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Abstract
In bioinformatics studies, supervised classification with high-dimensional input variables is frequently
encountered. Examples routinely arise in genomic, epigenetic and proteomic studies. Feature selection can be
employed along with classifier construction to avoid over-fitting, to generate more reliable classifier and to
provide more insights into the underlying causal relationships. In this article, we provide a review of several
recently developed penalized feature selection and classification techniquesçwhich belong to the family of
embedded feature selection methodsçfor bioinformatics studies with high-dimensional input. Classification objec-
tive functions, penalty functions and computational algorithms are discussed. Our goal is to make interested
researchers aware of these feature selection and classification methods that are applicable to high-dimensional
bioinformatics data.
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INTRODUCTION
In the past decade, we have witnessed a period of

unparalleled development in the field of bioinfor-

matics [1, 2]. Among the many encountered

problems, classification is one that has attracted

extensive attentions. In general, classification can

be defined as unsupervised or supervised, depending

on if there is an observed class label. Although both

are of great importance, we focus on supervised

classification in this article. Supervised classi-

fication in bioinformatics is challenging partly

because of the high dimensionality of the input

variables. Several examples of supervised classi-

fication with high-dimensional inputs are described

in ‘Examples of supervised classification in bioinfor-

matics’ section.

When the dimension of the input variables is high

compared with the number of subjects (sample size),

dimension reduction or feature selection is usually

needed along with classifier construction. Dimension

reduction or feature selection can help to (i) provide

more insights into the underlying causal relationships

by focusing on a smaller number of features; (ii)

generate more reliable estimates by excluding noises

and (iii) provide faster and more efficient models for

future studies ([3–5] and references therein).

Dimension reduction techniques, such as prin-

cipal component analysis and partial least squares,

construct ‘super variables’—usually linear combina-

tions of original input variables—and use them in

classification [3, 6, 7]. Although they may also lead to

satisfactory classification, biomedical implications of

the classifiers are usually not obvious, since all input

variables are used in construction of the super

variables and hence classification.

Feature selection methods can be classified into

three categories, depending on their integration into

the classification method [4, 5, 8]. Filter approach

separates feature selection from classifier construc-

tion. Wrapper approach evaluates classification per-

formance of selected features and keeps searching

until certain accuracy criterion is satisfied. Embedded

approach embeds feature selection within classifier

construction.
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Among feature selection methods, ‘embedded

methods have the advantage that they include the

interaction with the classification model, while at

the same time being far less computationally

intensive than wrapper methods’ [5]. In this article,

we review several penalization methods, which

have attracted special attentions in statistics

literature in the past decade. Penalization methods

belong to the family of embedded methods. They

have well-defined classification objective func-

tions, penalty terms and deterministic computational

algorithms. Statistical properties of penalization

methods can be easier to establish than other

methods.

The goal of this article is to provide a review of

several recently proposed penalized feature selection

and classification methods for data with high-

dimensional inputs, with special emphasis on appli-

cations of these methods in bioinformatics. This

article differs from published ones in the following

aspects. First, compared with review articles such as

Saeys et al. [5], this article focuses only on penaliza-

tion methods. We are hence able to provide a much

more detailed review of such methods. Second,

compared with methodological publications such as

Ghosh and Chinnaiyan [9], Zhang et al. [10] and

Liu et al. [11], this article does not try to propose any

new methodology. Instead, it attempts to establish a

unified framework which includes many published

methodologies as special cases. Third, compared with

statistical publications, this article focuses more on

bioinformatics practice, such as real-life applications

and computational aspects.

In ‘Examples of supervised classification in

bioinformatics’ section, we describe a few bioinfor-

matics examples that involve supervised classification

with high-dimensional input variables. In ‘Feature

selection’ section, we provide general discussions

of feature selection methods and some insights

into where the penalization methods fit in the

big picture. Penalized feature selection and classifica-

tion methods are introduced in ‘Penalized feature

selection and supervised classification’ section.

Classification objective functions, penalty functions

and computational algorithms are discussed in

details. A small showcase example of cancer classi-

fication using microarray is provided in ‘Empirical

performance and application’ section. Several related

issues are addressed in ‘Discussions’ section.

Concluding remarks are given in ‘Concluding

remarks’ section.

EXAMPLES OF SUPERVISED
CLASSIFICATION IN
BIOINFORMATICS
Genomics: cancer classification using
microarray
Cancer is a genetic disease, which can be caused by

mutations or defects of genes. Microarray technology

makes it possible to survey the genome on a global

scale. Microarray gene expression experiments have

been conducted to identify biomarkers in cancers,

including colon, prostate, breast, head and neck,

skin, lymphoma and many others. It has been shown

that up- or down-regulations of a subset of genes

are associated with cancer development. Many

cancer microarray studies have categorical pheno-

types of interest—such as cancer occurrence, stages

or subtypes—which naturally leads to supervised

classification. We refer to Golub et al. [12] and West

et al. [13] for representative examples.

