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Aims Recent large association studies have revealed associations between genetic polymorphisms and myocardial infarction
and coronary heart disease (CHD). We performed a replication study of 10 polymorphisms and CHD in a population
with familial hypercholesterolemia (FH), individuals at extreme risk of CHD.

Methods
and results

We genotyped 10 polymorphisms in 2145 FH patients and studied the association between these polymorphisms and
CHD in Cox proportional hazards models. We confirmed the associations between four polymorphisms and CHD,
the rs1151640 polymorphism in the olfactory receptor family 13 subfamily G member 1 (OR13G1) gene (HR 1.14,
95% CI 1.01–1.28, P ¼ 0.03), the rs11881940 polymorphism in the heterogeneous nuclear ribonucleoprotein U-like
1 (HNRPUL1) gene (HR 1.27, 95% CI 1.07–1.51, P ¼ 0.007), the rs3746731 polymorphism in the complement com-
ponent 1 q subcomponent receptor 1 (CD93) gene (HR 1.26, 95% CI 1.06–1.49, P ¼ 0.01), and the rs10757274
polymorphism near the cyclin-dependent kinase N2A and N2B (CDKN2A and CDKN2B) genes (HR 1.39, 95%
CI 1.15–1.69, P , 0.001).

Conclusion We confirmed previously found associations between four polymorphisms and CHD, but refuted associations for six
other polymorphisms in our large FH population. These findings stress the importance of replication before genetic
information can be implemented in the prediction of CHD.
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Introduction
Coronary heart disease (CHD), and especially myocardial infarc-
tion (MI), is one of the most common causes of morbidity and
mortality and has a strong genetic component.1 The complexity
of CHD and MI is illustrated by the many cell types that

are involved in the atherosclerotic plaque and by the multiple
processes that determine CHD risk, such as inflammation and throm-
bosis. Given this complexity, it is not clear which genes harbour
the variation responsible for the genetic component of CHD.
Recently, we conducted three large association studies to identify
novel genetic variants associated with MI and early-onset MI.2–4
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A total of eight polymorphisms were found to be associated with
MI or early-onset MI in three independent populations. Collabor-
ators in these studies also found another polymorphism, which
showed an association with MI in two independent populations.5

More recently, two genome-wide association (GWA) studies
found an additional association between polymorphisms nearby
the cyclin-dependent kinase N2A and N2B (CDKN2A/B) genes
and CHD. These latter polymorphisms were consistently associ-
ated with MI and CHD in independent populations.6,7

Replication of genetic associations in independent populations is
essential to reduce the number of false-positive results and to
further define the role of these variants in the susceptibility to
complex disease. We therefore performed a replication study in
a specific population of patients with familial hypercholesterolemia
(FH), who have an extremely high risk of CHD and MI, to test
whether these previous findings can be generalized to these high-
risk patients. FH is an autosomal dominant disorder caused by
mutations in the low-density lipoprotein (LDL) receptor gene
and results in severely premature CHD.8– 11 The incidence and
age of onset of CHD varies considerably among individuals with
FH.12– 14 Classical risk factors explain this variability to only a
minor degree.15 Probably, a substantial part of the variation in
the incidence of CHD in this disorder is due to genetic factors
outside the LDL receptor gene.16,17

The aim of this study was to replicate the associations between
CHD and the eight polymorphisms discovered by our association
studies, the polymorphism found by our collaborators, and the
polymorphism near CDKN2A/B genes, which showed the stron-
gest association with CHD in previous GWA studies, in a specific
population with extreme CHD risk.

Methods

Study population
We studied a cohort of heterozygous FH patients, recruited from 27
lipid clinics in the Netherlands between 1989 and 2002. More detailed
information on the study design and the study population was published
previously.15,18 In brief, the DNA of suspected FH individuals from
Dutch lipid clinics is routinely submitted to a central laboratory for
LDL-receptor-mutation analysis. We randomly selected 2400 unrelated
FH individuals who fulfilled the internationally established FH diagnostic
criteria.15 The DNA of 2145 patients was available for the present analy-
sis. The majority of the study population is of Caucasian descent (99%).
All patients gave informed consent, and the ethics Institutional Review
Board of each participating hospital approved the protocol.

