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Abstract
Cells respond to stimuli by changes in various processes, including signaling pathways and gene
expression. Efforts to identify components of these responses increasingly depend on mRNA
profiling and genetic library screens, yet the functional roles of the genes identified by these assays
often remain enigmatic. By comparing the results of these two assays across various cellular
responses, we found that they are consistently distinct. Moreover, genetic screens tend to identify
response regulators, while mRNA profiling frequently detects metabolic responses. We developed
an integrative approach that bridges the gap between these data using known molecular interactions,
thus highlighting major response pathways. We harnessed this approach to reveal cellular pathways
related to alpha-synuclein, a small lipid-binding protein implicated in several neurodegenerative
disorders including Parkinson disease. For this we screened an established yeast model for alpha-
synuclein toxicity to identify genes that when overexpressed alter cellular survival. Application of
our algorithm to these data and data from mRNA profiling provided functional explanations for many
of these genes and revealed novel relations between alpha-synuclein toxicity and basic cellular
pathways.

Cells live in a dynamic environment in which they confront various perturbations such as
sudden environmental changes, toxins, and mutations. The response to such perturbations is
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typically complex and comprises signaling and metabolic changes, as well as changes in gene
expression. Revealing the cellular mechanisms responding to a specific perturbation may
unravel its nature, thus illuminating disease mechanisms1 or a drug’s mode of action2 ,3, and
identify points of intervention with potential therapeutic value4.

High-throughput experimental techniques including mRNA profiling and genetic screening
are commonly used for revealing components of these response pathways because they provide
a genome- and proteome-wide view of molecular changes. mRNA profiling experiments
rapidly identify genes that are differentially expressed following stimuli. Genetic screening,
including deletion, overexpression and RNAi library screens, identify genetic “hits”, genes
whose individual manipulation alters the phenotype of stimulated cells. However, each
technique has obvious limitations for revealing the full nature of cellular responses. mRNA
profiling experiments do not target the series of events that led to the differential expression.
Genetic screens provide strong evidence that a gene is functionally related to the response
process. Yet, this relationship is often indirect and hard to decipher, especially in high-
throughput experiments that typically result in scores of relevant genes with various functions.

It has been noted previously in a few specific instances 2,5–9 that genetic screens do not identify
the same genes as mRNA assays conducted in the same conditions. By analyzing the
relationship between genetic hits and differentially expressed genes across 179 diverse
conditions, we found that this discrepancy is, in fact, a general rule.

Furthermore, we found a striking bias in each technique that led us to a new, more coherent
view of cellular responses. To bridge the gap between the two forms of high throughput analysis
we developed an algorithm that exploits these experimental biases and that takes advantage of
molecular interactions data. This approach simultaneously reveals (i) the functional context of
genetic hits, and (ii) additional proteins that participate in the response yet were not detected
by either the genetic or the mRNA profiling assays themselves.

Having validated our approach in a wide array of perturbations, we applied it to unravel cellular
responses to increased expression of alpha-synuclein. Alpha-synuclein is a small human
protein implicated in Parkinson disease whose native function and role in the etiology of the
disease remain unclear 10. We screened an established yeast model for alpha-synuclein toxicity
11,12 using an additional set of 3,500 overexpression yeast strains, exposing the multifaceted
toxicity of alpha-synuclein. Application of our approach to the high-throughput genetic and
transcriptional data of the yeast model illuminated response pathways whose manipulation
altered cellular survival, and provided the first cellular map of the proteins and genes
responding to alpha-synuclein expression.

The relationship between genetic hits and differentially expressed genes
In order to derive a comprehensive view of the relationship between genetic hits and
differentially expressed genes identified in a particular condition, we analyzed published
mRNA profiles and genetic hits for 179 distinct perturbations in yeast (Methods). These data
included responses to a wide array of chemical and genetic insults affecting a multitude of
cellular processes. For 30 of these perturbations complete genetic screens were reported,
typically identifying >100 genetic hits; only partial genetic data are available for the remaining
perturbations. The number of genetic hits, differentially expressed genes and genes common
to both for each perturbation are given in Table 1 and Supplementary Table 1. Intriguingly, in
almost all cases the overlap was astonishingly small and statistically insignificant (p>0.05,
Methods).

One possible explanation for the poor overlap between genetic hits and differentially expressed
genes is that each assay may be biased toward distinct aspects of cellular responses. Analysis
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of Gene Ontology (GO) enrichment confirmed this hypothesis (Methods). The combined hits
from all 179 genetic screens were highly enriched for the annotations biological regulation
(23.3%, p<10−82), transcription (14%, p<10−44) and signal transduction (6.3%, p<10−30). In
contrast, the regulated genes from all perturbations were enriched mostly for various metabolic
processes (e.g., organic acid metabolic process 7.1%, p<10−18) and oxidoreductase activities
7.2%, p< 10−34). To ensure these patterns of enrichment do not stem from a handful of data
sources but reflect a general tendency, we also analyzed the 30 perturbations for which
complete data were available. We found the same enrichment trends, regardless of whether
these perturbations were analyzed individually (Supplementary Table 2) or whether all 30
datasets were combined (Supplementary Table 3). Complete enrichment analyses appear in
Supplementary Text. Thus, we find that genetic assays tend to probe the regulation of cellular
responses, while mRNA profiling assays tend to probe the metabolic aspects of cellular
responses.

The striking differences in annotations between genetic hits and differentially expressed genes
imply that each gene set alone often provides a limited and biased view of cellular responses.
In fact, this hypothesis was often borne out in cases where the pathways are well-studied by
other, more classical methods of genetic and molecular biological research. In the yeast DNA
damage response pathway, for example, a genetic screen 4 detected proteins that sense DNA
damage (Mec3, Ddc1, Rad17 and Rad24), while mRNA profiling detected repair enzymes such
as Rnr4 13. Yet core components of this pathway that had been uncovered by other intense
investigations over many years, such as the signal transducers Mec1 and Rad53 and the
transcription factor Rfx1, remained undetected by either high-throughput assay.

If we are to fully reap the benefits of applying high-throughput methods to new problems and
under-explored biological processes, it is essential that we find new routes to connect these
data and obtain a true picture of the regulation of cellular responses. Here we provide a novel
framework that bridges the gap between genetic and transcriptional data. Based on known
pathways such as the response to DNA damage discussed above, we expect that some of the
genetic hits, which are enriched for response regulators, will be connected via regulatory
pathways to the differentially regulated genes, which are the output of such pathways.
Discovering these pathways may uncover additional components of the cellular response to
perturbation that are missing from the experimental data (Figure 1).

ResponseNet algorithm for identification of response networks
The ResponseNet algorithm identifies molecular interaction paths connecting genetic hits and
differentially expressed genes that may include hidden components of the cellular response
(Figure 1). The yeast Saccharomyces cerevisiae provides a powerful model system for such
analysis due to the extensive molecular interactions data now available (Methods and
Supplementary Table 4). Taking advantage of these resources we assembled an integrated
network model of the yeast interactome that contains protein-protein interactions, metabolic
relations and protein-DNA interactions detected by various methods with different levels of
reliability14. The resulting interactome relates 5,622 interacting proteins and 5,510 regulated
genes, which are represented by network nodes, via 57,955 molecular interactions, which are
represented by network edges.

Our representation of the interactome has two important features that facilitate identification
of pathways relating genetic hits to transcriptional changes. First, we chose to highlight the
role of transcriptional regulatory proteins in determining expression changes by representing
differentially expressed genes and their protein products as separate nodes. The only protein
nodes that are connected to gene nodes are transcriptional regulatory proteins, and the edges
between protein and gene nodes represent observed protein-DNA interactions. Edges between
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two protein nodes represent protein-protein interaction data. Thus, all pathways connecting
genetic hits to the differentially expressed genes must pass through a transcriptional regulatory
protein (Supplementary Figure 1). Second, because interactions vary in their reliability, each
edge was given a weight that represents the probability that the connected nodes interact in a
response pathway. The probabilities were computed using a Bayesian method that considers
the types of experimental data supporting the putative interaction and that favors interactions
among proteins acting in a common cellular response pathway (Methods).