Epigenetics: cancer classification
using epigenetic measurements
In addition to having genetic causes, cancer can

also be considered an epigenetic disease. Regulation

by genetics involves a change in the DNA sequence,

whereas epigenetic regulation involves alteration

in chromatin structure and methylation of pro-

moter region. Epigenetic measurements, such as

DNA methylation patterns, have been used for

cancer classification. Examples include Zukiel et al.
[14], Piyathilake and Johannig [15] and references

therein.

Proteomics: cancer classification
using mass spectrometry
Mass spectrometry is an analytical technique that

measures the mass-to-charge ratio of ions. It is

generally used to find the composition of a physical

sample. Some cancers affect the concentration of

certain molecules in the blood, which allows early

diagnosis by analyzing the blood mass spectrum.

Features measured with mass spectra—often sum-

mary statistics of the peaks (for example, the peak

probability contrasts in Tibshirani et al. [16])—can be

used to discriminate between individuals with

different cancer phenotypes. Researchers have used

mass spectra for the detection of prostate, ovarian,

breast, bladder, pancreatic, kidney, liver and colon

cancers. See Yang et al. [17] and Diamandis and van

der Merwe [18] for examples.
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Proteomics: protein marker
identification and classification
Protein is encoded by genes, and represented by

sequence of amino acids. One of the central

problems in bioinformatics is the classification of

protein sequences into functional and structural

families based on sequence homology. It is usually

easy to sequence protein, but difficult to obtain

structure. An analytic solution is to use statistical

techniques and classify protein sequence data into

families and super-families defined by structure/

function relationships [19–21].

Proteomics: protein localization
Subcellular location of a protein is one of the key

functional characters as proteins must be localized

correctly at the subcellular level to have normal

biological functions. Automated imaging of subcel-

lular locations and structures can provide the ability

to detect abnormalities and associate them with

specific proteins. Prediction of protein subcellular

localization is an important component of bioinfor-

matics-based prediction of protein function and

genome annotation, and it can aid identification of

drug targets [22–24].

Remarks
Although examples described above differ signifi-

cantly in techniques and application areas, their data

structures share the following similarities. First, there

is a categorical phenotype of interest, which may

be cancer status, protein family or super-family

membership, or protein location. Second, high-

dimensional input variables are available for super-

vised classification. The input variables can be

microarray gene expressions, methylation patterns,

mass spectra or protein sequences. Third, such studies

usually have the number of input variables much

larger than the sample sizes. Thus, there is a critical

demand for dimension reduction or feature selection.

FEATURE SELECTION
We show in Figure 1 a taxonomy of feature selection

and dimension reduction. A similar one has been

presented as Table 1 of Saeys et al. [5].

Statistical methodologies that can reduce the

dimensionality of input variables can be categorized

depending on the relationships between original

input variables and new input variables. (i) Dimen-

sion reduction methods construct new input vari-

ables using linear combinations of all original input

variables. Examples include partial least squares

and principal component analysis among others.

(ii) Feature selection methods, which select a subset

of original input variables. (iii) Hybrid methods.

Most recently, researchers propose methods that

combine dimension reduction and feature selection.

One example is the sparse principal component

analysis [25]. The hybrid methods have not been

extensively used in bioinformatics yet.

Compared with dimension reduction, feature

selection techniques have the potential benefits

of (i) facilitating data visualization and data

Dimension reduction
Partial least squares
Principal component analysis
...

Feature selection

Filter
Wrapper

Embedded

Dicision trees
Naive Bayes
...

Penalized methods

Classification objective function

Likelihood functions
LDA by optimal scoring
AUCs
SVM
...

Penalt y functions

Lasso
Adaptive Lasso
Bridge
Elastic Net
SCAD
...

...

Hybrid method
Sparse principal component analysis
...

Figure 1: A taxonomy of feature selection and dimension reduction.
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understanding; (ii) reducing measurement and sto-

rage requirements and (iii) reducing training and

utilization times. Those properties are especially

desirable for bioinformatics where a typical study

measures 103–5 features on 101–3 subjects.

Feature selection methods can be further classified

as filter, wrapper or embedded. We refer to table 1 of

Saeys et al. [5] and the ‘Introduction’ section for

related discussions. Embedded methods integrate

feature selection with classifier construction (we

note that this has been deemed as a drawback by

some researchers). They have less computational

complexity than wrapper methods. Compared with

filter methods, embedded methods can better

account for correlations among input variables.

