondence can only be
achieved through substantial spatial smoothing (e.g., with a
Gaussian kernel with a FWHM of 8–12 mm). Since many
interesting multisensory eVects may be observed only in
Wne-grained activity patterns, spatial smoothing should be
minimal or completely avoided. Moreover, standard volu-
metric Talairach or MNI template brain matching tech-
niques may lead to suboptimal multi-subject results due to
poor spatial correspondence of relevant areas (Van Essen
and Dierker 2007). Surface-based techniques aligning gyri
and sulci across subjects (Fischl et al. 1999; Van Atteveldt
et al. 2004; Goebel et al. 2006) may substantially improve
spatial correspondence between homolog macro-anatomi-
cal brain structures such as STS/STG across subjects. Such
an improved alignment may provide more sensitive statisti-
cal results under the assumption that functional regions
“respect” macro-anatomical landmarks (Spiridon et al.
2005; Hinds et al. 2009); a systematic and large-scale func-
tional-anatomical correspondence project is currently in
progress to verify this assumption (Frost and Goebel 2008).

The eVectiveness of surface-based alignment procedures
on group statistical maps have been reported in several
recent studies (reviewed in Van Essen and Dierker 2007).
Here, we show its eVectiveness also for multisensory corti-
cal areas, such as those demonstrated in STS/STG. Figure 2
shows a direct comparison of surface-based and volume-
based (Talairach) registration of group data for a multisensory
investigation of letter-sound integration (Van Atteveldt
et al. 2004). The Wgure illustrates that the analysis with cor-
tex-based aligned data improved the statistics and provided
more accurate localization of multisensory eVects in audi-
tory cortex and STS. In Fig. 2a, the max criterion resulted
in a more robust map (higher threshold) that is much more
clearly localized on STS (and additional clusters on STG)
using cortex-based alignment. It is important to verify this
statement with regard to localization by comparing the
group maps with individual localizations. The details of
individual STS ROIs (reported in Van Atteveldt et al. 2004)
show variability in Talairach coordinates: average §
standard deviation (x, y, z) = (¡54 § 4, ¡33 § 11, 7 § 6),

so most variability in the y coordinate (=anterior–posterior
axis). These individual ROIs were selected based on indi-
vidual anatomy, i.e., they were all located on the STS.
Importantly, comparison of the Talairach and cortex-based
group statistical maps (Fig. 2a) indicates that the averaged
Talairach coordinates do not correspond to the location of
the individual ROIs on STS (Fig. 2a, left: cluster is located
on STG overlapping partly with auditory cortex), whereas
the cortex-based aligned map shows the dominant cluster
clearly localized on STS (Fig. 2a, right). Figure 2b shows
that despite a variable individual anatomy of the auditory
cortex indicated in the top row (5 diVerent subjects), the
cortex-based aligned group maps accurately locate the

multisensory congruency eVect on Heschl’s sulcus and Pla-
num Temporale.

As functional-anatomical correspondence may vary for
diVerent brain regions and functions, a complementary
approach to account for individual variability is the use of
functional localizers, which allow to “functionally align”
brains (Saxe et al. 2006). Future multisensory fMRI studies
could use this approach to functionally localize integration
areas, e.g., by using the max criterion. Group statistics can
subsequently be performed using each subject’s fMRI time-
series from the functionally deWned ROI in that subject.
Note, however, that there are also pitfalls regarding the use
of (separate) functional localizers (Friston and Henson
2006; Friston et al. 2006) and intra-subject consistency of
certain localizers was recently reported to be very low
(Duncan et al. 2009). Experiments incorporating functional
localizers should therefore be designed with care, for
instance, it might be best to embed localizer contrasts in
factorial designs (i.e., orthogonal to the main manipulation
of interest; Friston et al. 2006).