Due to the vast number of edges, a search for all interaction paths connecting the genetic hits
to the differentially expressed genes typically results in “hairball” networks that are very hard
to interpret (Figure 2A). One approach to this problem is to identify the highest probability
paths. However, pioneering approaches that searched an interactome for high-probability paths
had to limit the output path lengths to 3 edges for computational complexity issues15,16. We
aimed for a solution that would (i) pick the subset of genetic hits most likely to modulate the
differentially expressed genes without limiting it a priori to known regulatory genes, (ii)
identify and rank intermediary proteins that are likely to be part of response pathways but
escaped detection by high-throughput methods, and (iii) connect the proteins via a high-
probability interactome sub-network without restricting its topology.

We reasoned that these requirements could elegantly be met using a “flow algorithm”, a
computational method that has been employed previously to analyze signaling or metabolic
networks that have already known topology (e.g.,17). In these algorithms flow goes from a
source node to a sink node through the graph edges; edges can be associated with a capacity
that limits the flow and are also associated with a cost. (As a loose analogy, this resembles
water finding the path of least resistance through a complex landscape.) Because we sought to
discover the topology of the unknown response pathways connecting genetic hits and
differentially expressed genes we required that flow pass from genetic hits through interactome
edges to transcriptional regulators of the regulated genes (Supplementary Figure 1). We then
formulated our goal as a minimumcost flow optimization problem 18: Cost was defined as the
negative log of the probability of an edge. Hence, by minimizing the cost the algorithm gives
preference to high-probability paths (Methods).

The solution to the optimization problem is a relatively sparse network that connects many of
the genetic hits to many of the regulated genes through known interactions and intermediary
proteins (Figure 2B). These intermediary proteins were not identified by either high-throughput
genetic analysis or mRNA profiling, but are predicted by the algorithm to play a part in the
response. The proteins in the solution are ranked by the amount of flow they carry. The more
flow that passes through a protein, the more important it is in connecting the genetic and
transcriptional datasets.

Validation of the ResponseNet algorithm
To determine if ResponseNet provides valid biological insights, we used it to connect genetic
and transcriptional data from perturbations in well-studied pathways. We then asked if
ResponseNet revealed the proteins and pathways that are missing from the genetic and
transcriptional data, but that had previously been gleaned from individual analyses. For
example, we used ResponseNet to analyze genetic hits19 and transcriptional20 data collected
from a strain deleted for the gene encoding Ste5, a scaffold protein that coordinates the MAP
kinase cascade activated by pheromone (Figure 2B). The nodes selected by ResponseNet were
highly enriched for proteins functioning in the pheromone response pathway (46%, p<10−18),
thus revealing the perturbed biological process. The highly ranked intermediary proteins
provided biologically meaningful connections between the data sets, as they included key
regulators of the pheromone response as well as Ste5, the source of perturbation.
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The algorithm also performed well in analyzing the much more complex cellular response to
DNA damage4,21,22. The nodes discovered by ResponseNet were highly enriched for the GO
categories response to DNA damage stimulus (21%, p<10−14) and DNA repair (19%,
p<10−14). Indeed, the most highly ranked part of the network contained core members of the
pathway that had previously been uncovered by years of intense investigation but were not
detected by high-throughput screens, including the signal transducers Mec1 and Rad53,
members of the RFC complex (Rfc2-Rfc5) and the transcription factor Rfx1 (Figure 2C).

To test ResponseNet more broadly, we evaluated its ability to identify hidden components in
the cellular response to over one hundred distinct perturbations corresponding to inactivations
of well-annotated genes (Methods). For each such perturbation the genetic hits set consisted
of the genetic interactors of the inactivated gene (e.g., synthetic lethals), and the differentially
expressed genes were based on mRNA profiling of the inactivated strain 20. The identity of
the inactivated gene was hidden from the algorithm, and was used to evaluate the predicted
network. ResponseNet output was considered successful in revealing the cellular response to
the perturbation if the hidden nodes it identified fulfilled one of two criteria: (i) they included
the inactivated gene that was the source of perturbation, or (ii) they were significantly enriched
for a specific biological process attributed to the inactivated gene. Significance was determined
relative to networks generated using randomization techniques (Methods and supplementary
text).

ResponseNet success rates are given in Table 2 and Supplementary Table 5. In total,
ResponseNet predictions were successful in 63% of the cases. This rate of success is relatively
high considering that for the majority of the cases (85%) genetic hits data were rather limited
(a median of 14 genetic hits) and no high-throughput genetic screening data are yet available.
Notably, ResponseNet typically selected only 1% of the yeast proteins as relevant for the
response. Despite the fact that relevant interactions might be missing from our data or have
low probability compared with alternative paths, in a third of the cases the inactivated gene
was highly ranked among this small fraction.

A map of cellular pathways responding to alpha-synuclein toxicity
Having established the validity of our method to uncover connections between otherwise
disparate high-throughput datasets, we applied ResponseNet to investigate the cellular toxicity
associated with alpha-synuclein (α-syn). α-syn is a small lipid-binding protein that is natively
unfolded when not bound to lipids and prone to forming toxic oligomers 23. It that has been
implicated in several neurodegenerative disorders, most particularly Parkinson disease (PD).
α-syn is the main component of Lewy bodies, cytoplasmic proteinaceous inclusions that are a
hallmark of PD 24; locus duplication or triplication of α-syn lead to familial forms of PD 25,
26, and increased expression of α-syn leads to neurodegeneration in several animal models
27. α-syn is linked to alterations in vesicle trafficking 12,28 and mitochondrial function 29, yet
despite immense efforts, the cellular pathways by which α-syn leads to cell death are just
beginning to be uncovered.

The yeast S. cerevisiae provides a powerful system for studying the molecular basis of α-syn
toxicity that result from its intrinsic physical properties. Expression of human α-syn in yeast
yields several dosage-dependent defects that are also found in mammalian systems, such as
lipid droplet accumulation in the cytosol, the production of reactive oxygen species and
impairment of the ubiquitin-proteasome system 11. An initial overexpression screen in yeast
for genes that modify α-syn toxicity tested 2,000 strains and identified a class of genes
functioning in ER to Golgi vesicle trafficking, leading to the observation that α-syn causes an
ER to Golgi vesicle trafficking block. One of these genes, Ypt1/Rab1, a GTPase protein, was
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tested in neuronal models of PD and was found to rescue dopaminergic neurons from α-syn
toxicity 12.

We now report other results from that screen and the results of screening an additional set of
3,500 overexpression yeast strains, thereby covering in total 85% of the yeast proteome. We
identified a diverse group of genes including 54 suppressors and 23 enhancers of α-syn toxicity,
many with clear human orthologs (Table 3). Major classes of genes that emerged include
vesicle-trafficking genes, kinases and phosphatases, ubiquitin-related proteins, transcriptional
regulators, manganese transporters, and trehalose biosynthesis genes. Significantly enriched
GO categories included ER to Golgi vesicle-mediated transport (12%, p=6.2*10−5),
phosphatases (9.1%, p=0.0028) and transcription factors (6.5%, p=0.047). While the
identification of additional vesicle trafficking and ubiquitin-related genes is consistent with
the defects caused by α-syn expression in yeast, the identification of trehalose biosynthesis
genes and manganese transporters was new and intriguing. Trehalose was recently shown to
promote the clearance of misfolded mutant α-syn 30, and manganese exposure has been linked
with Parkinson-like symptoms albeit with a distinct underlying pathology31. Notably, another
suppressor we identified is homologous to the human PD gene PARK9.

Park9 and the human homologs of seven other genetic modifiers from diverse functional classes
(Hrd1, Ubp3, Pde2, Cdc5, Yck3, Sit4 and Pmr1) were found to be efficacious in neuronal
models, validating the yeast model as meaningful to α-syn toxicity in neurons (Gitler et al.;
manuscript submitted). The genes identified by the screen therefore begin to unravel the
surprisingly multifaceted toxicity of α-syn. Importantly, they provide novel causal relations
between α-syn expression and toxicities previously associated with PD but not specifically
linked to α-syn. A detailed description of the various gene classes and their potential relation
to PD appears in the Supplementary Text.