During the observation period, with a mean duration of 5.0 (+4.7)
years, phenotypic data (including CHD events) were acquired by
review of medical records by a trained team of 13 data collectors.
For this data collection, we used a pre-defined protocol.18 Medical
records were used to acquire information on age, sex, smoking,
body mass index (BMI), the presence of diabetes mellitus (patients
using anti-diabetic medication or fasting plasma glucose .6.9 mmol/L)
and the presence of hypertension (patients with a documented diag-
nosis using anti-hypertensive medication or a systolic blood pressure
.140 mmHg and/or diastolic blood pressure .90 mmHg at three
consecutive office visits).

Plasma total cholesterol (TC), high-density lipoprotein (HDL)
cholesterol and triglycerides were measured by standard methods in

fasting patients withdrawn from lipid-lowering medication at least 6
weeks prior to blood collection. LDL cholesterol was calculated
with the Friedewald formula.19

Coronary heart disease definition
CHD was defined as the presence of (i) MI, proved by at least two
of the following: (a) classical symptoms (.15 min), (b) specific ECG
abnormalities, or (c) elevated cardiac enzymes (.2� upper limit of
normal); (ii) percutaneous coronary intervention or other invasive
procedures; (iii) coronary artery bypass grafting; (iv) angina pectoris,
diagnosed as classical symptoms in combination with at least one
unequivocal result of (a) exercise test, (b) nuclear scintigram,
(c) dobutamine stress ultrasound, or (d) .70% stenosis on a coronary
angiogram. In case of doubt about the diagnosis CHD, it was pre-
sented to an independent cardiologist, using anonymous copies of
the necessary documents from the medical records.

Genetic analyses
We selected 10 polymorphisms of which we expected to have enough
statistical power (.80%) based on effect sizes and genotype frequen-
cies in literature.2– 7 These a priori power calculations were based on a
person-years approach as applied in the present study. The following
polymorphisms were investigated: rs12510359 in the palladin
(PALLD) gene,3 rs619203 in the v-ros UR2 sarcoma virus oncogene
homologue 1 (ROS1) gene,3 rs1376251 in the taste receptor type 2
member 50 (TAS2R50) gene,3 rs1151640 in the olfactory receptor
family 13 subfamily G member 1 (OR13G1) gene,3 rs4804611 in the
zinc finger protein 627 (ZNF627) gene,3 rs1010 in the vesicle-associ-
ated membrane protein 8 (VAMP8) gene,4 rs11881940 in the hetero-
geneous nuclear ribonucleoprotein U-like 1 (HNRPUL1) gene,4

rs3746731 in the complement component 1 q subcomponent receptor
1 (C1QR1 or CD93) gene,2 rs11666735 in the Fc fragment of IgA
receptor (FCAR) gene,5 and rs10757274 �100 kb upstream of the
CDKN2A and CDKN2B genes.7 All genotypes were determined
using fluorescence-based TaqMan allelic discrimination assays and
analysed on an ABI Prism 7900 Sequence Detection System (Applied
Biosystems). The rs619203 polymorphism in the ROS1 gene was not
in Hardy–Weinberg equilibrium (P ¼ 0.01 in the whole group, and
P ¼ 0.01 in the patients without CHD). To ensure that this was not
due to technical reasons, we genotyped the rs529038 polymorphism
that was in almost complete linkage disequilibrium with the
rs619203 polymorphism in our original study with only four discordant
calls.3 In our population, these polymorphisms were concordant in
.99%. The further analyses were therefore conducted with the
rs619203 polymorphism. Primer and probe sequences are presented
in the Supplementary material online, Table S1. Reaction components
and amplification parameters were based on the manufacturer’s
instructions using an annealing temperature of 608C. Results were
scored blinded to CHD status. The genotyping of all polymorphisms
had success rates between 92 and 94%. A total of 204 random dupli-
cate samples showed highly concordant results (.99%).

Statistical analyses
For differences in cumulative CHD risk between groups, we used
Kaplan–Meier curves and the log-rank test. We tested for normality
by drawing normal Q–Q plots for the untransformed and log-
transformed continuous variables. Plasma triglycerides were tested
after logarithmic transformation. Hardy–Weinberg equilibrium of the
polymorphisms was tested with an exact test.20

Since there is little literature about the studied polymorphisms, we
chose the mode of inheritance on the basis of the genotypic test
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(2-df). This resulted in the use of a dominant genetic model for the
PALLD, TAS2R50, and FCAR polymorphisms, the recessive genetic
model for the ROS1, VAMP8, and CD93 polymorphisms and the poly-
morphism near the CDKN2A/B genes. The additive model was chosen
for the OR13G1, ZNF627, and HNRPUL1 polymorphisms.