Dynamic processes and neuronal interactions

Several valuable approaches exist to study temporal charac-
teristics of neural processing from fMRI time-series. For
example, Granger Causality Mapping (GCM, Goebel et al.
2003; Roebroeck et al. 2005) is an eVective connectivity
tool with the potential to estimate the direction of inXu-
ences between brain areas directly from the voxel’s time-
course data, which we recently applied to assess inXuences
to/from STS during letter-sound integration (Van Atteveldt
et al. 2009). Another dynamic eVective connectivity tool is
dynamic causal modeling (DCM; Friston et al. 2003),
which was recently used to investigate the neural mecha-
nism of visuo-auditory incongruency eVects for objects and
speech (Noppeney et al. 2008). Furthermore, information
about the onset of the fMRI response (BOLD latency map-
ping; Formisano and Goebel 2003) can reveal insight in the
temporal sequence of neural events, and has successfully
been applied to multisensory research (Martuzzi et al.
2007; Fuhrmann Alpert et al. 2008).

Still, using fMRI alone it is diYcult to learn about fast
dynamic processes in “real-time” since successive temporal
events lead to an integrated BOLD response. In multisen-
sory research, this severely limits the certainty with which
cross-modal eVects observed with fMRI can be interpreted
in terms of processing stage (early vs. late, or feedforward
vs. feedback), which is therefore often a matter of heavy
debate. A prevailing example concerns the modulation of
auditory cortex activity by visual speech cues (Calvert et al.
1997, 1999; Paulesu et al. 2003; Pekkola et al. 2005;
reviewed in Campbell 2008), which is typically interpreted
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as being the result of feedback projections from the hetero-
modal STS/STG (reviewed in Calvert 2001). As stated in
the introduction, because of its whole-brain coverage and
non-invasive nature, fMRI can be used to raise speciWc new
predictions that can be tested by intracranial human record-
ings, which have both spatial and temporal resolution. This
has been done recently for the case of audiovisual speech
processing. Besle and colleagues (2008) recorded ERP’s
intracranially from precise locations in the temporal lobe
during audiovisual speech processing, and demonstrated
that visual inXuences in (secondary) auditory cortex
occurred earlier in time than the eVects in STS/STG. These
Wndings advocate a direct feedforward activation of audi-
tory cortex by visual speech information.

Another very promising direction is to directly inte-
grate fMRI and EEG/MEG. While progress has been
made in recent years (Lin et al. 2006; Goebel and Esposito

2009), it remains diYcult to reliably separate closely
spaced electrical sources from each other. This is of rele-
vance for multisensory research in case nearby located
auditory and multisensory superior temporal regions need
to be separated. The combination of EEG and fMRI data
sets into one unique data model is still a focus of intensive
research and requires enormous eVorts to integrate inde-
pendent Welds of knowledge such as physics, computer
science and neuroscience. In fact, besides the classical
problems of head modeling in EEG, and hemodynamic
modeling in fMRI, an additional diYculty is given by the
need of understanding and modeling the ongoing correla-
tions of EEG and fMRI data. Some of these problems are
solved by direct intra-cranial electrical recordings from
the human brain (e.g., inverse modeling), but such studies
are limited because they are invasive and depend on
patient populations. Despite the diYculties in properly

Fig. 2 fMRI group analysis results using volumetric normalization
(Talairach space) and cortex-based alignment. a Random-eVects statis-
tical maps of two diVerent contrasts: audiovisual congruent versus
audiovisual incongruent (orange) and the max criterion expressed as
the conjunction (intersection) of audiovisual versus auditory & audio-
visual versus visual (green). The maps show that at higher t values, the
cortex-based aligned data still provide a better group map (i.e., location
of the clusters correspond best to the activations in individual subjects).
b Individual (top row) and group (bottom row) statistical maps of the

contrasts audiovisual congruent versus audiovisual incongruent (dark
blue) and auditory versus baseline (light blue). Top row shows the
reconstructed and Xattened cortical sheets of the left temporal lobe in
Wve representative individual subjects, the bottom row shows the cor-
tex-based aligned group statistics (of 16 subjects) on a representative
left and right temporal lobe. White lines indicate the diVerent sulci and
borders between the gyri, from anterior to posterior: FTS Wrst trans-
verse sulcus, HG Heschl’s gyrus, HS Heschl’s sulcus, PT planum tem-
porale, STS superior temporal sulcus
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integrating detailed temporal information from (simulta-
neously) recorded EEG signals into fMRI analysis, the
expected insights will be essential to build advanced spa-
tio-temporal models of multisensory processing in the
human brain.