The transcriptional profile occurring in response to α-syn toxicity was determined in a separate
study (Supplementary Text; Su et al.; manuscript submitted). Up-regulated genes prominently
included genes with oxidoreductase activities (13%, p<10−9). Down-regulated genes included
ribosomal genes (28%, p<10−30), as commonly observed under stress 32. More specific to α-
syn toxicity, the down-regulated genes were strikingly enriched for genes encoding proteins
localized to the mitochondria (60%, p<10−44) and for genes involved in generation of precursor
metabolites and energy (18%, p<10−15).

The genetic and transcriptional data obtained in this model system exemplify both the power
and the limitations of the current approaches. These technologies reveal the wide range of
cellular functions that are altered by α-syn expression. Yet the precise roles of the genetic hits
and differentially expressed genes in the cellular response are unclear. For example, we
checked whether the ubiquitin-related proteins that emerged from the genetic screen affect α-
syn degradation. However, in strains overexpressing these ubiquitin-related genes we did not
detect changes by flow cytometry in steady-state α-syn protein levels (Supplementary Figure
2). As with our previous analyses (above), the overlap between the data obtained from the
genome-wide genetic screen and mRNA profiling assay was minor and statistically
insignificant (four genes, p=0.96).

Applying ResponseNet to these disparate datasets revealed a more coherent view of the cellular
response (Supplementary Figure 3). The resulting network provided context to a large portion
of the data: 34 (44%) genetic hits and 166 (27%) differentially expressed genes were linked to
each other through 106 intermediate connections. These include two thirds of the protein
kinase, phosphatase and ubiquitin-related genetic hits, illuminating their intricate role in the
response to α-syn. For example, ResponseNet suggests that the genetic suppressor Rck1, a
kinase known to respond to oxidative stress, functions through its interactions with the Cad1
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transcription factor, and that this sub-network explains the differential transcriptional of seven
genes (Supplementary Figure 3J). Similarly, ResponseNet identifies a set of transcriptional
changes that it traces back to the genetic hits Bre5 and Ubp3, which form a deubiquitination
complex (Supplementary Figure 3C).

The major cellular pathways responding to α-syn toxicity included ubiquitin-dependent protein
degradation, cell cycle regulation and vesicle trafficking pathways, all of which have
previously been associated with PD (Supplementary text and Supplementary Figure 3).
Impairment of the ubiquitin proteasome system33 and mutations in ubiquitin-related genes
(parkin and uch-L1) underlie sporadic and familial forms of PD. Interestingly, parkin is
associated with the SCF ubiquitin ligase complex 34, components of which were selected by
ResponseNet. Inappropriate cell cycle regulation has also been implicated in neuronal cell
death in PD 35,36, and ResponseNet predicted several regulators of mitosis and early meiosis.
Below we focus on additional ResponseNet predictions that relate to known aspects of PD
including nitrosylation, mitochondrial dysfunction and the heat shock response.

Nitrosative stress
Fzf1 was the only gene identified in the screen related to nitrosative stress 37. However,
ResponseNet connected it to four up-regulated transcripts, including Pdi1, a protein disulfide
isomerase (PDI) (Figure 3A). Intriguingly, the up-regulation of human PDI protects neuronal
cells from neurotoxicity associated with ER stress and protein misfolding (both of which are
linked to α-syn expression), and, further, PDI has been found to be S-nitrosylated in PD 38.
We found that increased expression of α-syn causes increased S-nitrosylation of proteins
(Figure 3B). This result is surprising as nitrosative responses in yeast cells were long thought
to represent a defense mechanism against other microbes. Very recently it was shown that yeast
synthesize NO in response to exogenous H2O2 39, suggesting that the nitrosylation of specific
proteins is a highly conserved response to oxidative stress.

Mitochondrial dysfunction
Mitochondrial dysfunction and oxidative stress have been strongly linked with PD 40, and were
recently associated specifically with α-syn (e.g., 41). Although mitochondrial dysfunction was
a prominent signature in the microarray data (Su et al.; manuscript submitted), the genetic hits
contained only a few genes clearly related to mitochondria. ResponseNet identified two
connected components related to mitochondrial dysfunction. One component contained the
suppressor Hap4, a transcriptional activator of respiratory genes, directly connected to several
of the differentially expressed genes (Supplementary Figure 3B). The other component
contained regulators of the retrograde signaling pathway, which senses mitochondrial
dysfunction (Mks1, Rtg2 and Grr1 42, Supplementary Figure 3E).

Heat shock
The induction of heat shock response directly or via chemical inhibition of Hsp90 43 suppresses
α-syn toxicity in many model systems including yeast, flies, mice and human cells (e.g., 44,
45). However, heat shock related genes were conspicuously absent among the list of genetic
suppressors. Nonetheless, ResponseNet predicted the involvement of two highly conserved
heat shock regulators, the chaperone Hsp90 (isoform Hsp82, Supplementary Figure 3A) and
the heat shock transcription factor Hsf1 (Figure 4A). Interestingly, ResponseNet predicted that
the toxicity suppressor Gip2, a putative regulatory subunit of the Glc7 phosphatase, interacts
with Gac1. Gac1 is a regulatory subunit of the Glc7 complex, which is known to activate
Hsf146. This connection suggested that Gip2 overexpression might induce a heat shock
response and prompted us to test it. Indeed, we found that strains overexpressing Gip2 show
elevated levels of heat shock proteins (Figure 4B). ResponseNet therefore provided a
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mechanistic explanation for the suppression of α-syn toxicity achieved by Gip2 overexpression
and identified a new player in the regulation of the ancient heat shock response.

We also identified cellular pathways whose relation to α-syn toxicity was initially obscure,
raising the possibility that they may be interesting avenues for future research. Below we focus
on two such highly-conserved pathways, the mevalonate/ergosterol pathway that is targeted
by the cholesterol lowering statin drugs, and the target of rapamycin (TOR) pathway.

The mevalonate/ergosterol biosynthesis pathway not only synthesizes sterols, but also
synthesizes other products with connections to α-syn toxicity such as farnesyl groups required
for vesicle trafficking proteins and ubiquinone required for mitochondrial respiration.
ResponseNet ranked highly Hrd1, which regulates the protein target of statins, and the
predicted intermediary Hap1, a proposed transcriptional regulator of the pathway 47

(Supplementary Figure 3A). In addition, the α-syn mRNA profile was modestly correlated with
the profile of yeast treated with lovastatin (r=0.32, p< 10−93, Su et al; manuscript submitted),
and several genetic hits could be also associated with products of the pathway (dependent
enzymes Bet4 and Cax4, farnesylated proteins Ypt1 and Ykt6 and putative sterol carriers Sut2,
Osh2, and Osh3). We therefore tested the effect of lovastatin, which selectively inhibits the
highly conserved HMG-CoA reductase of yeast as well as that of mammalian cells, on α-syn
toxicity. Addition of 5µM lovastatin to the media caused a further reduction in growth to strains
overexpressing α-syn (Figure 5A), but did not reduce growth of either wild-type controls or of
cells expressing another toxic protein, a glutamine-expansion variant of huntingtin exon I 48

(Supplementary Figure 4). We further tested ubiquinone, a downstream output of this pathway,
reasoning that its down-regulation through the action of α-syn might increase cellular
vulnerability. Indeed, the addition of ubiquinone-2 to the media provided a modest suppression
against α-syn toxicity. Ubiquinone is an antioxidant, but this was not a non-specific antioxidant
response as the antioxidant N-acetylcysteine had no effect (Supplementary Figure 5).

The TOR pathway has been related to other neurodegenerative diseases 49,50. ResponseNet
identified the TOR pathway proteins Tor1, Tor2 and their target transcription factors as
intermediary between the genetic hit Lst8 and several up-regulated genes involved in spore
wall formation (a vectorially directed secretory process in yeast) and vacuolar protein
degradation (Figure 5B). We found that addition of the TOR-inhibitor rapamycin to the media
markedly enhanced the toxicity of α-syn. Indeed, a low dose α-syn, which is otherwise
innocuous, became toxic (Figure 5C). Establishing the specificity of this effect to α-syn,
rapamycin did not reduce growth of cells expressing glutamine expansion variants of huntingtin
exon I (Supplementary Figure 6).