To determine the association between the polymorphisms and
CHD, we used Cox proportional hazards models.21 Patients without
CHD were censored at the date of the last lipid clinic visit or at the
date of death attributable to causes other than CHD. The proportional
hazards assumption was tested by drawing log minus log plots of the
survival function and was met for all Cox proportional hazard
models. In the primary model, we adjusted for year of birth, sex,
and smoking. For smoking, we implemented a linearly decreasing risk
effect for the 6 years after cessation.22 A secondary model was con-
structed to investigate whether potential associations could be
explained by possible intermediary variables, such as hypertension, dia-
betes mellitus, BMI, plasma HDL cholesterol, and plasma triglycerides.
Postmenopausal women are at increased risk of developing CHD com-
pared with premenopausal women.23 Unfortunately, we do not have
information about the age of menopause in our cohort. Alternatively,
we studied the presence of an age effect among women by additionally
adjusting the Cox proportional hazards models for age tertiles,24 which
were defined by cut-off values of 42.7 and 56.6 years. This adjustment
did not change the results (data not shown).

The following co-variables had missing values: smoking (9.4%),
hypertension (1.0%), BMI (14.0%), plasma HDL cholesterol (18.6%),
and plasma triglycerides (15.9%). Therefore, we applied the multiple
imputation method of the aregImpute function of the R statistical
package to impute these missing values.25 Imputation methods substi-
tute the missing values with plausible values on the basis of the
relationship between the variable with missing values and the available
information. With multiple imputation, 10 completed data sets were
created, and subsequently 10 analyses were performed by treating
each completed data set as a real complete data set. Finally, the
results from these analyses were combined to obtain the effect
estimates, while properly taking into account the uncertainty in the
imputed values. It has been shown that imputation is beneficial for
handling missing data in epidemiologic methods.26

Since testing multiple polymorphisms could have led to false-
positive associations due to multiple testing, we estimated the
false-discovery rate (FDR) and considered an FDR ,5% acceptable.27

An exact description of the calculation of the FDR has been published
previously.3

We further investigated the associations between the polymorph-
isms and cardiovascular risk factors (age, sex, smoking, hypertension,
diabetes mellitus, BMI, plasma LDL and HDL cholesterol, and plasma
triglycerides), by using the x2-test, t-test, and ANOVA.

All data are provided as mean+ standard deviation, unless stated
otherwise, and all reported P-values are based on two-sided tests
of significance. P , 0.05 was considered statistically significant. All
statistical analyses were performed with the SPSS for Windows
12.0.1 statistics programme and the R statistical package.25

Results

Patient characteristics
Table 1 shows the cumulative lifetime risks of CHD till the age of
40, 50, and 60 years, whereas the clinical characteristics of the
2145 patients are presented in the Supplementary material online,
Table S2. During a total of 106 772 person years, 607 (28%) patients

had at least one CHD event. The mean age of onset of the first
CHD event was 48.8+10.7 years. The following variables were
associated with a higher cumulative CHD risk: sex, smoking,
plasma total, HDL and LDL cholesterol levels below the median,
and plasma triglyceride levels above the median (Table 1).

Polymorphisms and coronary
heart disease
Table 2 shows the genotype frequencies of the 10 polymorphisms.
All polymorphisms were in Hardy–Weinberg equilibrium, except
for the rs619203 polymorphism in the ROS1 gene (P ¼ 0.01).
The associations between the polymorphisms and CHD are pre-
sented in Table 3. Carriers of one G-allele of the OR13G1 poly-
morphism had a 14% higher risk of CHD, whereas carriers of
two G-alleles had a 30% higher risk of CHD, compared with car-
riers of two A-alleles of this polymorphism (P ¼ 0.03, primary
model, Table 3). Carriers of one A-allele of the HNRPUL1 poly-
morphism had a 27% higher risk of CHD, whereas carriers of
two A-alleles had a 61% higher risk of CHD, compared with car-
riers of two T-alleles of that polymorphism (P ¼ 0.007, primary
model, Table 3). Patients homozygous for the T-allele of the
CD93 polymorphism had a 26% increased risk of CHD compared
with patients with at least one C-allele of that polymorphism
(P ¼ 0.01, primary model, Table 3). Patients homozygous for the
G-allele of the polymorphism near the CDKN2A/B genes had a
39% higher risk of CHD than patients with at least one A-allele
of that polymorphism (P , 0.001, primary model, Table 3). The
other polymorphisms were not significantly associated with
CHD (Table 3). Additional adjustment for hypertension, diabetes
mellitus, BMI, plasma HDL cholesterol, and plasma triglycerides
yielded similar results (Table 3).