Penalization methods are a subset of embedded

methods, as can be seen from Figure 1. Penalization

methods can be further categorized based on the

classification objective functions and penalty terms,

which will be discussed in details in next section.

PENALIZED FEATURE
SELECTIONAND SUPERVISED
CLASSIFICATION
Data
For simplicity of notations, we consider binary

classification only. Extensions to multi-class classifi-

cation will be discussed in ‘Classification objective

function’ section. Denote Y¼ {0, 1} as the binary

phenotype of interest. For example, subjects with

Y¼ 1 may be referred to as diseased and Y¼ 0

may be referred to as healthy. Let X be the length-p
input variable. Suppose there are n i.i.d. copies

of (X,Y) : (x1, y1), . . . ,(xn,yn). Without loss of

generality, we only consider the case that classifica-

tion of Y can be based on a linear combination of

the X variables, denoted as XT�, where XT is the

transpose of X, and � is the unknown, length-p
regression coefficient. Nonlinear terms and interac-

tions can be included in X as new variables.

Penalized feature selection
and classification
With penalization methods, feature selection and

classifier construction are achieved simultaneously
by computing �̂, estimate of � that minimizes a

penalized objective function. Classification rule can

be defined as Y¼ 1 if XT �̂ > c for a cutoff c. With

properly tuned penalties, estimated � can have

components exactly equal to zero. Feature selection

is thus achieved, since only variables with nonzero

coefficients will be used in the classifier.

Specifically, we define �̂ as

�̂ ¼ argmin�fmð�;DÞ þ �� penð�Þg; ð1Þ

where D represents the dataset consisting of

(x1, y1), . . . ,(xn, yn).
In [1], m is referred to as the ‘classification

objective function’. We introduce different forms

of m in ‘Classification objective function’ section.

The penalty pen(� ) in (1) controls the complexity of

the model. With the penalty functions described in

‘Penalty function’ section and properly chosen �,

some components of �̂ are exactly zero. This leads to

sparse classifiers and feature selection. The tuning

parameter �> 0 balances the goodness-of-fit and

complexity of the model. When �! 0, the model

has better goodness-of-fit. However, since the

classifier is too complex, it may have unsatisfactory

prediction and be less interpretable. When �!1,

the classifier has fewer input variables in it. The case

of �¼1 corresponds to the simplest classifier where

no input variable is used for classification. When � is

properly tuned using cross-validation, the classifier

Table 1: Published articles that use penalized classificationmethods formicroarray data (incomplete list)

Author Objective function Penalty Numerical study

Ghosh and Chinnaiyan [9] LDA Lasso Simulation; microarray data
Zhang et al. [10] SVM SCAD Simulation; microarray data; metabolism data
Liu et al. [11] Likelihood Elastic net/bridge Simulation; methylation data; microarray data
Ma and Huang [32] ROC Lasso Microarray data
Pan et al. [50] Likelihood Adaptive Lasso Simulation; microarray data
Roth [43] Likelihood Lasso Microarray data
Segal et al. [45] Likelihood Lasso Microarray data

SVM Ridge Microarray data
Shen and Tan [28] Likelihood Ridge Microarray data
Zhu and Hastie [27] Likelihood Ridge Microarray data
Zou and Hastie [54] Likelihood Elastic net Microarray data
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can have satisfactory classification/prediction perfor-

mance and is interpretable.

Classification objective function
In this section, we describe five extensively used

classification objective functions.

Likelihood function for parametric model
Parametric classification models assume that

P(Y¼ 1WX)¼�(XT�), where � is the known link

function [26]. Commonly assumed link functions

include the logistic, logit, identity and probit

functions. When a parametric model is assumed, m
can be chosen as the negative log-likelihood

function. For example, if a logistic regression

model is assumed, i.e. Pr(Y¼ 1WX)¼ exp(�0þXT�)/

(1þ exp(�0þXT�)), then

m ¼�
1

n

X
i

yi log
expð�0 þ xTi �Þ

1þ expð�0 þ xTi �Þ

� �
þ ð1� yiÞ log

1

1þ expð�0 þ xTi �Þ

� �
:

ð2Þ

Parametric models for binary classification can be

easily extended to multiclass cases [26]. Examples

of using likelihood functions for classification in

bioinformatics include Liu et al. [11], Zhu and

Hastie [27], Shen and Tan [28], Shevade and

Keerthi [29], and many others.

Linear discriminant function by optimal scoring
Linear discriminant analysis (LDA) has been used in

microarray studies [9, 30]. Typically, LDA can be

calculated using matrix algebra techniques. An

effective alternative is to use the optimal scoring,

where the problem of classification is re-expressed as

a regression problem based on quantities known as

optimal scores.