Discussion
We provide a novel framework in which genetic, physical and transcriptional data naturally
complement each other in the context of cellular response to biological perturbations. Although
the complementary nature of these data has been noted 2,5–9,51–55, a systematic analysis of the
relationship between stimulus-specific genetic modifiers and transcriptional responses has
been lacking. Here we find that in response to over 150 distinct stimuli differentially expressed
genes and genetic hits are consistently disparate (Table 1).

Our analysis suggests some interesting possible explanations for the discrepancy between these
two types of experiments. We have observed that differentially transcribed genes are
disproportionately involved in metabolic processes. These genes are less likely to appear as
genetic hits because metabolic processes tend to be robust against single mutations 56. We have
also found that genetic hits are biased towards regulatory proteins. Since deletion or over-
expression of a regulatory protein is likely to dramatically alter cellular signaling, this bias is,
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in hindsight, quite reasonable. However, why are regulatory proteins rarely found to be
differentially transcribed?

The lack of an observed transcriptional response by regulatory proteins could arise from either
technical or biological reasons. From a technical perspective, regulatory proteins are commonly
controlled post-transcriptionally, and therefore show no change in mRNA levels. For example,
purely post-transcriptional changes in HSF1 activity can produce enormous changes in the
expression of protein chaperones. Further, since many of these proteins have very low transcript
concentrations57, alterations in their mRNA levels may be below the detection limits of
microarray platforms.

Several possible biological explanations for the dearth of regulatory proteins among the
differentially transcribed genes would add to this effect. Proteins that initiate a signaling
response such as the components of the “sliding clamp checkpoint,” which detects DNA
damage, must be present at all times in order to detect environmental changes. In addition,
proteins that transmit signaling information but that do not initiate a response (such as kinases)
may also need to be kept at relatively constant levels, as changes in the levels of these proteins
can dramatically alter the systems-level properties of a signaling pathway, resulting in
surprising biological effects58. In such cases, it is precisely because changes in the expression
level of a genetic hit produces such a readily detectable phenotype that the expression of the
gene is maintained at a constant level.

The discordance between genetic hits and differentially expressed genes has implications for
the search for therapeutic strategies. In yeast, inactivating a differentially expressed gene is no
more likely to affect cell viability than targeting a randomly chosen gene. Yet bridging the gap
between these data can potentially reveal additional intervention points that may be targeted
by drugs.

Deciphering the role of genetic hits identified under conditions such as stress or disease is a
complex task. Our analysis indicates that this task can be facilitated by incorporating molecular
interactions data. Previous interactions-based interpretations often focused on graph-related
properties of the data, such as neighboring genes representing functionally related proteins59,
60, connected components representing functional modules 61 and network hubs representing
key proteins 62. However, these approaches have limited power to reveal mechanistic insights
especially when the underlying networks become dense.

We provide a novel scheme to interpret the functional role of genetic hits. By focusing on their
regulatory relationship with differentially expressed genes and using the interactome as the
underlying architecture, our approach represents an important step toward fully mechanistic
models for the regulation of cellular responses. As described for the deletion of Ste5 and the
response to DNA damage, ResponseNet can provide a richer framework for previously
explored pathways (Figure 2). More importantly, ResponseNet has the power to uncover
connections between high-throughput data sets that reveal underlying biological processes in
cases for which little is known, as was true for α-syn. The resulting networks provide extended
views of cellular responses as they incorporate relevant proteins not discovered in the high-
throughput assays themselves (Figure 2).

Our computational approach is based on a flow algorithm to connect the genetic hits and
differentially expressed genes. Unlike intriguing studies that link a target gene with its causal
transcriptional change13,15,16,63–66, a flow-based approach allows for a global, efficient and
simultaneous solution for multiple target genes that puts no a priori bounds on the structure
of the output. In fact, the predicted output networks have rich structures with half of all paths
of length of 3 or more. The ability of ResponseNet to analyze interactome data containing tens
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of thousands of nodes and edges make it well-suited to analyzing the accumulating data from
other species or other techniques67.

We applied our approach to a yeast model for α-syn pathobiology implicated in PD. The
complexity of PD and the multifaceted nature of the toxicities associated with just one protein,
α-syn, mandate their investigation via systems biology approaches. We identified 77 genes
whose overexpression altered α-syn toxicity (Table 3). In addition to genes involved in vesicle
trafficking (as previously reported), these included genes involved in protein degradation, cell
cycle regulation, nitrosative stress, osmolyte biosynthesis and manganese transport. This
screen established an interface between α-syn and a large number of cellular and environmental
factors previously linked to neuropathology and, in some cases, specifically to Parkinsonism,
but not specifically linked to α-syn. Many of the genes we identified are highly conserved in
humans, where they may exert similar affects. Indeed, eight out of nine toxicity modifiers we
have now tested had similar effects on α-syn toxicity in yeast and in neuronal systems (Gitler
et al; manuscript submitted).

Application of ResponseNet to the disparate high-throughput genetic and transcriptional data
of the α-syn model succeeded in providing a functional context to many of the genetic hits
identified in our yeast screen (Supplementary Figure 3). It uncovered the involvement of the
heat shock response, the TOR pathway and the mevalonate/ergosterol pathway in the response
to α-syn expression, which we experimentally validated (Figure 3–Figure 5). Of these, the
mevalonate/ergosterol pathway is of special interest as its perturbation could potentially alter
a variety of downstream pathways, including protein farnesylation and ubiquinone biosynthesis
that are closely related to the vesicle trafficking defects and mitochondrial dysfunction
observed in the yeast model. The fact that several of the yeast modifiers of α-syn toxicity act
similarly in neuronal systems suggests that the pathways we identified in yeast are relevant in
neuronal systems. Indeed, a link between sterol biosynthesis and the etiology of PD surfaced
recently in man. PD patients have significantly lower levels of low-density lipoprotein (LDL)
cholesterol than their spouses 68, and low levels of LDL preceded the appearance of PD in a
group of men of Japanese ancestry 69.

The global picture we obtained by integrating high-throughput genetic, transcriptional and
physical yeast data demonstrates the power of integrative approaches to illuminate under-
explored cellular processes. As high-throughput assays are becoming routine in the study of
complex disease and developmental processes, approaches for deciphering these data based
on their underlying characteristics are vital.

Materials and Methods
Genetic and transcriptional datasets

Datasets for chemical perturbations were downloaded from original papers. Genetic hits for
gene inactivation were defined as the set of proteins found to genetically interact with the
inactivated gene. These data were downloaded from SGD 19 and included all types of genetic
interactions. Transcriptional data consisting of differentially expressed genes showing at least
a two-fold change in expression with a p-value ≤ 0.05 were extracted from 20, or else were
defined according to original papers. Chemical perturbation assays were paired if the
concentrations of the chemical were comparable in both assays.

Interactome data description
The interactome is represented as a graph G = (V,E) that consists of nodes (vertices) V
representing genes and proteins, and a set of bidirectional and directed edges E representing
their interactions. Different nodes in the network represent a gene and its corresponding protein.
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Bidirectional edges between protein nodes in the interactome consisted of:

i. Physical protein-protein interactions, which were downloaded from 70 and from
BioGRID release 2.0.30.

ii. Interactions between two proteins if they both appeared in the same literature-curated
protein complex, downloaded from MIPS 71.

iii. Metabolic interactions between two enzymes, if the substrate of one was the product
of the other, based on the metabolic map of S. cerevisiae 17.

Directed edges in the interactome consisted of:

i. Edges from a protein node to a gene node if there was evidence from either literature
or ChIP-chip assays 72–74 that the protein was a probable transcriptional regulator of
the gene.

ii. Edges from one protein node to another if both proteins acted as transcriptional
regulators and the first regulated the second.

Supplementary Table 4 lists the number of interacting pairs per interaction type in the
interactome.

