
American Journal of Epidemiology

Published by the Johns Hopkins Bloomberg School of Public Health 2009.

Vol. 170, No. 3

DOI: 10.1093/aje/kwp118

Advance Access publication May 29, 2009

Practice of Epidemiology

Using Cases and Parents to StudyMultiplicative Gene-by-Environment Interaction

Emily O. Kistner, Min Shi, and Clarice R. Weinberg

Initially submitted November 5, 2008; accepted for publication April 14, 2009.

With case-parent triads, one can estimate genotype relative risks by measuring the apparent overtransmission of
susceptibility genotypes from parents to affected offspring. Results obtained using such designs, properly ana-
lyzed, resist both bias due to population structure and bias due to self-selection. Most diseases are not purely
genetic, and environmental cofactors can also be important. In this paper, the authors describe how a polytomous
logistic regression method previously developed for studying genetic effects on a quantitative trait can be used with
case-parent data to study multiplicative gene-by-environment interaction. The idea is that if the joint effect of
exposure and genotype on risk is submultiplicative or supermultiplicative, then, conditional on the parental geno-
types, inheritance of a susceptibility genotype by affected offspring will appear to have been influenced by the
offspring’s exposure level. The authors’ approach tolerates exposure-complicated genetic population structure,
and simulations suggest power and Type I error rates comparable to those of competitors. With this approach, one
can estimate the usual interaction parameters under a much less stringent assumption than gene-environment
independence in the source population. Incompletely genotyped triads can contribute through an expectation-
maximization algorithm. To illustrate, the authors consider polymorphisms in detoxification pathway genes and
maternal smoking in relation to the birth defect oral cleft.

case-control studies; epidemiologic methods; genetic epidemiology; genetic markers; genotype-environment
interaction; logistic models

Abbreviations: CYP2E1, cytochrome P-450 2E1; FBAT-I, family-based association test with interaction; QPL, quantitative poly-
tomous logistic; QTDT, quantitative transmission disequilibrium test.

Family-based designs are of particular interest when
studying diseases with onset early in life, such as asthma
(1), autism, or birth defects. Investigators collect DNA from
cases and their parents (producing a ‘‘triad’’) in order to find
genetic markers related to risk; one can also study mater-
nally mediated genetic effects and parent-of-origin (imprint-
ing) effects. Genotype relative risks can be estimated using
a log-linear approach (2–5).

One can also use case-parent triads to study multiplicative
gene-by-environment interactions for a dichotomous exposure
or a categorical exposure (5, 6). Several other family-based
approaches have been proposed, including the case-sibling
design (7), the pseudosibling analysis (8), the family-based
association test with interaction (FBAT-I) (9), and a method
recently developed by Vansteelandt et al. (10).

While a case-only approach could also be used, its re-
liance on gene/environment independence in the source
population should worry a careful investigator. A triad de-
sign tolerates a much weaker, within-family, independence
assumption and enables assessment of genotype main ef-
fects. Thus, the case-parent design is both more robust
and more informative than the case-only design.

Triad designs also offer advantages over the usual case-
control design, which can be subject to self-selection, differ-
ential recall, and bias due to genetic population stratification,
if subpopulations have a higher prevalence of the allele and
a higher baseline risk of disease. The latter can bias interac-
tion assessments if exposure prevalence also varies across
subpopulations. By conditioning on parental genotypes, triad
designs avoid bias due to these kinds of confounding. Even if
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parents self-select for their genes or for their affected child’s
exposures, self-selection will not produce bias unless the de-
cision to participate is also influenced by which of their alleles
they happened to pass on to their offspring.

Case-control designs applied to diseases with early-life
onset also typically do not enable assessment of important
potential confounders and contributors to risk, such as pre-
natal effects of the maternal genotype and imprinting ef-
fects. In addition, for a study of gene-by-environment
interaction, family-based designs generally offer better
power than would a case-control design for the same num-
ber of cases (6, 11). On the other hand, case-control designs,
unlike family-based designs, enable estimation of the expo-
sure effect in addition to the interaction effect. This impor-
tant advantage can sometimes distort assessment of
interaction, however, because misspecification of the main
effect of a continuous exposure can cause bias.