Polymorphisms and cardiovascular
risk factors
The TAS2R50 polymorphism was associated with a slightly
increased BMI (25.2+3.6 kg/m2 for the TCþCC genotypes vs.
24.6+ 3.2 kg/m2 for the TT genotype, P ¼ 0.04). The ZNF627
polymorphism showed an association with increased TC levels
(9.0+1.7/9.5+1.9/9.6+2.0 mmol/L for the GG/GA/AA geno-
types, respectively, P ¼ 0.01). The VAMP8 was associated with
an increased BMI (25.6+ 3.8 kg/m2 for the GG genotype vs.
25.0+ 3.5 kg/m2 for the AAþAG genotypes, P ¼ 0.01). The
CD93 polymorphism was associated with the presence of hyper-
tension (11.0% for the TT genotype vs. 7.8% for the CCþCT
genotypes, P ¼ 0.02). Finally, the polymorphism near CDKN2A/B
was associated with the presence of diabetes mellitus (6.6% for
the GG genotype vs. 4.1% for the AAþAG genotypes, P ¼ 0.02).

Discussion
We confirmed associations between four polymorphisms and
CHD in this study of FH patients. These four polymorphisms
were among a set of 10 that were recently found associated
with MI or CHD in genome-wide or gene-centric association
studies. The replicated polymorphisms are in the OR13G1 gene,3
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the HNRPUL1 gene,4 the CD93 gene,2 and near the CDKN2A/B
genes.7

The rs10757274 polymorphism that is located �100 kb upstream
of the CDKN2A/B genes was discovered by a large GWA study,
and the association with CHD was confirmed in four Caucasian
populations.7 The locus on chromosome 9p21 in which this
polymorphism is located was also associated with MI and CHD in
two other independent GWA studies,6,28 and a recent prospective
meta-analysis gave further evidence of the involvement of this
locus in CHD.29 The CDKN2A/B genes are tumour-suppressor
genes involved in the regulation of cell proliferation, cell aging, and
apoptosis,30 which are all important in atherogenesis.31 This locus
might therefore play a role in cell cycle checkpoints which are
important in repair of DNA that has been damaged by for

example oxidative stress in atherosclerotic plaques. Future studies
are required to elucidate the exact underlying mechanism by
which this polymorphism or locus affects CHD risk.

The three other polymorphisms are located in genes that
are relatively unknown in the field of cardiovascular disease and
atherosclerosis. HNRPUL1 encodes a heterogeneous nuclear
ribonucleoprotein and plays a role in RNA transport, processing,
and transcriptional regulation. Furthermore, it has been speculated
that this gene is involved in cell cycle regulation,32,33 which might
constitute a link with the proposed functionality of the poly-
morphism near the CDKN2A/B genes. In our original study, the
HNRPUL1 polymorphism was associated with early-onset MI,4

which might be the reason why we were able to replicate this poly-
morphism, as FH is an important cause of severely premature
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Table 1 Clinical characteristics and outcome of 2145 patients with FH

Clinical characteristic N Total events Cumulative CHD risk (%)

40 years 50 years 60 years P-value*

Sex

Female 1105 220 2.6 10.3 26.0 ,0.001

Male 1040 387 11.8 35.1 62.7

Smoking

Never 522 101 4.2 11.2 26.6 ,0.001

Ever 1422 456 8.2 27.1 50.1

Hypertension

No 1933 505 7.2 22.9 42.1 0.3

Yes 190 96 7.4 20.0 44.9

Diabetes mellitus

No 2021 539 7.3 22.4 42.1 0.1

Yes 124 68 6.6 21.3 46.0

BMI

�25 981 217 7.0 21.4 38.5 0.1

25,BMI�30 701 212 8.2 21.8 39.8

.30 163 57 9.3 27.3 56.0

Total cholesterol

�9.20 mmol/L 988 266 6.9 25.3 45.5 0.01

.9.20 mmol/L 934 254 6.0 18.6 38.5

LDL cholesterol

�6.99 mmol/L 861 230 6.7 23.7 43.9 0.01

.6.99 mmol/L 856 194 5.6 17.0 35.4

HDL cholesterol

.1.16 mmol/L 867 180 3.7 13.9 31.2 ,0.001

�1.16 mmol/L 879 257 8.8 27.1 50.2

Triglycerides

�1.57 mmol/L 907 176 4.7 18.4 35.6 0.01

.1.57 mmol/L 898 292 7.6 23.4 44.6

Total 2145 607 7.2 22.3 42.4

For triglycerides, total, LDL, and HDL cholesterol, we used the median to split the total population in two subpopulations. CHD, coronary heart disease; BMI, body mass index;
LDL, low-density lipoprotein; HDL, high-density lipoprotein. *Log-rank test.
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CHD. It has been suggested that the CD93 gene is involved in
intercellular adhesion, and leukocyte extravasation.34 These are
two important processes in the development of atherosclerosis31

and could be the pathophysiological mechanisms underlying the
association between variation within the CD93 gene and CHD.
The mechanism through which the OR13G1 polymorphism influ-
ences CHD is unknown but might be related to dietary choices.