Weighting scheme for interactome edges
Each edge (i,j) ∈ E between node i and node j of the interactome is characterized by a weight
wij calculated as follows:

Interactions between protein nodes—We developed a Bayesian weighting scheme that
favors interactions between proteins functioning within a common response pathway (RP).
Each interacting protein pair pi,pj was associated with an interaction vector Ipi,pj, where vector
entry Ik pi,pj serves as an indicator function for interaction evidence of type k. For example, I
”two-hybrid HTP” pi,pj was set to 1 if pi interacted with pj in a high-throughput two-hybrid
experiment. Each interacting protein pair pi,pj was assigned a weight wij reflecting the
probability that pi,pj function in a randomly selected response pathway (denoted RPpi,pj=1)
based on their interaction evidence vector Ipi,pj. By Bayes’ rule,

We assumed that different types of evidence are conditionally independent, so that

. To estimate the prior probability P(RP) and the conditional
probability table associated with each evidence type P(Ik| RP) we compiled the following:

1. A set of response pathways containing 54 response-specific processes according to
GO process annotations (e.g., response to osmotic stress GO:0006970).

2. A set of positive examples containing all interacting protein pairs functioning in a
common response pathway (see 1 above) based on reliable GO process annotations.
To exclude less reliable sources of annotation we used only GO evidence relying on
direct assay or expert knowledge (GO evidence codes IC, IDA and TAS).

3. A set of negative examples composed of interacting protein pairs known not be in a
common response pathway similar to 75.

Supplementary Table 6 lists the resulting weights associated with individual evidence types.
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Some edge weights wij were close to 1, which was unrealistic biologically and could instead
indicate unusually well-studied proteins 76 or imperfectness of the assumption of conditional
independence. To prevent such edges from dominating the predicting response networks, and
to place all edges with high enough weights on equal footing, the weights wij were capped to
a maximum value of 0.7. Notably, small changes in this value (0.7±0.1) gave similar results
in the subsequent analyses.

Interactions between protein and gene nodes—These weights were designed to reflect
the interaction’s reliability based on experimental evidence and conservation. “ChIP-chip
interactions” refer to interactions discovered by the ChIP-chip method. “ChIP-chip motif
interactions” refer to those ChIP-chip interactions for which the gene’s upstream sequence
contained the binding motif of the specific transcription factor. “Reliable interactions” included
those ChIP-chip motif interactions for which the motif occurrence in the gene’s upstream
sequence was conserved in at least two other Saccharomyces sensu stricto species, as well as
literature-curated interactions. The weight of reliable interactions was set to 0.7. The weight
of remaining “ChIP-chip interactions” was set to the fraction of “ChIP-chip interactions” that
were also reliable (0.51), and similarly the weight of remaining “ChIP-chip motif interactions”
was set to the fraction of “ChIP-chip motif interactions” that were also reliable (0.59).

Linear programming formulation
The inputs to ResponseNet consist of the weighted interactome G = (V,E), the genetic hits data
set Gen ⊂ V and the transcriptional data set Tra ⊂ V identified following a specific
perturbation. Each edge (i,j) ∈ E is characterized by a weight wij representing its probability
(as described above), and by a capacity cij = 1.

For each perturbation the graph G is updated as follows:

1. V'=V∪{S,T}, where S and T are auxiliary nodes representing the source and sink,
respectively.

2. E'= E∪(S,i)∀i∈Gen ∪ (i, T)∀i∈Tra, thus connecting S to the genetic hits and T to the
differentially expressed genes data using directed edges.

3.

. The strength of each genetic hit is measured by the
variation it confers on the number of colonies per drop, if available, otherwise
strengths are taken to be uniform. Thus the capacities associated with the edges
between the source S and the genetic hits are proportional to the strength of each
genetic hit, and can be viewed as a prior for including the gene in the output.

4.

. The strength is measured by either the fold-
change in its transcript level or the p-value associated with it, depending on their
availability. Thus the capacities associated to the edges between each transcriptional
hit and the sink T are proportional to the logarithm of the gene strength, and can be
viewed as a prior for including the gene in the output.

5. wSi = cSi ∀i ∈ Gen and wiT = ciT ∀i ∈ Tra.

Let fij denote the flow from node i to node j, and let F = {fij} denote the solution to the following
optimization problem: min
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(1)

subject to:

(2)

(3)

(4)

The objective function—The expression being minimized in (1) reflects the objectives of
increasing the total flow in the network, given by ∑ieGenfSi, while at the same favoring high-
probability interactions via the term ∑ij−log(wij*fij.

To better explain this second term, suppose that the integer variable xij indicates the presence
of an interaction between node i and node j in the solution (xij = 1 if the interaction between
node i and node j is in the solution and xij = 0 otherwise). Note that minimizing ∑ij−log
(wij*xij is equivalent to maximizingΠij wij

Xij, which is the overall probability of all the
interactions in the solution for which xij=1. In the optimization problem given by (1)–(4) above,
we allow the xij variable to take continuous values fij rather than binary values xij. This relaxes
an integer programming problem, which can be computationally intractable, to a linear
programming problem, for which efficient algorithms are available.

The objective function in (1) contains one tunable parameter, γ, which controls the size of the
input being connected by ResponseNet, with effective values of 7 to 20 (γ <7 typically results
in an empty solution, γ >20 typically saturates the maximum flow attainable). Smaller values
of γ identify the subset of input connected by the highest-probability paths. As γ increases
additional input components that are connected by lower-probability paths are added. Notably,
a change in the tunable parameter values (γ±1) does not typically affect the highest ranking
proteins, which provide a skeleton around which the network is built; it does affect the coverage
of the input data and consequently determines the inclusion or exclusion of more lowly ranked
intermediary proteins (Supplementary Text and Supplementary Figure 8). A protocol for
setting γ value appears in the Supplementary text. In the assessment of ResponseNet γ =10 was
used because it gave intermediate sized networks.

The constraints—Constraint (2) requires the conservation of flow for each node in the
interactome; constraint (3) requires that all flow out of the source must arrive at the sink;
constraint (4) enforces that the flow for each interaction is non-negative and does not exceed
the capacity of the interaction.

The optimization problem was solved using LOQO 77. F = {fij>0} was interpreted as a set of
weighted interactions that connects the genetic and the transcriptional data sets, defining the
predicted response network. This network does not contain proteins and genes from the input
sets, except for genetic hits that receive flow from nodes other than the source. Network proteins
were ranked in decreasing order according to the total amount of their incoming flow
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(calculated for each protein as the sum of the flow value for each incoming edge). Notably,
although the solution to the optimization problem is a directed network, the directionality of
the interactions in the network, except for the interactions between transcription factors and
their targets, was ignored. This directionality only reflects the way in which the algorithm
directed flow from the genetic hits to the differentially expressed genes and is not intended to
represent the causal order of events (Figure S1 and Supplementary Text).

ResponseNet reports the optimal solution to the flow problem. To map the space of sub-optimal
solutions and the stability of the optimal solution we perturbed the edge weights in network
and compared the solutions of the perturbed and unperturbed networks. We found that the
solution is quite stable even when edge weights are perturbed by a random scaling factor with
a mean of one and a standard deviation of 25% (Supplementary Text).

Statistical analysis
Probabilities of overlap between genetic and transcriptional data were calculated using Fisher’s
Exact Test, based on a total of 6000 yeast genes.

Enrichment analysis was performed using the Gene Ontology Term Finder from SGD.
Assessment of ResponseNet on genetic perturbations was based on the subset of 101 genetic
perturbations for which the inactivated gene had a reliable GO process annotation (based on
direct assays, manual curation or explicit citation, denoted as GO evidence codes IC, IDA or
TAS). A specific ResponseNet solution was considered successful when: (i) the predicted
network contained the inactivated gene, or (ii) the predicted network was significantly enriched
for a biological process to which the inactivated gene was reliably attributed.

Significance was computed against two null hypotheses: (1) relative to the number of genes
with the same annotation that could be found by random selection from the genome (p-value
≤ 10−2 using the hyper-geometric approach and correcting for multiple hypothesis testing), and
(2) relative to the enrichment that could be found in 100 perturbation-specific solutions based
on randomized inputs (empirical p-value ≤ 0.05). In both cases enrichments were calculated
based on genes with reliable process annotation (evidence codes IC, IDA or TAS).