In this paper, we describe how a method previously de-
veloped for studying genetic effects on a quantitative trait
(12) can be used to assess gene-by-environment interaction
involving continuous or categorical exposures. The method
uses an approach we call quantitative polytomous logistic
(QPL) (12). Suppose an autosomic diallelic marker, such as
a single nucleotide polymorphism, is studied in case-parent
triads and an exposure is measured for the cases. The expo-
sure may be either that experienced via the mother during
the pregnancy or one experienced later by the offspring. We
show that the interaction assessed by QPL corresponds
to the usual multiplicative interaction. To accommodate
families with a missing genotype, we use an expectation-
maximization algorithm (13).

The proposed approach requires conditional indepen-
dence of the exposure and the offspring’s genotype, given
the parental genotypes, meaning that the exposure must not
predict genetic transmissions from parents to offspring in
the population at large, conditional on the parental geno-
types. This assumption is much weaker than assuming in-
dependence of the exposure and genotypes in the population
at large (as required with a case-only study), though it can be
violated for genes that can influence exposure, such as genes
governing alcohol metabolism.

We use simulations to compare the power and robustness
of the proposed method with those of 2 other analytic ap-
proaches based on family data, the FBAT-I (9) and the quan-
titative transmission disequilibrium test (QTDT) (14), and
also with the usual case-control (15) and case-only (16)
approaches. To illustrate our proposed method, we test for
gene-by-environment interaction between maternal smok-
ing and polymorphisms in a gene involved in detoxification
of smoking products, in a study of cleft lip/palate.

Some explanation for our application of the QTDT is
needed. The QTDT uses a linear model in which the de-
pendent variable is a quantitative trait, parental genotypes
are included as covariates, and one tests for a predictive
effect of the offspring genotype on the offspring trait. Here we
simply replace the quantitative trait with an exposure—in
effect testing whether, conditional on the parental geno-
types, the inherited genotype predicts the exposure: Under
a no-interaction null hypothesis, genotype and exposure
should be independent. The method recently proposed by

Vansteelandt et al. (10) uses a similar strategy. We do not
simulate that method, however, because its current imple-
mentation does not permit saturation of the base model in
genotype main effects, and thus the test built on it could
often be invalid.

The case-sibling design will also not be considered fur-
ther here, because for young-onset diseases many families
will not have an unaffected offspring available; in addition,
the exposure (particularly maternal exposures incurred dur-
ing pregnancy) will tend to be overmatched in this context.
The pseudosibling approach is also not considered, because
for complete data it is virtually identical in performance to
the polytomous logistic method we will describe, but unlike
our approach it cannot readily accommodate incompletely
genotyped persons.

METHODS

Proposed approach for complete data

Let C (equal to 0, 1, or 2) be the number of copies of the
variant allele the child carries, with M and F being similarly
defined for the mother and father, respectively. Let E denote
the measured exposure. We assume mating symmetry in the
source population so that for all m and f, Pr[M ¼ m and
F ¼ f] ¼ Pr[F ¼ m and M ¼ f]. The unordered pair of
parental genotypes then defines 6 mating types, denoted as
MF ¼ {00, 01, 02, 11, 12, 22} (17).

Consider a multiplicative model for risk of a disease, D.
Conditioning on the parental mating type, MF, to control
confounding bias due to population stratification, and using
C ¼ 1 as the reference category, we write

ln
�

Pr
�
DjC ¼ c;MF;E ¼ e

��
¼ hMF

�
e
�

þ bMF0ðeÞIðC¼0Þ þ bMF2ðeÞIðC¼2Þ: ð1Þ

In equation 1, I(C¼0) and I(C¼2) are indicator variables for
families in which the affected offspring inherited 0 or 2
copies of the allele, respectively; the functions bMF0ðeÞ
and bMF2ðeÞ allow logged relative risks to be functions of
exposure. These functions are constants if there is no mul-
tiplicative interaction. Note that the main effect of exposure,
hMF(e), can depend on parental mating type. For a rare dis-
ease, the estimates from model 1 (equation 1) correspond to
estimates from a logistic model in a case-control design or
a cohort-based analysis that adjusts for parental genotypes.

