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Abstract
MicroRNAs are short non-coding RNAs that regulate the stability and translation of mRNAs. Profiling experiments,
using microarray or deep sequencing technology, have identified microRNAs that are preferentially expressed in
certain tissues, specific stages of development, or disease states such as cancer. Deep sequencing utilizes massively
parallel sequencing, generating millions of small RNA sequence reads from a given sample. Profiling of microRNAs
by deep sequencing measures absolute abundance and allows for the discovery of novel microRNAs that have
eluded previous cloning and standard sequencing efforts. Public databases provide in silico predictions of microRNA
gene targets by various algorithms. To better determine which of these predictions represent true positives,
microRNA expression data can be integrated with gene expression data to identify putative microRNA:mRNA
functional pairs. Here we discuss tools and methodologies for the analysis of microRNA expression data from deep
sequencing.
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INTRODUCTION
MicroRNAs are �22-nt single-stranded RNAs that

modulate gene expression in plants and animals [1].

The formation of a double-stranded RNA duplex

through the binding of microRNA to mRNA in

the RNA-induced silencing complex (RISC) either

triggers the degradation of the mRNA transcript or

the inhibition of protein translation. The conven-

tional mammalian miRNA–mRNA interaction

occurs through complimentary binding sites in

the 30-UTRs of target mRNAs [2]. One of the

challenges in the emerging field of microRNA

biology is the identification of microRNA targets.

A given microRNA may have multiple (up to several

hundred) predicted gene targets, and �60% of

mRNAs have binding sites for several microRNAs

in their 30-UTRs. Decisive roles for microRNAs

have been described across mammalian development

and human diseases such as cancer. MicroRNAs are

generally transcriptionally regulated by transcription

factors that act at pol II promoters [3], and they may

be preferentially expressed in certain tissues, during

specific stages of development, or in disease.

Initially transcribed as a primary microRNA

(pri-miRNA) these non-coding RNAs undergo

two processing steps. The first step is the generation

of stem-loop precursors (pre-miRNAs �70 nt) by

the enzyme Drosha in a micro-processing complex

within the nucleus. The pre-miRNAs are exported

into the cytoplasm and processed into double

stranded RNAs by the enzyme Dicer to subse-

quently release the 17–25-nt-long mature miRNA.

Dicer plays a role in delivering the double stranded

miRNA to the RISC. Argonaute (Ago) is the

catalytic component of RISC and participates in

the selection of the guide strand of the miRNA

while the passenger strand is degraded. The

active miRNA-loaded RISC complex binds

Corresponding author. Chad J. Creighton, PhD, Dan L. Duncan Cancer Center Division of Biostatistics, Baylor College of Medicine,

One Baylor Plaza MS 305, Houston, TX 77030, USA. Tel: þ1 713 798 2264; Fax: þ1 713 798 2716; E-mail: creighto@bcm.edu

Chad J. Creighton, PhD, is an Assistant Professor. His work focuses on bioinformatics analysis of molecular profiling data, particularly

data from cancer, including integration of different data types and sources.

Jeffrey G. Reid, PhD, is a Research Assistant Professor. His primary research focus is on the development of computational analysis

tools and techniques for processing high-throughput sequencing data.

Preethi H. Gunaratne, PhD, is an Assistant Professor. Her work focuses on the application of next generation sequencing to dissect

the small RNAome in the context of stem cells and human diseases such as cancer and asthma.

BRIEFINGS IN BIOINFORMATICS. VOL 10. NO 5. 490^497 doi:10.1093/bib/bbp019
Advance Access publication March 30, 2009

� The Author 2009. Published by Oxford University Press. For Permissions, please email: journals.permissions@oxfordjournals.org



predominantly to the 30-UTR of a target mRNA

with partial miRNA sequence complementarity

where the critical base pairing occurs through the

50 seed (base pairs 2–8). In vertebrates the RISC

complex mediates post-transcriptional gene silencing

through deadenylation-mediated mRNA decay

and/or translational suppression by mechanisms not

yet fully elucidated. In this process, Ago proteins

play an important role in sequestering the miRNA–

mRNA duplex. Of the four Argonaute proteins

expressed in humans Ago-2 has been shown to be

central for mRNA cleavage [4, 5].