Let �(Y)¼ (�(y1) , . . . , �(yn))
T be the n� 1 vector

of quantitative scores assigned to (y1, . . . ,yn). The

optimal scoring problem involves finding the vector

of coefficients � and the scoring map � : {0, 1}!R
that minimize the average squared residual:

m ¼
1

n

X
i

ð�ðyiÞ � xTi �Þ
2: ð3Þ

The optimal scoring approach can be easily modified

to incorporate multiclass cases [30].

Area under curve with receiver operating characteristics
Under the receiver operating characteristics (ROC)

framework, it is assumed that P(Y¼ 1WX)¼G(XT�).

Here G is an increasing link function. Its functional

form does not need to be assumed. We refer to Pepe

[31] for more details. With the ROC, classification

accuracy is evaluated using the true and false positive

rates (TPR and FPR), which can be defined as

TPR¼P(XT��c WY¼ 1), FPR¼P(XT��c WY¼ 0),

for a cutoff c. The ROC curve is a 2D plot of

{(FPR(c), TPR(c)) :�1< c<1}. Denote D and H

as the index sets for subjects with Y¼ 1 and Y¼ 0,

with sizes nD and nH, respectively. Let XD denote the

input variables of a diseased subject and XH the input

variables of a healthy subject. The overall perfor-

mance of a classifier can be measured by the area

under curve (AUC), with larger AUC indicating

better performance.

As a function of �, the empirical AUC

is AUCeð�Þ ¼
1

nDnH

P
i2D;j2H IðxTi �� xTj � � 0Þ;

where I is the indicator function. AUCe is not

continuous and hence difficult to optimize.

Ma and Huang [32] proposes AUCs, a smooth

approximation of the AUCe:

m ¼ �AUCsð�Þ ¼ �
1

nDnH

X
i2D;j2H

SððxTi �� xTj �Þ=�nÞ;

ð4Þ

where SðuÞ ¼ 1=ð1þ expð�uÞÞ, and �n is the tuning

parameter satisfying �n¼ o(n�1/2) as n!1.

An alternative to the empirical AUC is the

bi-normal AUC [31, 33]. Assume that XD and XH

have normal distributions XD
�N(�D, �D) and

XH
�N(�H, �H), respectively. Then the AUC can

be computed as

AUCnð�Þ ¼ �
ð�D � �HÞ

T�

ð�Tð�D þ�HÞ�Þ1=2

� �
;

where � is the normal distribution function. For a

sample with n subjects, the (negative) bi-normal

AUC can be estimated by

m ¼ � dAUCnð�Þ ¼ ��
ð�̂D � �̂HÞ

T�

ð�Tð�̂D þ �̂HÞ�Þ1=2

 !
; ð5Þ

where �̂ and �̂ denote the sample mean and

variance–covariance matrix, respectively.

Classification using the ROC can also be

extended to multiclass problems. We refer to

Mossman [34] for the volume under surface (VUS)

and Provost and Domingos [35] for the one-versus-

rest approaches, respectively.

Support vector machine
Under the support vector machine (SVM) frame-

work, the binary outcome variable is recoded as
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~Y ¼ 2Y � 1, i.e. ~Y 2 f�1; 1g. SVM is a large

margin classifier which separates two classes by

maximizing the margin between them. The SVM

can be formulated as a penalized optimization

problem with an L2 penalty

min
�0;�

1

n

X
i

½1� ~yið�0 þ xTi �Þ�þ þ �k�k
2
2 ð6Þ

where �0 is the intercept term, � is the directional

vector, aþ¼ W a WI(a> 0), k�k22 ¼
Pp

j¼1 �
2
j , and � is a

tuning parameter.

Usually with SVM, nonlinear kernels are needed.

We refer to Cristianini and Shawe-Taylor [36] for

detailed discussions. However, Zhang et al. [10]

suggests that ‘when p>>n, under mild assumptions

for data distribution . . . linear classifiers then become

natural choices to discriminate two simplices’. In

addition, with nonlinear kernels, once the kernels are

defined, they can be treated as new input variables,

and the above linear formulation is applicable. We

thus provide formulation with linear kernels only.

When using with other penalties, such as L1 or

SCAD, the SVM objective function in [6] can be

simplified by setting �¼ 0. With convex penalties

such as the L1 and L2, there exist efficient com-

putational algorithms to minimize the penalized

SVM function. To utilize the SVM loss function

with penalties such as the SCAD, which is not

convex, Zhang et al. [10] and references therein

propose to approximate SVM(�) with �¼ 0 by

m ¼�
X
i

~yið�0 þ xTi �Þ
2n

�
1

2n

X
i

~yið�0 þ xTi �Þ
j~yi � ðb0 þ xTi bÞj

þ
1

4n

X
i

ð�0 þ xTi �Þ
2

j~yi � ðb0 þ xTi bÞj
; ð7Þ

where (b0, b) is an initial estimate of (�0,�).