We can write the relative probabilities for offspring geno-
types as a function of exposure given disease, making use of
equation 1 and the assumption that Pr[C ¼ cjMF,E ¼ e]
does not depend on E:

ln

�
Pr½C ¼ 0jD;MF;E ¼ e�
Pr½C ¼ 1jD;MF;E ¼ e�

�

¼ ln

�
Pr½DjC ¼ 0;MF;E ¼ e�Pr½C ¼ 0jMF�
Pr½DjC ¼ 1;MF;E ¼ e�Pr½C ¼ 1jMF�

�

¼ k0ðMFÞ þ bMF0ðeÞ ð2Þ

and, similarly,
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The kc(MF) are constants defined by Mendelian inheritance
as ln{Pr[C ¼ cjMF]/Pr[C ¼ 1jMF]} (18). The develop-
ment leading to equations 2 and 3 demonstrates that the
same interaction functions can be captured in a QPL model
based on cases and parents as are in the prospective risk
model (equation 1). There is no multiplicative interaction
if and only if the functions bMF2ðeÞ and bMF0ðeÞ are con-
stants that do not depend on E.

For convenience when testing, the functions bMFcðEÞ can
be entered as linear in exposure, with the null hypothesis
then corresponding to both coefficients being 0. One can use
standard software (such as SAS or R) to fit a polytomous
logistic model, which allows for the exposure effects by
conditioning on family and allows for the genetic effects
by incorporating intercept terms.

Practical details

QPL is implemented in the following way. To access the
interaction, we model Pr(C ¼ cjM ¼ m, F ¼ f, E ¼ e, D),
using logistic regression in SAS with a generalized logit
function; the parental mating type and E are predictors. The
model shown in Table 1 specifies a linear formulation for the
interaction such that bMFCðeÞ ¼ bCeþ aMFC. Note that the 4
intercept parameters, aMFC, absorb both the Mendelian in-
heritance parameters defined above and genotype main ef-
fects. If interaction is detected, nonlinear functions of E can
then be estimated. C ¼ 1 is used as the reference category.
Because we model case genotype conditionally on parental
mating type, the sum of the probabilities Pr½C ¼ cjMF;E;D�
is 1 within each mating type.

A test of gene-by-environment interaction should build
from a model saturated in genetic effects by including all 4
of the genotype main-effect parameters (the 4 intercepts), to

ensure a valid test of whether the environmental factor
modifies those effects. Otherwise, exposure-involved popu-
lation stratification can confound that assessment.

Using the polytomous logistic model, under the null hy-
pothesis where the effects of E and genetic effects simply
multiply, the transmission of the allele to cases will not
appear to have been influenced by the exposure. The test
is valid without assumptions either about the distribution of
the exposure, E, or about the functional form of the depen-
dence of risk on E. One can test the no-interaction null
hypothesis using a likelihood ratio test statistic, which for
adequate sample sizes is distributed under the null as ap-
proximately chi-squared with 2 degrees of freedom (df).
One can also consider an alternative model in which allelic
effects are monotonic in the interaction term (e.g., using R
software) by constraining b2 ¼ �b0, which permits a 1-df
trend test for interaction.

As seen in our previous work (12), the polytomous logistic
model can be extended to include triads with missing parental
genotype data, under the assumption that missingness is at
random in the sense of Little and Rubin (19)—that is, missing
genotypes are missing for reasons unrelated to the true miss-
ing genotype conditional on the observed data. The extended
model makes use of information from all 6 mating types (not
just the 3 with a heterozygous parent), through additional
intercept parameters. Because the likelihood fully stratifies
on parental genotypes, robustness against bias due to popu-
lation stratification is preserved even when many genotypes
are missing. In addition, an extension allowing multiple cases
per family is possible (20).

Simulation methods

We used simulations to compare 5 alternative methods for
assessing gene-by-environment interaction. For case-parent
triad data, we considered 2 analytic approaches in addition
to QPL: FBAT-I (9) is a nonparametric covariance-based
analysis; the quantitative transmission approach was de-
scribed above (14). The QTDT and QPL analyses produce
either a 1-df test, based on constraining the interaction to be
linear in the number of copies of the variant allele, or a 2-df
test. FBAT-I produces a 1-df test only. Unlike QPL, both

Table 1. Probabilities Associated With the Gene-Environment Interaction Model (Polytomous Logistic)

Parents
(MF)

Offspring
(C)

Probability (Pr(CjM,F,E,D))