The randomizations were conducted separately for each perturbation as follows: we created
100 pairs of inputs sets of the same sizes as the original genetic and transcriptional data,
containing either proteins or genes randomly chosen from the interactome. The interactome
data remained fixed so that all predicted networks relied on real interaction data. Each random
input set was solved using ResponseNet and the significant GO process annotation enrichments
were recorded (p-value ≤ 10−2 by Fisher’s Exact Test; 0.05 FDR). Process annotations enriched
in the original solution were considered significant if at least 95 random input solutions had
lower significance scores. Interactome data was as described above. Physical interactions relied
upon BioGRID release 2.0 70. Additional information appears in Supplementary Text.

Yeast Strains and Media
The α-syn overexpressing yeast strain we used in the modifier screen was W303 with α-syn
integrated into HIS3 and TRP1 loci (IntTox): MATa can1-100 his3-11,15 leu2-3,112 trp1-1
ura3-1 ade2-1 pRS303Gal-α–synWTYFPpRS304Gal-αSynWT-YFP. The α-syn
overexpressing yeast strain we used for drug assays and microarray experiments was W303
with α-syn integrated into TRP1 and URA3 loci (HiTox): MATa can1-100 his3-11,15
leu2-3,112 trp1-1 ura3-1 ade2-1 pRS304Gal-α-synWT-GFP pRS306Gal-α-synWT-GFP.
Controls in the drug assays and microarray experiments were W303 with two copies of empty
vector integrated into TRP1 and URA3 loci (2x vector): MATa can1-100 his3-11,15 leu2-3,112
trp1-1 ura3-1 ade2-1 pRS304Gal pRS306Gal, and one copy of a-syn integrated into TRP1
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locus (1x α-syn): MATa can1-100 his3-11,15 leu2-3,112 trp1-1 ura3-1 ade2-1 pRS304Gal-α–
synWTGFP. The Gal promoter reporter strain used to determine the effect of modifier genes
on expression from galactose regulated promoter was W303 with YFP integrated into HIS3
locus: MATa can1-100 his3-11,15 leu2-3,112 trp1-1 ura3-1 ade2-1pRS303Gal-YFP. Strains
were manipulated and media prepared using standard techniques.

α–Syn toxicity modifier screen
We performed the high-throughput yeast transformation protocol as described previously for
a smaller library of genes 12. 5,000 full-length yeast ORFs were amplified by polymerase chain
reaction and captured by recombination cloning into a Gateway™ pDONR221 vector
(Invitrogen). The clones were sequenced from N-terminus to C-terminus and verified to be
wild type. For the expression screen, the clones were transfered into a galactose-inducible
expression plasmid (pBY011; CEN, URA3, AmpR) using the Gateway™ technology
(Invitrogen). Additional information about the Yeast FLEXGene collection is available at
http://www.hip.harvard.edu/research/yeast_flexgene/. Plasmid DNAs from the expression
clones were isolated using the REALTM miniprep kit (Qiagen). DNA was dried in individual
wells of 96-well microtiter plates and transformed into a strain expressing α–syn integrated at
the HIS3 and TRP1 loci. A standard lithium acetate transformation protocol was modified for
automation and used by employing a BIOROBOT Rapidplate 96-well pipettor (Qiagen). The
transformants were grown in synthetic deficient media lacking uracil (SD-Ura) with glucose
overnight. The overnight cultures were inoculated into fresh SD-Ura media with raffinose and
allowed to reach stationary phase. The cells were spotted on to SD-Ura + glucose and SD-Ura
+ galactose agar plates. Suppressors of α–syn induced toxicity were identified on galactose
plates after 2–3 days of growth at 30°C. We repeated the screen 3 independent times and
candidate modifier genes were retested at least twice to confirm their authenticity. To exclude
the possibility of false positive toxicity suppressor genes caused simply by a reduction in α–
syn expression, the amount of α–syn protein was monitored by flow cytometry. To exclude
false positive enhancer genes caused by a general inhibition of growth unrelated to α–syn
expression, these genes were transformed into wild type yeast cells and their effect on growth
determined.

Immunoblotting
Yeast lysates were subjected to SDS/PAGE (4–12% gradient, Invitrogen) and transferred to a
PVDF membrane (Invitrogen). Membranes were blocked with 5% nonfat dry milk in PBS for
1 hr at room temperature. Primary antibody incubations were performed overnight at 4°C or
at room temperature for 1–2 hours. After washing with PBS, membranes were incubated with
a horseradish peroxidase-conjugated secondary antibody for 1 hour at room temperature,
followed by washing in PBS+0.1% Tween 20 (PBST). Proteins were detected with SuperSignal
West Dura (Pierce). Phosphoglycerase kinase 1(Pgk 1) mouse monoclonal antibody was used
at 1:5000. Hsp26 rabbit polyclonal antibody(gift from Dr. Johannes Buchner) was used at
1:5000. Hsp104 mouse monoclonal antibody (4B; 78) was used at 1:5000.

α-Syn ResponseNet analysis
The α-syn transcriptional data consisted of genes showing at least a two-fold change in
expression with a p-value ≤ 0.05 (Su et al.; manuscript submitted, Supplementary Table 7).
ResponseNet was run with γ=12. Capacities of edges connecting the source node to the genetic
hits were relative to the absolute strength of the genetic hits (Table 3). Capacities of edges
connecting the differentially expressed genes to the sink node were relative to the absolute
value of the fold change. In an effort to exclude non-specific stress response from our
predictions, we ran ResponseNet with the complete genetic hits data, but using only a subset
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of the transcriptional data from which 111 environmental stress response genes 32 were
excluded. This resulted in an almost identical network (Supplementary text).

Western blot with S-nitrosocysteine antibody
Yeast cells were harvested, spun down and snap froze prior to cell lysis via bead beating in a
buffer containing 50 mM HEPES, pH 7.4, 150 mM NaCl, 1% Triton X-100, 5% glycerol, 1
mM PMSF, and EDTA-free complete protease inhibitor cocktail tablet. Protein concentration
was determined via bicinchonic acid assay prior to resolution of products on SDS-PAGE,
followed by transfer onto nitrocellulose membrane and probe with S-nitrosocysteine antibody
(1:10,000, Sigma).

α-Syn growth in presence of small molecules
α-syn strains as well as control strains were grown overnight to saturation in media containing
raffinose. Yeast cultures were normalized for their OD and serially diluted by five-fold prior
to spotting onto yeast media plates containing galactose, and where necessary, rapamycin.
Growth curves were monitored using Bioscreen (www.bioscreen.fi). Yeast strains were pre-
grown in 2% raffinose medium and induced in 2% galactose medium with starting OD600 of
0.1. 300 µl of induced cells were dispensed to individual wells, in presence of either the
compound or vehicle control (1% DMSO final). Each growth condition was analyzed in
triplicate wells per run, and at least 3 independent runs were conducted for each growth
condition. Cells were grown at 30°C, with plates shaken every 30 seconds to ensure proper
aeration and OD600 measurements taken every half hour over a two-day period. The resulting
data (OD600 versus time) were plotted using Kaleidagraph.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Regulatory relationships between stimulus-specific genetic and transcriptional data
Cells respond to stimulus with changes in many cellular processes, including signaling and
gene expression. The figure shows a general signaling pathway, including receptor binding,
transcription factor (TF) translocation into the nucleus and gene expression. Genetic screens
and mRNA profiling identify only some of these molecular components and often do not
identify the same genes, as shown. We find that the proteins products of genes identified in
genetic screens (colored blue) tend to be molecules with regulatory roles. We therefore
hypothesize that they may directly or indirectly contribute to the regulation of the observed
change in gene expression (colored purple). ResponseNet identifies the likely regulatory
pathways, and predicts proteins that are part of these pathways even if they are not identified
in either screen (colored red).
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Figure 2. Interactome sub-networks connecting genetic and transcriptional data
A. A network connecting genetic19 and transcriptional20 data of STE5 deletion strain via paths
of length ≤ 3 edges finds 193 nodes and 778 edges.
B. The network created by ResponseNet connects the genetic19 and transcriptional20 data of
STE5 deletion strain via 23 intermediary nodes and 96 edges. Higher ranked nodes, as
determined by ResponseNet, appear in darker shades of blue and include core components of
the pheromone response pathway. Ste5 itself, marked by a red circle, is ranked ninth among
the top predicted proteins.
C. The highly-ranked part of the network created by ResponseNet upon connecting genetic
hits4,21 to DNA damage signature genes22 identified in yeast treated with the DNA damaging
agent MMS. The highest ranking intermediate nodes predicted by ResponseNet include core
components of the DNA damage response pathway. The complete network appears in
Supplementary Figure 7.
Each node represents either a protein or a gene, and edges represent protein-protein, metabolic,
and protein-DNA interactions. The darkness of an edge increases with the amount of flow it
carries. Differentially expressed genes are labeled with a suffix of g+ for up- and g- for down-
regulation. Networks were visualized using Cytoscape.
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Figure 3. Nitrosative stress response to α-syn expression in yeast
A. The predicted sub-network containing Fzf1 and its differentially expressed target genes.
Graphical representation is similar to Figure 2.
B. Immunoblotting against S-nitrosocysteine performed on a control strain (vector), on a strain
expressing one copy of α-syn (NoTox), and on a high-toxicity strain (HiTox) expressing several
copies of α-syn, reveals that increasing levels of α-syn increase the amount of S-nitrosylated
proteins.