Application of SVM to cancer classification using

gene-expression data and protein localization pre-

diction can be found in Guyon et al. [37] and Hua

and Sun [38]. We refer to Noble [39] for a review of

SVM in bioinformatics.

Remarks
All the aforementioned classification objective

functions have been extensively used for binary

classification in bioinformatics.

When a model can be explicitly assumed, like-

lihood is the most straightforward choice. It has the

following properties: (i) when the underlying model

is correctly assumed, likelihood based classification

is optimal; (ii) with a newly observed X, likelihood

approach cannot only predict the class label, but also

the corresponding probability; (iii) on a negative

side, likelihood-based classification relies on strong

assumptions and may suffer from model mis-

specification.

The LDA approach maximizes class separability.

The classification objective function [3] has a simple

least squares form and is easy to compute—only

simple matrix operations are involved. However,

the LDA approach implicitly assumes that mean is

the discriminating factor (not variance), and data is

normally distributed. Such assumptions may be

violated and limit the applicability of LDA.

The ROC approach uses AUCs as classification

objective functions. The AUC is a direct measure-

ment of classification accuracy [31]. Classification

rule obtained by maximizing the AUC is hence

optimal in terms of having the largest AUC. The

empirical AUC relies on much weaker assumptions

compared with likelihood and LDA approaches.

However, an approximation has to be used, which

demands an extra tuning. The bi-normal AUC is

easy to compute. However, its validity depends on

the normal distribution assumption, which may be

violated.

The SVM classification objective function max-

imizes the geometric margin between different

classes. There is no explicit distribution assumption

associated with SVM. With certain penalty func-

tions, there exist efficient computational algorithms.

Otherwise, an approximation may have to be

introduced. In addition, SVM has no supporting

incremental learning and can be sensitive to noises

and outliers, which are frequently encountered in

bioinformatics [40].

There is unlikely to be an objective function that

is dominantly better under all scenarios. In practice,

researchers may need to try different objective

functions and select the proper one based on

criterions such as prediction accuracy.

Penalty function
Lasso: the L1 penalty
The Lasso penalty is proposed by Tibshirani [41] and

defined as

penð�Þ ¼
Xp
j¼1

j�jj; ð8Þ

i.e. the L1 norm of the regression coefficient. An

important property of the L1 penalty is that it can
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generate exact zero estimated coefficients [42].

Therefore, it can be used for feature selection.

Applications of the Lasso penalty in bioinfor-

matics include Ghosh and Chinnaiyan [9], Shevade

and Keerthi [29], Roth [43], Wei and Pan [44], Segal

etal. [45] and many others. Those studies have shown

that with the Lasso penalty, a small number of

representative features can be selected and satisfactory

classification can be achieved.

Adaptive Lasso: the weighted L1 penalty
The Lasso is in general not variable selection

consistent in the sense that the whole Lasso

path may not contain the true model [46].

Selection consistency of the Lasso requires an

irrepresentable condition, which may not be satisfied

in practice [47].

To improve the selection performance of the

Lasso, Zou [48] proposes the adaptive Lasso method,

which uses a weighted L1 penalty:

penð�Þ ¼
Xp
j¼1

1

jbjj
j�jj; ð9Þ

where bj is the weighted adjustment for each

coefficient [48]. For linear models with n>>p, it

has been proved that if bj is a
ffiffiffi
n
p

consistent estimate

of �j, then the adaptive Lasso estimate is feature

selection consistent under very general conditions.

Also for linear models but p>>n, Huang et al. [49]

shows that the adaptive Lasso can still be feature

selection consistent if certain orthogonality condi-

tions are satisfied. For classification problems, Pan

et al. [50] and several other articles show that

the adaptive Lasso has satisfactory classification/

predication and feature selection properties with

high-dimensional input.

Bridge: the Lc penalty
The L1 Lasso penalty is a special case of the bridge

penalty [42, 51, 52], which is defined as

penð�Þ ¼
X
j

j�jj
�; 0 < � � 1: ð10Þ

For linear models with n>>p and g< 1, the

bridge penalty is feature selection consistent, even

when the Lasso is not [53]. For linear models

with high-dimensional input, i.e. n<<p and g< 1,

Huang et al. [53] shows that the bridge can still be

feature selection consistent, if the features associated

with the phenotype and those not associated

with the phenotype are only weakly correlated.

Numerically, Liu et al. [11] adopts a mixture penalty,

which has a bridge term, in binary classification using

microarray data.

Elastic net: a mixture penalty
Zou and Hastie [54] shows for linear models, when

there exist highly correlated input variables, the Lasso

tends to select only one of the correlated variables.