00 0 1

02 1 1

22 2 1

01 0 expðb0e þ a010Þ=½1þ expðb0e þ a010Þ�
1 1=½1þ expðb0e þ a010Þ�

11 0 expðb0e þ a110Þ=½1þ expðb0e þ a110Þ þ expðb2e þ a112Þ�
1 1=½1þ expðb0e þ a110Þ þ expðb2e þ a112Þ�
2 expðb2e þ a112Þ=½1þ expðb0e þ a110Þ þ expðb2e þ a112Þ�

12 1 1=½1þ expðb2e þ a122Þ�
2 expðb2e þ a122Þ=½1þ expðb2e þ a122Þ�
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QTDT and FBAT-I are testing procedures, not estimation
procedures, and FBAT-I is not readily able to handle incom-
pletely genotyped triads. We also considered 2 less robust
approaches: logistic regression applied to a case-control de-
sign, with as many controls as cases, and logistic regression
applied to a case-only design.

For each scenario we simulated 1,000 data sets, each with
400 case families and 400 unrelated controls. The designs
considered included differing numbers of persons: 400
(case-only), 800 (case-control), or 1,200 (triad methods).
Triads were generated by sampling parental pairs (under
scenarios with genetic population stratification, both parents
came from the same subpopulation), generating a random
child genotype based on Mendelian inheritance, and then
generating exposure and disease status randomly, based on
the presumed rare-disease risk model. Cases were retained
until 400 families were generated. Simulated parents were
ignored for the case-only analyses and the case-control
analyses.

We assessed validity in the presence of population strat-
ification under a no-interaction null hypothesis in the fol-
lowing way. We allowed 2 subpopulations of equal size,
each having the diallelic gene in Hardy-Weinberg equilib-
rium. The allele frequencies differed between the 2 popula-
tions and across scenarios (Table 2). The proportion of
unexposed persons also differed by subpopulation (Table 2),
and we assigned exposures to the exposed persons by ex-
ponentiating a standard normal random variable and trun-
cating the exposure at 6. The 1-copy and 2-copy genetic
relative risks (relative to 0 copies) were unrelated to expo-
sure (R1 ¼ 1.15, R2 ¼ 1.4).

For non-null scenarios, we simulated data from a homoge-
neous population, using a range of susceptibility allele fre-
quencies (from 0.1 to 0.5), to study statistical power. The
exposure was generated as above, but with 30% of the pop-
ulation assigned as unexposed. As with the no-interaction

scenario described above, the non-null scenarios were simu-
lated with no main effect of exposure. The genetic relative
risks for unexposed persons were R1 ¼ 1.15 and R2 ¼ 1.4, and
the multiplicative interaction parameters were 1.2 and 1.5,
per unit of exposure, for 1 and 2 copies of the variant allele,
respectively. Expressed in terms of b0 and b2 (Table 1), these
interaction parameters correspond to expð � b0Þ and
expðb2 � b0Þ, respectively. We also estimated the QPL power
using the expectation-maximization algorithm (12, 13) when
25% of families had a parent missing.

Application to CYP2E1 and maternal smoking and risk
of oral cleft

The cytochrome P-450 2E1 (CYP2E1) gene is involved in
the metabolism of many tobacco-smoke products, including
volatile nitrosamines and small organic chemicals such as
benzene. Thus, variants in this gene plausibly influence fetal
response to maternal smoking during pregnancy. We used
data from 216 triads in which the offspring had an orofacial
cleft to test for an interaction between a known variant in
CYP2E1 (rs2249695) and the number of cigarettes the
mother reported having smoked per day during pregnancy.
The case-parent triads were recruited in Iowa, and details
have been reported elsewhere (21).