Yeger-Lotem et al. Page 23

Nat Genet. Author manuscript; available in PMC 2009 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 4. Overexpression of Gip2 causes induced expression of Hsf1 targets
A. The predicted sub-network links the toxicity suppressor Gip2 and the toxicity enhancer Ppz1
to Hsf1 and Msn2 via components of type 1 protein phosphatase complex (Gac1, Glc7, Ypi1,
Sds22). Graphical representation is similar to Figure 2.
B. Immunoblotting of vector cells overexpressing GFP, Fzf1 or Gip2 with antibodies against
Hsp104 and Hsp26. Overexpression of Gip2 is sufficient to activate Hsf1 and induce higher
protein levels of both its targets Hsp104 and Hsp26, similar to that of vector cells subjected to
heat shock. In contrast, ovexepression of another genetic suppressor, Fzf1, does not activate
Hsf1. Immunoblotting against Pgk1 was used as a loading control.
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Figure 5. Effects of the small molecules lovastatin and rapamycin on α-syn toxicity
A. Lovastatin inhibits growth of the yeast strain expressing an intermediate level of α-syn.
Growth of a control strain (vector) and an intermediate toxicity strain (IntTox) expressing
several copies of α-syn was measured in a galactose containing media with and without 5µM
lovastatin. Each growth curve reflects the average of 3 individual runs, each of which is
indicated by a bar.
B. The predicted sub-network containing TOR pathway components includes the predicted
proteins Tor1 and Tor2. Graphical representation is similar to Figure 2.
C. The effect of rapamycin on growth of different yeast strains. The upper panel shows the
growth of a control strain (vector), a strain expressing one copy of α- syn (NoTox), a high-
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toxicity strain (HiTox) and an intermediate toxicity strain (IntTox) both expressing several
copies of α-syn, in a galactose containing media (SGal) that is used to induce expression of
α-syn. The lower panel shows the same strains grown in media that also contains 1nM
rapamycin, showing that rapamycin inhibits growth of all α-syn expressing strains but not the
control strain, as observed by the difference in the number of colonies per drop. The different
columns correspond to serial dilutions.
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Table 1
Measured responses to cellular perturbations.

Perturbation Number of differentially expressed
genes1

Number of genetic
hits2

Overlap

Growth arrest (HU) 20,79 59 86 0

DNA damage (MMS) 4,13 198 1448 43

ER stress (tunicamycin) 3,20 200 127 5

Fatty acid metabolism (oleate) 9,80 269 103 9

ATP synthesis block (arsenic)2 828 50 9

Protein biosynthesis (cycloheximide) 20,79 20 164 0

Gene inactivation, screen complete (24 data sets 19,20,81,82)3 27 130 0

Gene inactivation, screen incomplete (149 data sets 19,20)3 24 12 0

1
Differentially expressed genes were defined as those showing at least a 2-fold change in expression following the perturbation or as defined in the original

papers.

2
Number of genes whose genetic manipulation affects the phenotype of perturbed cells relative to wild type.

3
Median results are shown.
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Table 3
Yeast genes that modify α-syn toxicity when overexpressed.

Yeast Gene Type Strength Human ortholog(s) Proposed function

Amino Acid Transport

AVT4 suppressor 3 SLC36A1 Vacuolar transporter; exports large
neutral amino acids from the vacuole

SLC36A2

SLC36A3

SLC36A4

DIP5 suppressor 3 SLC7A1 Dicarboxylic amino acid permease

SLC7A14

SLC7A2

SLC7A3

SLC7A4

SLC7A13

LST8 suppressor 3 GBL Component of the TOR signaling
pathway

Autophagy

NVJ1 suppressor 2 Nuclear envelope protein; functions
during piecemeal microautophagy of
the nucleus (PMN)

Cytoskeleton

ICY1 suppressor 4 Protein that interacts with the
cytoskeleton

ICY2 suppressor 4 Protein that interacts with the
cytoskeleton

Manganese transport

CCC1 suppressor 4 Putative vacuolar Fe2+/Mn2+
transporter

PMR1 enhancer −7 ATP2C1 High affinity Ca2+/Mn2+ P-type
ATPase required for Ca2+ and Mn2+
transport into GolgiATP2C2

Protein phosphorylation

IME2 suppressor 4 ICK Serine/threonine protein kinase
involved in activation of meiosis
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Yeast Gene Type Strength Human ortholog(s) Proposed function

PTP2 suppressor 3 PTPRE, PTPRC, PTPN22,
PTPRG

Phosphotyrosine-specific protein
phosphatase involved in osmolarity
sensing

GIP2 suppressor 3 PPP1R3A Putative regulatory subunit of the
protein phosphatase Glc7p, involved in
glycogen metabolismPPP1R3B

PPP1R3C

PPP1R3D

PPP1R3E

YCK3 suppressor 3 CSNK1G1 Palmitoylated, vacuolar
membranelocalized casein kinase I
isoformCSNK1G2

CSNK1G3

RCK1 suppressor 3 CAMK1G Protein kinase involved in the response
to oxidative stress

CDC5 suppressor (Cdc5
overexpression is toxic; in

presence of a-syn it rescues/
rescued)

3 PLK2 Polo-like kinase; found at bud neck,
nucleus and SPBs; has multiple
functions in mitosis and cytokinesis

PTC4 suppressor 1 PPM1G Cytoplasmic type 2C protein
phosphatase

SIT4 enhancer −2 PPP6C Type 2A-related serine-threonine
phosphatase.

CAX4 enhancer −3 DOLPP1 Dolichyl pyrophosphate phosphatase,
required for Dol-P-P-linked
oligosaccharide intermediate synthesis
and protein N-glycosylation.

PPZ2 enhancer −3 PPP1CC Serine/threonine protein phosphatase Z

PPP1CB

PPP1CA

PPZ1 enhancer −8 PPP1CA Serine/threonine protein phosphatase Z

PPP1CB

PPP1CC

Transcription/Translation

CUP9 suppressor 3 MEIS1 Transcriptional repressor involved in
copper ion homeostasis

MEIS2

MEIS3

NR_002211
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Yeast Gene Type Strength Human ortholog(s) Proposed function

.1 PKNOX1

PKNOX2

Q99687-3

TGIF1

TGIF2

TGIF2LX

HAP4 suppressor 4 Transcriptional activator and global
regulator of respiratory gene
expression

FZF1 suppressor 3 KLF15 Key transcriptional regulator of
cellular response to nitrosative stress

KLF11

ZNF624

MGA2 suppressor 3 ANKRD1 ER membrane protein involved in
regulation of OLE1 transcription

OSBPL1A

MKS1 enhancer −5 Pleiotropic negative transcriptional
regulator involved in Ras-CAMP and
lysine biosynthetic pathways and
nitrogen regulation; involved in
retrograde (RTG) mitochondria-to-
nucleus signaling

VHR1 suppressor 3 Transcriptional activator

JSN1 suppressor 2 PUM1 Member of the Puf family of
RNAbinding proteins, interacts with
mRNAs encoding membrane-
associated proteins

SUT2 enhancer −3 Putative transcription factor;
multicopy suppressor of mutations that
cause low activity of the cAMP/protein
kinase A pathway

TIF4632 suppressor 3 EIF4G1 Translation initiation factor eIF4G,
subunit of the mRNA cap-binding
protein complex (eIF4F)EIF4G2

EIF4G3

STB3 suppressor 3 Protein that binds Sin3p in a two-
hybrid assay.