With bioinformatics data, it is common that a few

input features are highly correlated. One penalty that

can effectively deal with high correlations is the

elastic net penalty:

penð�Þ ¼
X
j

j�jj
� þ ð

X
j

�2
j Þ
	; ð11Þ

with 0 < g� 1 and Z� 1. That is, the elastic net is a

mixture of bridge type penalties. Zou and Hastie [54]

proposes g¼ 1 and Z¼ 1. In Liu et al. [11], it is

extended to g< 1 and Z¼ 1. Applications of the

elastic net in bioinformatics classification are con-

sidered in Liu et al. [11].

SCAD penalty
The above penalties share the same property that

they increase as W�jW increases, which may cause biases

in estimating large coefficients. One solution is the

SCAD penalty [55]:

penð�Þ ¼ j�j if j�j � �

¼ �
j�j2 � 2a�j�j þ �2

2�ða� 1Þ
if � < j�j � a�

¼ ðaþ 1Þ�=2 if j�j > a�; ð12Þ

where a is a tuning parameter and Fan and Li [55]

suggests using a¼ 3.7. Estimation and feature selec-

tion consistency of the SCAD penalty have been

established for many distinct models with n>>p. In

bioinformatics, Zhang et al. [10] and Wang et al. [56]

adopt it in microarray studies and show its satisfactory

performance.

Remarks
Although aforementioned penalty functions differ in

their format, they all have the capability of feature

selection. This can be explained by the singularity of

derivatives of the penalties at zero [55].

The main advantage of Lasso is that, computa-

tionally, it is a convex optimization problem.

Although it is in general not feature selection

consistent, its low computational cost may compen-

sate this drawback. In addition, multiple published
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articles have shown satisfactory classification perfor-

mance of Lasso with high-dimensional input.

For linear models, the adaptive Lasso may fix the

inconsistent feature selection problem, while still

sharing the simplicity of Lasso. We expect similar

properties to hold for classification models. With

high-dimensional classification, selection of weights

is yet to be solved. There have been published

articles proposing ad hoc weights selection and

showing improvement of classification using adaptive

Lasso (over Lasso) with high-dimensional input.

More extensive numerical studies need be conducted

to draw an affirmative conclusion.

The bridge does not require any weights selec-

tion. However, there is still no satisfactory computa-

tional algorithm and an approximation may be

needed (see ‘Computational algorithms’ section for

more details).

The elastic net is the only penalty capable of

handling ‘grouping effects’, i.e. highly correlated

input variables. Such a property is especially desirable

for bioinformatics studies. However, it may share

the same inconsistency as the Lasso if g¼ 1, or the

computational difficulty as the bridge if g< 1.

The SCAD has been very popular with statisti-

cians in recent years because of its satisfactory

theoretical properties. Zhang et al. [10] and Wang

et al. [21] show its superior performance with high-

dimensional classification. However, it can be

computationally much harder than alternatives such

as the Lasso. In addition, it involves an extra tuning

parameter, which may be hard to choose objectively.

Computational algorithms
The singularity of the penalties at zero makes

commonly used maximization algorithms, such as

the Newton–Raphson or gradient searching, invalid.

Computational algorithms for individual penalties

have been proposed in early publications and

summarized subsequently. A unified approach,

called ‘herding lambdas’, is proposed by Friedman

[57] and described.

Lasso and adaptive Lasso
The adaptive Lasso can be computed using the same

algorithms as the Lasso. In early studies, the Lasso is

computed with the quadratic programming (QP) or

general nonlinear programming, which can be

computationally intensive. For linear models, Efron

et al. [58] proposes the efficient LARS approach,

which is later extended to generalized linear

models [59].

With high-dimensional data, an alternative

approach based on boosting has been proposed by

Kim and Kim [60] and later used in microarray data

analysis by Ma and Huang [61]. Computational cost

of the boosting approach is relatively independent of

the dimensionality of input variables, which makes it

especially suitable for high-dimensional data.

However, the boosting approach only provides an

approximation solution.

Bridge and elastic net
The elastic net penalty is the sum of the bridge and

ridge penalties. The ridge penalty term is differenti-

able. So for the elastic net, we only need to be

concerned with the bridge penalty. With g¼ 1,

algorithms for computing the Lasso and the

augmentation algorithm in Zou and Hastie [54] are

applicable for computing the elastic net estimate.

For the bridge and elastic net with g< 1, Huang

et al. [53] proposes to approximate the derivative of

W�jW
g with sgn(�j)/(W�jW

1�g
þ e), where sgn(�j) is the sign

of �j and e is a small positive number. In Liu et al.
[11], W�jW

g is approximated with ð�2
j þ 
Þ

�=2, with a

small positive e. Then a gradient searching type

algorithm can be employed. �̂js smaller than a chosen

cutoff are set to be zero. When e� 0, estimation

with the approximated penalties is close to the exact

solution.