Toward computational modeling of multisensory 
processing

Data from a series of fMRI experiments from our group
have provided insight in the likely role of brain areas
involved in letter-speech sound integration as well as the
information Xow between these areas (reviewed in Van
Atteveldt et al. 2009). As has been highlighted in the
previous sections, data might soon be available provid-
ing further constraints at the representational level of
individual visual, auditory and audiovisual entities such
as letters, speech sounds and letter-sound combinations.
In light of the richness of present and potential future
multisensory data, it seems to become feasible to build
computational process models to further stimulate dis-
cussions of neuronal mechanisms. In the future, we aim
to implement large-scale recurrent neural network mod-
els because they (1) allow to clearly specify structural
assumptions in the connection patterns within and
between simulated brain areas and (2) allow to precisely
predict the implications of structural assumptions by
feeding the networks with relevant unimodal and bimo-
dal stimuli (e.g., visual letters, speech sounds and their
audiovisual combinations). Running spatio-temporal
simulations may help to understand how “emergent”
phenomena, such as audiovisual congruency eVects in
auditory cortex (Van Atteveldt et al. 2004), result from
multiple simultaneously operating synaptic inXuences
from diVerent modeled brain regions. Such neural mod-
els may also help to link results from electrophysiologi-
cal animal studies and fMRI studies. The fMRI BOLD
data reXect a mix of (suprathreshold) spiking activity,
hemodynamic spread, and neural spread of subthreshold
neural activity (Logothetis et al. 2001; Logothetis and
Wandell 2004; Oeltermann et al. 2007; Maier et al.
2008). To investigate discrepancies between spiking,
LFP and BOLD data, these signals must be modeled sep-
arately in an environment that permits a comparison
with matching empirical data (Goebel and De Weerd
2009). To compare activity patterns in simulated neural
networks with empirical data, modeled cortical columns
can be linked to topographically matching voxels; these
links implement spatial hypotheses and are obtained
from structural brain scans and functional mapping stud-
ies in human subjects, thereby establishing a common
representational space for simulated and measured data.

This allows to “run” large-scale neural network models
“in the brain” and to analyze predicted fMRI data using
the same analysis tools as used for the measured data
(e.g., GLM, MVPA, GCM). Such a tight integration of
computational modeling and fMRI data may help to test
and compare the implications of speciWed neuronal cod-
ing principles and to study the evolution of dynamic
interactions (Goebel and De Weerd 2009). If these prin-
ciples are applied to multisensory experiments, assump-
tions about the proportion of unisensory and
multisensory neurons in voxels in diVerent brain areas
can be explicitly explored and derived predictions can be
tested by conducting theory-guided neuroimaging
studies.

Conclusion

When using fMRI at standard resolution (·3T, single-
coil imaging) and (mass-) univariate statistical analysis
(e.g., using the GLM), the statistical criteria for “multi-
sensory integration” should be selected with care, and
response characteristics of all uni- and multisensory
conditions should always be inspected and reported.
Alternative designs such as fMRI-adaptation may pro-
vide additional insights in multisensory integration
beyond the voxel level. In addition to analyzing single-
voxel responses, MVPA is an important new statistical
approach to jointly analyze locally distributed activity
patterns of multiple voxels. Because of the putative het-
erogeneous organization of multisensory brain areas,
distinct integrative states may be expressed in such dis-
tributed activity patterns rather than in the response of
separate voxels. Increased spatial resolution might ulti-
mately lead to columnar-level resolution. If multisen-
sory cortex is organized at the columnar level, fMRI
might be able to separate uni- and multisensory
responses, making the application of MVPA even more
interesting. When data are aligned based on individual
cortical anatomy, the high spatial resolution of fMRI can
also be fully exploited at the group-level. Although also
proWting from higher Weld strength and imaging technol-
ogy, the ultimate temporal resolution is limited by the
vascular system (and neuro-vascular coupling) and will
not be suYcient to capture fast dynamic neural processes
and interactions. Additional information from comple-
mentary imaging modalities (EEG, MEG) should there-
fore be acquired and integrated. Furthermore, direct
comparison (in a common representational space) of
modeled neural activity and the corresponding BOLD
activity (predicted fMRI data) with real fMRI data will
help interpreting multisensory hemodynamic data in
terms of neural mechanisms.
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