MATALPHA1 enhancer −5 Transcriptional co-activator involved
in regulation of mating-type-specific
gene expression

Trehalose biosynthesis

Nat Genet. Author manuscript; available in PMC 2009 September 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Yeger-Lotem et al. Page 32

Yeast Gene Type Strength Human ortholog(s) Proposed function

UGP1 suppressor 4 UGP2 UDP-glucose pyrophosphorylase,
catalyses the formation of UDP-Glc, a
precursor to trehalose

TPS3 suppressor 3 Regulatory subunit of trehalose-6-
phosphate synthase/phosphatase
complex, which synthesizes trehalose

NTH1 suppressor 2 TREH Neutral trehalase, degrades trehalose;
required for thermotolerance and may
mediate resistance to other cellular
stresses

Ubiquitin-related

CDC4 suppressor 4 FBXW7 F-box, associates with Skp1p and
Cdc53p to form a complex, SCFCdc4,
which acts as ubiquitin-protein ligase

UIP5 suppressor 4 Protein of unknown function that
interacts with Ulp1p, a Ubl (ubiquitin-
like protein)-specific protease

HRD1 suppressor 4 AMFR Ubiquitin-protein ligase required for
endoplasmic reticulum-associated
degradation (ERAD) of misfolded
proteins

SYVNI

UBP11 enhancer −3 USP21 Ubiquitin-specific protease that
cleaves ubiquitin from ubiquitinated
proteins.

UBP7 enhancer −4 USP21 Ubiquitin-specific protease that
cleaves ubiquitin-protein fusions.

Vesicular transport, ER-Golgi

YPT1 suppressor 5 RAB10 Ras-like small GTPase, involved in the
ER-to-Golgi step of the secretory
pathwayRAB13

RAB1A

RAB1C

RAB8A

RAB8B

YKT6 suppressor 4 YKT6 v-SNARE involved in trafficking to
and within the Golgi, endocytic
trafficking to the vacuole, and vacuolar
fusion

BRE5 suppressor 4 G3BP2 Ubiquitin protease cofactor, forms
deubiquitination complex with Ubp3p
to regulate ER-Golgi transport
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Yeast Gene Type Strength Human ortholog(s) Proposed function

SEC21 suppressor 4 COPG2 Gamma subunit of coatomer, a
heptameric protein complex that
together with Arf1p forms the COPI
coat

COPG

UBP3 suppressor 3 USP10 Ubiquitin-specific protease that
interacts with Bre5p to co-regulate
anterograde and retrograde transport
between ER and Golgi

ERV29 suppressor 3 SURF4 Protein localized to COPII-coated
vesicles, involved in vesicle formation
and incorporation of specific secretory
cargo.

SEC28 suppressor 3 COPE Epsilon-COP subunit of the coatomer;
regulates retrograde Golgi-to-ER
protein traffic; stabilizes Cop1p

SFT1 suppressor 2 mouse BET1 Intra-Golgi v-SNARE, required for
transport of proteins between an early
and a later Golgi compartment.

GLO3 enhancer −1 ARFGAP3 ADP-ribosylation factor GTPase
activating protein (ARF GAP),
involved in ER-Golgi transportZNF289

TRS120 enhancer −2 NIBP One of 10 subunits of the transport
protein particle (TRAPP) complex of
the cis-Golgi which mediates vesicle
docking and fusion

GYP8 enhancer −2 TBC1D20 GTPase-activating protein for yeast
Rab family members; Ypt1p is the
preferred in vitro substrate

YIP3 enhancer −2 RABAC1 Protein localized to COPII vesicles,
proposed to be involved in ER to Golgi
transport; interacts with Rab GTPases

BET4 enhancer −3 RABGGTA Alpha subunit of Type II
geranylgeranyltransferase; provides a
membrane attachment moiety to Rab-
like proteins Ypt1p and Sec4p

SLY41 enhancer −5 SLC35E1 Protein involved in ER-to-Golgi
transport.

GOS1 enhancer −2 GOSR1 v-SNARE protein involved in Golgi
transport, homolog of the mammalian
protein GOS-28/GS28

SEC31 enhancer −2 SEC31A Essential phosphoprotein component
(p150) of the COPII coat of secretory
pathway vesicles, in complex withSEC31B
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Yeast Gene Type Strength Human ortholog(s) Proposed function

Sec13p; required for ER-derived
transport vesicle formation

Other cellular processes

PFS1 suppressor 4 Sporulation protein required for
prospore membrane formation at
selected spindle poles

PDE2 suppressor 4 PDE10A High-affinity cyclic AMP
phosphodiesterase, component of the
cAMP-dependent protein kinase
signaling system

PDE11A

PDE1A

PDE1B

PDE1C

PDE2A

PDE3A

PDE3B

PDE4A

PDE4B

PDE4C

PDE4D

PDE5A

PDE6A

PDE6B

PDE6C

PDE7A

PDE7B

PDE8A

PDE8B

PDE9A

MUM2 suppressor 4 Interacts with Orc2p, which is a
component of the origin recognition
complex.

OSH3 suppressor 3 OSBPL1A Member of an oxysterol-binding
protein family, functions in sterol
metabolismOSBPL2

OSBPL3

OSBPL6

OSBPL7

PHO80 suppressor 3 Cyclin, negatively regulates phosphate
metabolism

OSH2 suppressor 3 OSBPL3 Member of an oxysterol-binding
protein family, functions in sterol
metabolismOSBP

OSBP2
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Yeast Gene Type Strength Human ortholog(s) Proposed function

ISN1 suppressor 2 Inosine 5′-monophosphate (IMP)-
specific 5′-nucleotidase

EPS1 enhancer −1 Protein disulfide isomerase-related
protein involved in endoplasmic
reticulum retention of resident ER
proteins.

IDS2 enhancer −2 Protein involved in modulation of
Ime2p activity during meiosis

QDR3 suppressor 4 Multidrug transporter of the major
facilitator superfamily, required for
resistance to quinidine, barban,
cisplatin, and bleomycin

TPO4 enhancer −3 Polyamine transport protein,
recognizes spermine, putrescine, and
spermidine; localizes to the plasma
membrane; member of the major
facilitator superfamily

IZH3 enhancer −2 Membrane protein involved in zinc
metabolism, member of the four-
protein IZH family, expression
induced by zinc deficiency; deletion
reduces sensitivity to elevated zinc and
shortens lag phase, overexpression
reduces Zap1p activity

Unknown Function

YKL063C suppressor 4 Uncharacterized, GFP-fusion localizes
to the Golgi

YML081W suppressor 4 EGR3 Uncharacterized, GFP-fusion localizes
to the nucleus

YNR014W suppressor 4 Uncharacterized, expression is cell-
cycle regulated and heat-inducible

YKL088W suppressor 4 PPCDC Protein required for cell viability.
Predicted
phosphopantothenoylcysteine
decarboxylase

YML083C suppressor 3 Uncharacterized, strong increase in
transcript abundance during anaerobic
growth compared to aerobic growth

YDR374C suppressor 3 YTHDF1 Uncharacterized

YTHDF2

YTHDF3
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Yeast Gene Type Strength Human ortholog(s) Proposed function

YOR291W (YPK9) suppressor 3 ATP13A2 Probable cation-transporting ATPase 2

(PARK9)

ATP13A3

ATP13A4

ATP13A5

YDL121C suppressor 2 Uncharacterized, GFP-fusion localizes
to the ER

YBR030W suppressor 2 Uncharacterized, predicted to function
in phospholipid metabolism

YMR111C suppressor 2 Uncharacterized, GFP-fusion localizes
to the nucleus

YOR129C suppressor 2 Putative component of the outer plaque
of the spindle pole body; may be
involved in cation homeostasis or
multidrug resistance.
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