As with conventional protein-coding genes, it

is of interest to profile the expression patterns of

microRNAs during development and disease. For

profiling gene expression, microarrays, consisting

of arrayed series of thousands of microscopic spots

of DNA oligonucleotides, have been the standard

technology. Microarray platforms also exist for pro-

filing microRNA expression. However, the recent

introduction of deep sequencing technology,

enabling the simultaneous sequencing of up to

millions of DNA or RNA molecules, has provided

another option for profiling microRNAs. With

developing technologies currently trying to meet

the goal of generating complete human genome

sequences for less than $100 000 [6], using deep

sequencing to comprehensively profile mRNA

expression remains rather expensive (as compared

to microarrays); however, profiling the small RNA

fraction that contains microRNAs is much more

feasible (though in genomes smaller than human

or other eukaryotes, whole transcriptome coverage

by sequencing could be feasible as well). Deep

sequencing overcomes many of the disadvantages

of microarrays, which suffer from background and

cross-hybridization problems and measure only

the relative abundances of previously discovered

microRNAs. In contrast, deep sequencing measures

absolute abundance (over a wider dynamic range

than possible with microarrays) and is not limited

by array content, allowing for the discovery of novel

microRNAs or other small RNA species.

Recently, deep sequencing technology is becom-

ing more available to researchers studying

microRNAs, and the analysis of profiling data by

deep sequencing may be carried out using both

publicly available and custom-made software. In this

review, we discuss tools and methodologies for the

analysis of microRNA expression data from deep

sequencing, from translating sequencing reads into

microRNA abundance levels, to discovering novel

microRNAs, to determining lists of differentially

expressed microRNAs and their associated gene

targets. Key challenges include the requirement for

at least 10mg of total RNA of very high quality;

a preparation that includes several gel purifications

steps all of which lead to loss of material; lack of

a cheap QC step before sequencing; and dominance

by a small number of miRNAs of very high copy

number, where lower copy sequences may be

underrepresented. To date, our own group has

sequenced over 300 samples from a wide array of

cellular systems (mouse as well as human), including

cancer cell lines, stem cells and normal and diseased

tissues, including diseases such as cancer, endome-

triosis and emphysema. While these studies are

currently ongoing, they do illustrate the versatility

of our deep sequencing methods.

FROM SAMPLETOmicroRNA
ABUNDANCE LEVELS
For microRNA expression profiling, our own group

has chosen Illumina’s Genome Analyzer (GA)

technology. This platform utilizes massively parallel

sequencing of millions of fragments using Illumina’s

proprietary Clonal Single Molecule Array technol-

ogy and novel reversible terminator-based sequen-

cing chemistry (www.illumina.com). A number

of other next-generation sequencing technologies

are currently in widespread use, including 454 and

AB SOLiD (all of which are reviewed in [7]).

MicroRNA sequencing protocols are available for

Illumina (discussed in detail here), 454 [8] and

SOLiD [9]. The approaches for analyzing next-

generation sequence data described below can

readily be applied to data from any of the various

platforms.

For translating sequence reads into microRNA

abundance levels, we have developed our own

software in-house, though there are a number of

public software tools available for the analysis of

sequence data (a number of which are listed in refs

[7] and [10], as well as at http://www.sanger.ac.uk/

Users/lh3/seq-nt.html), including tools that align

sequences to references (which we carry out as

described below). Our approach is summarized

graphically in Figure 1.

The Illumina-ready small RNA template goes

through two quality control (QC) steps. The first

QC step is really only necessary for the platform
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development phase. Here, an aliquot of the small

RNA template with Illumina adaptors is subjected

to PCR-cloning and Sanger sequencing of �10–100

colonies. The sequences are analyzed and samples

which generate a high fraction of miRNAs (�25–

95%, the typical range of the small RNAome) and

other small RNAs with a low fraction of con-

catenated adaptors are selected for cluster generation

on the cluster station of the Illumina GA platform.

This insures that the templates to be sequenced

are sufficiently enriched for short RNAs and avoids

costly sequencing of contaminated and ill-prepared

samples. The second QC step is based on the

number of clusters generated in the first step of

the sequencing pipeline; this becomes the first

QC step once the platform has been established.

Templates are first captured on a solid matrix and

PCR amplified; the resulting cluster of molecules

(identical copies of the same template) is called a

cluster. Only samples yielding 15 000–35 000 clusters

of amplified templates on the first base report are

fully sequenced to maximize the yield of sequenced

templates. In our experience, failures at the quality

control step are almost always due to either the

failure to amplify or insufficient starting material,

which is indicated by low cluster and read numbers.

After sequencing, the raw sequence reads are

filtered based on quality. Given that the average

length of an Illumina sequencer read (�36 nt)

is greater than the average size of a microRNA

(�17–25 nt), we anticipate finding part of the

30-adaptor at the 30-end of the sequence (which

may not apply to other non-miRNA small RNAs).