RESULTS

For the null scenarios simulated (Table 2), both the 2-df
and the 1-df QPL test demonstrated rejection rates consistent
with a ¼ 0:05 for a sample size of 400 families and a minor
allele frequency greater than 0.1 in each subpopulation. For
lower allele frequencies, the 2-df QPL demonstrated inflated
type I error, reflecting the fact that b2 is not estimable when
very few participants have 2 copies of the allele. For such
scenarios, a 1-df test is advisable, although one should still

Table 2. Type I Error Rates for Tests of Interactiona

% of Families With
a Parent’s

Genotype Missing

Population Allele and Exposure Frequencies

Allele frequency in population 1: 0.1 0.2 0.3 0.4 0.5
Allele frequency in population 2: 0.9 0.8 0.7 0.6 0.5
Frequency with E 5 0 in population 1: 0.9 0.8 0.7 0.6 0.5
Frequency with E 5 0 in population 2: 0.1 0.2 0.3 0.4 0.5

0 QPL with 2 df 0.098 0.054 0.051 0.059 0.061

QTDT with 2 df 0.05 0.04 0.05 0.06 0.05

Case-control with 2 df 1 1 0.93 0.151 0.057

Case-only with 2 df 1 0.999 0.626 0.101 0.061

QPL with 1 df 0.05 0.047 0.054 0.056 0.054

FBAT-I (1 df) 0.045 0.044 0.049 0.054 0.054

QTDT with 1 df 0.04 0.04 0.05 0.06 0.05

Case-control with 1 df 1 1 0.96 0.192 0.053

25 QPL with 2 df 0.108 0.059 0.052 0.061 0.063

QPL with 1 df 0.053 0.041 0.057 0.056 0.063

Abbreviations: FBAT-I, family-based association test with interaction; QPL, quantitative polytomous logistic;

QTDT, quantitative transmission disequilibrium test.
a Results are based on 1,000 simulations for each scenario of studies in a population subject to population

stratification but with no interaction (rightmost column has no population stratification).
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saturate the base model in genotype effects. The 1-df QPL
test performed well even when extreme allele frequencies and
exposure prevalences in both subpopulations resulted in small
numbers of informative families (see Table 2).

The standard case-control or case-only approaches dis-
played nominal type I error rates when there was no
exposure-related population stratification (rightmost col-
umn of Table 2). For other scenarios, the case-control and

case-only approaches had alarmingly elevated type I error
rates (implying 95% confidence interval coverage well
below 95%). By contrast, QPL performed well, with and
without population stratification and regardless of whether
or not genotype data were complete. FBAT-I and the QTDT
also showed type I error rates consistent with the nominal.

Compared with the case-control approach, the methods
based on case-parent triads demonstrated better power when
all were valid (Figure 1); as expected, QPL was much less
powerful than the case-only approach (data not shown)
when marginal gene-by-environment independence held
for the population. Compared with other methods based
on case-parent triads, the 1-df QPL demonstrated similar
power (Figure 1) but the 2-df QPL was able to provide
estimates for both interaction parameters, albeit with small
bias using 400 families (Table 3). In addition, when used to
augment QPL, the expectation-maximization algorithm was
able to recover much of the lost power when 25% of families
had a parent missing (Figure 2).

Application to risk of oral cleft

The 2-df QPL test for interaction between the number of
cigarettes the mother had smoked daily during pregnancy and
a variant in the CYP2E1 gene produced a chi-squared value of
7.44 (P ¼ 0.02), and the estimated interactions using C ¼ 0
and E ¼ 0 as the reference values were 1.05 and 1.2 (relative
risks) for C ¼ 1 and C ¼ 2, respectively. The 1-df QPL test
yielded a chi-squared value of 6.17 (P ¼ 0.013). The esti-
mated relative risks for the interactions were 1.06 and 1.12
(1.062 ¼ 1.12). Thus, the ratio of the relative risks for oral
cleft in a child with a copy of the variant allele compared with
a child with no copies was estimated to increase by approx-
imately 6% for each cigarette smoked per day.

DISCUSSION

The proposed polytomous logistic approach can be used
with standard software to test gene-by-environment interac-
tion based on case-parent triad data using only parents as