SCAD
In Fan and Li [55] and Zhang et al. [10], a quadratic

approximation to the SCAD penalty is proposed.

The iterative successive quadratic algorithm

(SQA) can then be employed. Denote �k as the

estimate of � at Step k. Then pen(�)¼
P

j pen(�j),

where penð�jÞ ¼ penð�kj Þ þ 0:5ðpen0ð�kj Þ=j�
k
j jÞ�

ð�2
j � �

k2
j Þ. After the iteration is terminated, �̂js

smaller than a cutoff are set to be zero. We refer
to Zhang et al. [10] for more details on this
approximation.

Herding lambdas: a unified computational algorithm
We now describe a stagewise incremental approach,

which can be applied to optimize objective functions

with any of the above penalties, or their

approximations.

Denote g(�)¼�@m(�)/@� and its jth component

as gj(�). Denote p(�)¼�@pen(�)/@� and its jth
component as pj(�). Denote e as the fixed, small,
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positive increment. The ‘herding lambdas’ is an

iterative approach. Denote �(k) as the estimate of �
after iteration k. The algorithm can be summarized as

follows:

(1) Initialize k¼ 0 and �(0)¼ argmin{m(�)þ1�

pen(�)}.

(2) If maxj Wgj(�)W¼ 0, then stop iteration.

(3) Compute �jðkÞ ¼
gjð�ðkÞÞ
pjð�ðkÞÞ

.

(4) Denote the active set S¼ { j : �j(k) < 0}. If S
is empty, then l¼ argmaxjW�j(k)W. Otherwise

l¼ argmaxj2SW�j(k)W.
(5) �¼ eWgl(�(k))W.
(6) Update �(k)¼�(k)þ�sgn(gl(�(k)))1(l), where

1(l ) is the length p vector with its lth component

1 and the rest 0.

(7) Repeat Steps 2–7 until a cross-validated criterion

is satisfied.

As Friedman [57] points out that this algorithm

‘. . . does not always generate exactly the same path as

defined by (1), it is usually close enough to maintain

similar statistical properties.’ Numerical studies in

Friedman [57] support this argument. The affordable

computational cost and great applicability compen-

sate the negligible loss of accuracy. Another advan-

tage is that it can generate the complete parameter

path from �¼1 to �¼ 0, which is important when

� needs to be determined by cross-validation.

EMPIRICALPERFORMANCE
ANDAPPLICATION
A showcase example
Breast cancer is the second leading cause of deaths

from cancer among women in the United States.

Despite major progresses in breast cancer treatment,

the ability to predict the metastatic behavior of

tumor remains limited. The Breast Cancer study was

first reported in van’t Veer et al. [62]. A total of 97

lymph node-negative breast cancer patients aged 55

years old or younger participated in this study.

Among them, 46 developed distant metastases within

5 years (metastatic outcome coded as 1) and 51

remained metastases free for at least 5 years

(metastatic outcome coded as 0). Expression levels

for 24 481 gene probes were collected using

microarray. We refer to van’t Veer et al. [62] for

more details on experimental setup. The goal of

this study is to build a statistical model that can

accurately predict the risk of distant recurrence

of breast cancer in a 5-year post-surgery period.

The dataset is publicly available at http://www.rii.

com/publications/2002/vantveer.html.

We first preprocess gene-expression data as

follows: (i) Remove genes with more than 30%

missing measurements. (ii) Fill in missing gene-

expression measurements with median values across

samples. (iii) Normalize gene expressions to have zero

means and unit variances. (iv) Compute the simple

correlation coefficients of gene expressions with the

binary outcome. (v) Select the 500 genes with the

largest absolute values of correlation coefficients.

We analyze the breast cancer data using several

penalized approaches. Tuning parameters are

selected using the 5-fold cross-validation. Since

independent validation data is not present, we use

the leave one out cross-validation (LOOCV) to

evaluate the predictive power. Especially, we

first remove one subject. The reduced data, with

sample size n� 1, is then analyzed using

penalized approaches. We note that the prepro-

cessing and optimal tuning selection need to

be conducted for each reduced data. With the

statistical model generated with the reduced data,

we can make prediction for the removed subject.

This process is repeated over all subjects. An

overall prediction error can then be computed.

With different approaches, we are interested in

the sets of genes identified, and LOOCV prediction

error.

(1) Logisticþ Lasso. We assume the logistic regres-

sion model and use the negative log-likelihood

function as the objective function. The Lasso is

used for penalized gene selection. A total of

42 genes are selected. With the LOOCV, 14

subjects are misclassified.