In the first step, the reads which pass the quality

filtering are then passed through an adaptor filter

that searches for reads whose 30-ends align to at least

6 nt of the 30-adaptor. The adaptor sequences are

trimmed and then the adaptor-trimmed reads

which have passed both filters are formatted into

a non-redundant fasta file where the copy number

and sequence is recorded for each unique tag. The

unique sequence set then goes through a second

filter that searches for potential contamination

by Escherichia coli sequence using BLAST against the

E. coli sequence database. All sequences that fail

to meet the quality cutoff, lack at least a 6-nt

subsequence of the 30-adaptor sequence, and/or

match the E. coli sequence database are discarded

as unusable reads.

All sequences that pass the above filters are

aligned using a local Smith–Waterman alignment

[11] of each unique read against each of the

precursor microRNA sequences in the reference

miRNA precursor set from the latest version of

miRBase (http://microrna.sanger.ac.uk/sequences/

index.shtml). In order to account for imperfect

Figure 1: Analytical steps involved with microRNA profiling by deep sequencing. Raw sequences are first filtered
to exclude those most likely to represent sequencing errors. Those sequence-reads that align to known microRNA
precursor sequences are compiled into a data table with read counts (a measure of absolute expression
level). Sequence reads that do not map to known microRNAs may be searched for potential novel microRNAs.
In addition to microRNAs, the sequence reads may be searched for other small RNA species, such as piRNAs
or snoRNAs.
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DICER processing that has been typically reported

for mature miRNAs [12], 3-base overhang on the

50-end and a 6-base overhang on the 30-end are

allowed. We therefore accept any sequence that

perfectly matches the mature miRNA precursor

in the mature miRNA region �4 nt at the 50- and

30-end as mature miRNAs that are subjected to

imperfect Dicer processing. This accounts for tags

which match perfectly to known mature miRNAs

(allowing for the aforementioned variations at

the ends).

In addition, after finding the exact matches

to mature miRNAs we also do an alignment of

the remaining tags against a list of known miRNA

precursors. For this alignment we allow up to three

mismatches (loose matches), which allows us to

identify miRNAs that carry mutations or that may

have undergone RNA editing. The alignments are

scored such that a matching or overhanging base

counts as 2 points and mismatches as �1. The read

counts of all redundantly aligning reads to multiple

hairpins generating the same mature miRNAs are

equally apportioned to each mature microRNA

to which they align. The read counts are then

normalized to the number of microRNAs to

give the relative abundance of each microRNA.

We term this the ‘microRNA expression profile’ of

the sample.

We prefer to discard all unique sequence reads

of fewer than 10 copies as potential sequence errors.

All unique reads of copy number 10 or more are

then reported in the output file, where we record

a full description of their sequence alignments with

known miRNA precursors from miRBase, as well

as a tabulation of mismatches in relation to nucleo-

tide position to identify potential sites of RNA

editing. The output file also contains a table of

copy numbers of exact and loose matches of read

sequences to precursor miRNAs, which is used to

generate the miRNA expression profile for further

analysis.

USING DEEP SEQUENCING DATA
TODISCOVERNOVELMICRORNAS
One of the key advantages of small RNA sequencing

is that it allows for the discovery of novel

microRNAs that have eluded previous cloning and

standard sequencing efforts. A given sample may

generate multiple sequences that are not sufficiently

similar to any known microRNA. Below, we

outline our analytical approach to evaluate whether

these unique sequences represent novel microRNAs,

which approach is also summarized graphically in

Figure 2.

Our first step is to map these small RNA

sequences to the genome and to fetch each exact

sequence match along with 100 bases flanking either

side. These �220-bp sequences are then tested

for microRNA-like hairpin structure. The �220-bp

putative precursor sequences are then folded with

the Vienna package [13], and microRNA hairpin

structures which meet the Ambros criteria [14] are

then identified. Specifically, the putative microRNA

must lie on one arm of a single-loop hairpin

with minimum free energy less than �25 kcal/mol;

hairpins with overly large or unbalanced loops are

rejected. After folding the read plus flanking

sequence, the sequences are trimmed down to

include only the plausible precursor and then

folded again to ensure that the precursor was

not artificially stabilized by neighboring sequence.

We consider sequence reads that are appropriately

placed in these microRNA-like hairpins to be

‘putative mature microRNAs’ (pmms).