Table 3. Estimates of the Interaction Parametersa

% of Families With a
Parent’s Genotype

Missing
Method

Interaction
Being

Estimated

Allele Frequency

0.2 0.3 0.4 0.5

RR 95% CIb RR 95% CI RR 95% CI RR 95% CI

0 QPL I1 1.21 1.20, 1.22 1.21 1.20, 1.22 1.22 1.21, 1.23 1.22 1.21, 1.23

I2 1.53 1.52, 1.55 1.53 1.51, 1.54 1.53 1.51, 1.54 1.53 1.52, 1.55

Case-control I1 1.21 1.20, 1.22 1.21 1.20, 1.22 1.22 1.21, 1.22 1.21 1.20, 1.22

I2 1.65 1.62, 1.70 1.55 1.54, 1.57 1.54 1.52, 1.55 1.52 1.51, 1.54

Case-only I1 1.20 1.19, 1.21 1.20 1.19, 1.21 1.21 1.20, 1.22 1.21 1.20, 1.23

I2 1.51 1.49, 1.52 1.51 1.49, 1.52 1.51 1.49, 1.53 1.52 1.50, 1.54

25 QPL I1 1.21 1.20, 1.22 1.21 1.20, 1.22 1.22 1.21, 1.23 1.22 1.21, 1.23

I2 1.53 1.51, 1.55 1.53 1.52, 1.54 1.53 1.51, 1.54 1.54 1.52, 1.55

Abbreviations: CI, confidence interval; QPL, quantitative polytomous logistic; RR, relative risk.
a The interaction parameter values used for simulation were I1 ¼ 1.2 and I2 ¼ 1.5.
b Confidence intervals were based on the empirical standard errors using 1,000 estimates from 1,000 simulations.

Figure 1. Simulation-based estimated power of tests for interaction
effects (level 0.05) at different allele frequencies. A 2-df test is de-
noted by a solid line and a 1-df test is denoted by a dashed line. The
black squares represent the quantitative polytomous logistic (QPL)
approach, the black triangles represent the quantitative transmission
disequilibrium test (QTDT), and the white squares represent case-
control analysis. Because of the inflated type I error rate at low allele
frequencies for the 2-df QPL test, power for 2-df tests is shown starting
from an allele frequency of 0.15. Power for the 2-df QTDT and the
family-based association test with interaction was very similar to that
for the QPL 1-df test and hence is not shown.
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controls. The QPL method was originally developed to iden-
tify genes related to a quantitative trait in studies of offspring
and their parents (12). We have shown that the same mathe-
matical structure applies to studies of affected persons and
their parents, to allow one to assess the possible role of an
inherited genotype in modifying the relative risk associated
with an exposure. The proposed polytomous logistic model
using case genotype as the outcome, conditional on parental

genotypes and case exposure, was shown to correspond to the
prospective multiplicative formulation for joint effects of ge-
netic and environmental factors on risk of disease. The QPL
method is flexible in that the exposure can be either continuous
or categorical. QPL can also use partial information when 1
parent’s genotype is missing. Moreover, we have illustrated
that for a rare disease, the proposed method can offer both
resistance to bias caused by exposure-related population strat-
ification and improved power for detecting departures from
multiplicative joint effects of genetic factors and exposures, as
compared with a case-control approach. This demonstrated
improved power of QPL did come in part at the cost of in-
creasing the number of genotypes by 1.5-fold. Nonetheless, it
still had a power advantage (Figure 1) when the comparison
was made on a per-genotype basis (data not shown) by using
600 cases and controls.

QPL is also robust against self-selection and against mis-
specification of the dose-response for effects of the expo-
sure. Despite these strengths, there is an important
limitation: Designs that lack population-based controls are
usually unable to estimate main effects of an exposure, and
this limitation can severely constrain the interpretation of
findings related to gene-by-environment interaction. In our
example, smoking was already known to be a risk factor for
clefting, but such prior knowledge will not always be
available.

Based on simulations (also see our previous paper (12)),
the power of the QPL method is comparable to that of 2
hypothesis-testing competitors for case-parent data, the para-
metric QTDT and the nonparametric FBAT-I. However, it
offers important flexibility advantages in being able to ac-
commodate maternal effects, parent-of-origin effects, and
missing genotype data, through use of the expectation-
maximization algorithm—issues not addressed by the other
methods. Results of simulations for detecting interaction be-
tween an exposure and a parent-of-origin effect are detailed
in the Appendix. Another method based on nuclear families is
the pseudosibling method of Self et al. (8), later elaborated on
by Cordell et al. (22) and Chatterjee et al. (23). For assess-
ment of interaction, its likelihood (and inference about in-
teraction) should be equivalent to that for QPL, once one
saturates the models based on pseudosiblings for main effects
of the inherited genotype. These pseudosibling approaches,
however, offer no straightforward way to include incom-
pletely genotyped triads.