(2) Logisticþ adaptive Lasso. Under the logistic

regression model, we use the adaptive Lasso for

penalized gene selection. We use the Lasso

estimate as weight in the adaptive Lasso. A total

of 22 genes are selected, and 14 subjects are

misclassified.

(3) Logisticþ bridge. Under the logistic regression

model, we use the bridge penalty with g¼ 1/2

for penalized gene selection. A total of 19 genes

are selected. With the LOOCV, 21 subjects

cannot be properly predicted.

(4) Logisticþ elastic net. Under the logistic regres-

sion model, we also consider the elastic net

penalty with g¼ 1/2 and Z¼ 2. A total of 19
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genes are identified. With the LOOCV, 21

subjects cannot be properly predicted.

(5) SVMþSCAD. We adopt the approach and

software in Zhang et al. [10]. Especially, approx-

imations are considered for both the SVM

objective function and the SCAD penalty.

With the 5-fold cross-validation, �¼ 0.003 is

selected as the optimal tuning. A total of 236

genes are selected. It is believed that the large

number of identified genes is partly caused by the

V-fold cross-validation. The LOOCV misclassi-

fies 12 subjects.

Due to limited availability of software, we only

consider five different combinations of objective

functions and penalties, whereas there are many

more possibilities. The lists of genes identified using

the above five approaches are available upon request

from the authors.

With different approaches, different sets of genes

can be identified. Since we use the Lasso estimate as

weight for the adaptive Lasso, the set of genes

identified using the adaptive Lasso is a subset of those

using the Lasso. For this specific dataset, the bridge

and elastic net identify the same set of 19 genes,

although in general this is not true. The cross-

validation selects very small penalty for the

SVMþSCAD. Thus a large set of genes are

identified. Although the sets of identified genes can

vary, all five approaches considered here have

reasonably good prediction performance.

We expect performance of different approaches

to be data specific. Thus, conclusions drawn

from this study may not be extended to general

scenarios.

General remark
The goal of this article is to provide a review of

penalized methodologies that are useful in supervised

bioinformatics classification studies. We provide a

partial list of published articles that use penalized

classification methods microarray data in Table 1.

We suggest interested researchers to read those

articles regarding the numerical performance of

penalization methods, comparisons with alternatives,

and applications. Extensive numerical studies will be

needed to draw conclusions on the relative perfor-

mance of penalized methods in high-dimensional

classification. Such a study is of great interest, but

beyond scope of this article.

DISCUSSIONS
Other forms of penalties
The ridge penalty has been used for microarray

classification in Zhu and Hastie [27]. Although it is

computationally simpler than the penalties discussed

in ‘Penalty function’ section, it does not have a

‘built-in’ feature selection mechanism. Feature

selection needs to be conducted after classifier

construction. There exist other penalties that have

properties similar to ridge. Although they may have

satisfactory classification performance, we do not

further pursue them due to their lack of feature

selection capability.

Related issues
Supervised classification and feature selection with

high-dimensional input are related to the following

subjects: (i) prescreening, which carries out a rough

screening to remove input variables unlikely to be

important [63]; (ii) tuning parameter selection. The

penalized approaches involve the unknown tuning

parameters that should be chosen using cross-

validation; (iii) classifier comparison and evaluation.

Cross-validated classification accuracy, such as classi-

fication error, and number of selected features need

to be compared to select the optimal classifier.

Although these issues are of great importance,

they are not the focus of this article. We refer to

other published papers for more detailed discussions.

Modeling of other bioinformatics data
In this article, we only consider data with categorical

outcomes and classification problems. Other out-

comes, such as linear or censored survival, are also

commonly encountered in bioinformatics studies.

Apparently, models and objective functions different

from those in ‘Classification objective function’

section need to be considered. However, the general

framework of penalization in section ‘Penalized

feature selection and classification’ and the penalty

functions in ‘Penalty function’ section are still

applicable.

CONCLUDING REMARKS
Penalization methods are a family of embedded

feature selection methods and have been used in

bioinformatics studies with high-dimensional input.

In this article, we provide a review of such methods,

so that interested researchers can use them more in

future bioinformatics studies. We describe five
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different classification objective functions and five

different penalties. Corresponding computational

algorithms are also discussed. A combination of any

classification objective functions described in

‘Classification objective function’ section and any

penalties in section ‘Penalty function’ can potentially

be used for feature selection and classification.

Computational and statistical aspects of several

combinations, such as logistic likelihood + Lasso,

logistic likelihoodþ elastic net, AUCþ Lasso, and

SVMþ SCAD, have been studied in the literature

cited in this article. The rest need to be studied in

the future.
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