After identifying all novel pmms, we separate

them into two classes, those which occur frequently

in the genome (four or more times), and those which

are relatively unique (occur fewer than four times).

The former class is likely to have a higher false

positive rate, but they may include members of

the recently discovered class of repeat-associated

microRNAs [15], and so may be kept for future

study. We examine the remaining class of pmms for

cross-species conservation of the hairpin structure

[16]. Specifically, we look for strong conservation

of the mature microRNA, significant (but possibly

weaker) conservation of the hairpin arm opposite the

mature microRNA, and little or no conservation

of the hairpin loop. We consider these conservation

patterns as definitive confirmation of the microRNA

predictions [14].

Publicly available tools for miRNA discovery

from deep sequencing of the short RNAome include

miRDeep [17], CD-miRNA [18], MiRank [19] and

miRCat [20] (miRCat being specific for detecting

plant miRNAs). miRDeep relies on deep sequenc-

ing and the characteristic pattern of miRNA

precursor fragments. Specifically, DICER processing

of a miRNA precursor produces three precursor

fragments—the mature miRNA, the sequence on

the other side of the hairpin which binds to the
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mature sequence (the so-called mir-star sequence)

and the hairpin loop sequence. Novel precursors are

identified by the characteristic pattern of higher

expression of the mature miRNA over the star and

loop sequences. Hairpins which are not processed by

DICER will not show this characteristic pattern and

so they can be filtered out. As compared to our

method, miRDeep is likely more specific for

miRNAs, as it relies more on the expression pattern

than the structure, and thus it is limited in its ability

to discover precursors at low levels of expression

where the characteristic miRNA expression signa-

ture is not clearly visible.

NORMALIZATIONAND
COMPARISONOFmicroRNA
EXPRESSION PROFILES
For each microRNA sequence-based profile, the

number of small RNA sequence reads can be used

to estimate expression level of each microRNA.

Given a set of sequence-based profiles, a normal-

ization step is needed for profile-to-profile compar-

isons. A number of algorithms have been developed

for the normalization of array-based gene expression

profiles [21]; however, many of these algorithms rely

upon the large number (�40–50k) of data points

representing all of the transcripts, where it can be

assumed that the vast majority of genes are not

changing from sample to sample. In contrast to

genes, the number of known microRNAs is much

smaller (500–600 for Homo sapiens), and it cannot

necessarily be assumed that most microRNAs

would not change or that equal numbers would

be increasing or decreasing [22, 23], and so total

intensity or quantile normalization approaches may

not be suitable here.

For sequence-based profiles, the total number of

valid sequence reads for each profile (be they from

microRNA or other RNA species) may be used as

the scaling factor for normalization, as this number

would give an indication of the total amount of

Figure 2: Novel microRNA discovery pipeline. Taking the sequence reads that do not map to known microRNA
precursors, we proceed by mapping them to the whole genome.Those reads that map (exactly) to the genome are
taken (plus100bp of genomic sequence flanking either side of the read sequence) and folded as RNAusing theVienna
package. The putative novel hairpins this produces are filtered for single-loop hairpins with the putative mature
microRNA (read sequence) on one side of the hairpin, and those that pass are kept as possibly valid hairpins.
These are trimmed down to only the putative hairpin sequence, refolded and filtered again with the Ambros criteria.
The remaining hairpins are a valid microRNA hairpin whose putative mature microRNA sequence was found in the
short RNA-ome of the sample, and thus are considered putative novelmicroRNAprecursors.
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RNA in the given sample. One profile is used as the

reference, and the values of each of the other profiles

are divided by the scaling factor [(total sequence reads,
given)/(total sequence reads, reference)]. The assumption

made here is that the total small RNA population

remains fairly constant between samples (without

necessarily trying to make assumptions on the

microRNA sub-population).

The absolute number of sequence reads for a

particular microRNA represents a measure of its

relative abundance. When comparing two groups of

profile differences (such as disease versus control),

microRNA levels may be determined by a two-sided

t-test or another analogous statistic (log-transforming

the sequence count values is recommended for the

t-test, as it stabilizing the variance). The ‘fold change’

in microRNA expression between groups (the ratio

of the group averages) may also be computed. When

comparing sample groups, one may wish to consider

the absolute microRNA levels as well as the relative

levels; a change from 1000 to 2000 units is arguably

more biologically relevant than a change from 5

to 10 units. In order to filter out from the analysis

those microRNAs expressed at very low levels, one

option is to add a given low number (e.g. 40 units)

to each microRNA value [in the preceding exam-

ple, (2000þ 40)/(1000þ 40)¼ 1.96� 2, while

(10þ 40)/(5þ 40)¼ 1.1]; alternatively, one could

require a microRNA to be present at a minimum

number of units in a given number of samples.