The multinomial method proposed by Lim et al. (24) is
similar to QPL but imposes additional constraints on the
parental mating type frequencies and the genotype relative
risks—constraints that can produce invalid tests. If there is
population stratification or the locus under study is in link-
age disequilibrium with a nearby susceptibility gene, the
apparent main effects of genotype could vary across those
parental genotype categories, invalidating a likelihood ratio
test based on a potentially incorrect null model. In practice,
even for a causative single nucleotide polymorphism, such
a scenario is difficult to rule out, so the flexibility implied by
using 4 intercept parameters becomes advantageous in
practice.

SAS macros and R programs for carrying out the case-
parent analyses are available on the Web site of one of the

Figure 2. Power when 25% of families are missing genotype data
on a parent. A) 1-df and B) 2-df tests. The black squares represent the
quantitative polytomous logistic (QPL) approach with complete data,
the open squares represent QPL using the expectation-maximization
algorithm for missing data analysis, and the black triangles represent
QPL using complete triads only when genotypes for 25% of fathers
are missing. Because of the inflated type I error rate at low allele
frequencies for the 2-df QPL gene-environment interaction test, the
power of 2-df tests is shown starting from an allele frequency of 0.15.
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authors (C. R. W.) (http://www.niehs.nih.gov/research/
atniehs/labs/bb/staff/weinberg/index.cfm#downloads). The
macros are the same as those used for testing linkage and
association between a marker and a quantitative trait. To
implement QPL for gene-environment interaction, substi-
tute the exposure for the trait variable.

Because of phenotypes expressed during pregnancy, the
maternal genotype can be etiologically relevant, hence a po-
tential confounder for effects of the offspring genotype. This
issue is particularly a concern for diseases with onset early
in life, such as a birth defect. One can take maternal effects
into account in a straightforward way using a family-based
design, whereas with traditional case-control approaches,
a corresponding analysis would require studying the mother
for each case and each control (25). While space does not
permit consideration of maternal effects here, the QPL
method has been extended to allow for them (26). For com-
plete data, interactions between maternal effects and an ex-
posure can be modeled by considering the mother to be the
case and the father the control in a matched-pair case-
control logistic analysis.

In summary, just as alleles that causally influence a quan-
titative trait will appear to have been transmitted from par-
ents to offspring in a way that was influenced by the trait
value, an exposure that interacts (in the multiplicative sense)
with an allele in causing a disease outcome will appear to
have had its transmission to affected offspring influenced by
the value of that exposure. If we exploit this phenomenon,
cases and their parents can tell us much, not only about
genetic causal factors but also about exposures with relative
risks modified by genetic cofactors.
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APPENDIX

We carried out simulations to detect a pure interaction
between an exposure and an imprinted gene. We assigned
30% of persons as unexposed and assigned exposures to the
exposed persons by exponentiating a standard normal ran-
dom variable and truncating the exposure at 6. For each
scenario, we simulated 400 case-parent triads, with 1,000
simulated data sets per scenario. For analysis we used the
method described previously by Kistner et al. (26), for
which software is available, as described in that paper for

the quantitative polytomous logistic method. The scenario
we consider here is such that there are no genetic effects in
the absence of exposure, whereas each 1-unit increment of
exposure confers a relative risk of either 1.5 or 2.0 associ-
ated with inheritance of a copy from a particular parent, but
there is no other genotype or exposure effect. The results,
for both testing (power for a 0.05-level test) and estimation,
are shown in the Appendix Table. Aside from the usual
slight bias away from the null (as is often seen with logistic
regression), the method performs reasonably well.

Appendix Table. Power and estimation of gene-environment

interaction tests with a gene subject to imprinting

Frequency

Imprinting Interaction

1.5 2

Power
Imprinting

Power
Imprinting

RR 95% CI RR 95% CI

0.1 0.27 1.57 1.55, 1.60 0.64 2.10 2.06, 2.14

0.2 0.42 1.57 1.54, 1.59 0.84 2.08 2.05, 2.11

0.3 0.45 1.55 1.53, 1.57 0.92 2.10 2.07, 2.13

0.4 0.53 1.55 1.53, 1.57 0.97 2.09 2.06, 2.12

0.5 0.54 1.54 1.53, 1.56 0.99 2.12 2.09, 2.14

Abbreviations: CI, confidence interval; RR, relative risk.
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