PREDICTING GENETARGETSOF
DIFFERENTIALLY EXPRESSED
microRNAS
Once a set of microRNAs has been identified as

being differentially expressed between two cellular

states (e.g. disease versus normal), the next logical

question is what specific genes are being targeted

by these microRNAs. A number of computational

algorithms have been developed to help predict

microRNA-to-mRNA (microRNA:mRNA) rela-

tionships, based on sequence analysis. Some of

the more well-known prediction algorithms

include PicTar (http://pictar.mdc-berlin.de/) [24],

TargetScan (www.targetscan.org) [25, 26] and

miRanda (www.microrna.org) [27]. Different algo-

rithms may yield different microRNA:mRNA

predictions, though most employ the same general

criteria [28]: (i) complementarity between the

microRNA sequence and the 30-UTR mRNA

sequence (whether a perfect is required or one

or more base pair mismatches are allowed) and

(ii) degree of conservation of the microRNA-

binding site across species. Any given prediction

algorithm will produce both false positives (pairs

that are statistically significant but cannot be verified)

and false negatives (true pairs that are missing

from the results), and the balance of lowering false

positives versus lowering false negatives would

be a balance between using stricter versus looser

criteria, respectively.

Published gene targeting prediction databases are

often made available via a web interface, where

the user can look up predicted microRNA:mRNA

functional pairs for a specific microRNA or gene

of interest. Depending on the prediction algorithm,

up to 60% of genes in mammalian genomes may

be targeted by microRNAs [26], and a single

microRNA could target as many as hundreds of

genes. Determining which predicted microRNA:

mRNA pairs to focus on for functional studies can

be somewhat challenging. One way to potentially

cut down on the number of false positive pairs would

be to carry out gene expression profiling of the same

samples profiled for microRNAs. If a given

microRNA is regulating a putative gene target by

mRNA destabilization, this should show up in the

gene expression data: where the microRNA is high,

the gene should be low, and vice versa. If, however,

the microRNA targets a gene at the protein

translation level rather than the mRNA level, then

this would not show up in mRNA profiling, but

only in proteomic data. At the same time, recent

studies have found that most targets substantially

repressed translationally by microRNAs also show

mRNA destabilization [29, 30], and so mRNA data

might be considered a good surrogate for protein

data in most cases.

Gene expression profiling can often reveal

hundreds of gene expression changes for a biological

system of interest, while the current web interfaces

for TargetScan or miRanda facilitate a gene-by-gene

search, making integration of target predictions

with gene expression data on a large-scale somewhat

cumbersome and time consuming for many

researchers. To address this, we have developed

a desktop software application, called ‘SigTerms’

(http://sigterms.sourceforge.net/), which, for a

given target prediction database, retrieves all

microRNA:mRNA functional pairs represented by

an input set of genes [31]. From the retrieved pairs,

Expression profiling of microRNAs by deep sequencing 495

http://pictar.mdc-berlin.de/
http://sigterms.sourceforge.net/


the user can quickly filter for those that involve

those microRNAs that are moving in an opposite

direction from the genes. Predictions from

other algorithms other than PicTar, TargetScan and

miRanda can also be integrated into SigTerms,

so long as these predictions are pre-compiled into

a file in the required format. Furthermore, for

each microRNA, SigTerms computes an enrich-

ment statistic for over-representation of predicted

targets within the input gene set; in rationale similar

to that of enrichment testing of gene annotation

(GO) terms, a microRNA showing high enrichment

of gene targets may be further implicated as having

an important role in the system under study.

Correlating miRNA expression with mRNA pro-

files can also be done with other methods of

microRNA profiling, as reported previously [32].

CONCLUSIONS
Deep sequencing of the small RNA fraction within

cells yields an incredibly rich amount of data, from

which we can determine not only the expression

levels of microRNAs but also the levels of other

small RNA species, such as piRNAs or snoRNAs,

as well as discover novel small RNAs. In a time

when gene expression profiling experiments alone

often yield more genes than researchers know

what to do with, characterization of the small

RNA fraction in addition to the genes can only

further complicate our understanding of molec-

ular systems. As we profile cells at various levels

of molecular complexity (transcriptome, small

RNAome, genome, epigenome, etc.), one challenge

will be to effectively integrate these various types

of data with each other, in order to help identify

key drivers of cellular processes or disease.
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