We did not find associations for the polymorphisms in the
PALLD, ROS1, TAS2R50, ZNF627, VAMP8, and FCAR genes in
our FH population. We could not find support for the hypothesis
that hypercholesterolemia explains why these polymorphisms
were not significant, whereas the four other polymorphisms
were. The simplest explanation is that these associations were
false-positive findings in the earlier studies, or false-negative find-
ings in the present study. Lack of power is a well-known
problem for small effects. Our a priori power calculations based
on the effect sizes and genotype frequencies of the original
studies showed sufficient statistical power for all polymorphisms
(.80%). However, mostly we found smaller effect sizes for the
polymorphisms than that in the original studies, which is in line

with a study by Ioannidis et al.35 If these lower effect sizes are
true for FH populations, we might have had insufficient statistical
power for the detection of these associations.

In contrast to the present study, one population-based replica-
tion study showed a significant association between the ROS1
polymorphism and MI, whereas the PALLD, TAS2R50, OR13G1,
and ZNF627 polymorphisms were not associated with MI.36 Yet
another study found that none of these polymorphisms was signifi-
cantly associated with MI in a case–control design.37 The reason
for these discrepancies could be found in the genetic heterogeneity
or differences in functionality of this polymorphism across different
populations. This could also be the reason for the fact that we did
not find an association between CHD and the other non-
significant polymorphisms in this study.

Two topics regarding the statistical analysis merit discussion.
First, association studies of multiple polymorphisms could lead to
false-positive findings due to multiple testing. We addressed this
multiple-testing issue by calculating the FDR for all polymorph-
isms.3,27 All four significant variants met the FDR criterion of 5%,
indicating that the expected proportion of false-positives among
all significant tests is below 5%. A Bonferroni correction would
have been strongly over-punitive in case of low false-positive pro-
portions.38 Second, women who are menopausal are at increased
risk of developing CHD.23 Information on age of menopause was
not available in our study, but we estimated that approximately
half of the women had passed menopause at the end of follow-up.
Among women, we adjusted for age tertiles in order to take this
possible confounder into account, but this did not change our
results (data not shown). Age did not confound our findings, but
we are aware that our findings in women may only apply to popu-
lations with a similar distribution of age and menopause.

In the present population, higher levels of total and LDL choles-
terol were associated with a lower cumulative CHD risk (P ¼ 0.01,
Table 1). An explanation for this paradoxical effect could be that
FH patients with total and/or LDL cholesterol levels above the
median received cholesterol-lowering therapy at a younger age
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Table 2 Frequency distributions of polymorphisms

Gene Polymorphism Genotype Frequency

PALLD rs12510359 AA/AG/GG 12.0/44.5/43.5

ROS1 rs619203 GG/GC/CC 57.3/35.4/7.3

TAS2R50 rs1376251 TT/TC/CC 10.1/43.9/45.9

OR13G1 rs1151640 AA/AG/GG 19.8/48.7/31.4

ZNF627 rs4804611 GG/GA/AA 6.7/40.0/53.3

VAMP8 rs1010 AA/AG/GG 32.0/48.3/19.7

HNRPUL1 rs11881940 TT/TA/AA 2.3/26.0/71.7

CD93 rs3746731 CC/CT/TT 19.5/49.5/31.1

FCAR rs11666735 GG/GA/AA 86.5/12.8/0.8

Near CDKN2A/B rs10757274 AA/AG/GG 28.1/49.8/22.0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Table 3 Association between polymorphisms and CHD

Gene Polymorphism Genetic mode Primary model Secondary model

HR (95% CI) P-value HR (95% CI) P-value FDRb

PALLD rs12510359 Dominant 1.09 (0.85–1.41) 0.5 1.03 (0.80–1.34) 0.8 0.80

ROS1 rs619203 Recessive 0.88 (0.63–1.23) 0.5 0.84 (0.60–1.18) 0.3 0.38

TAS2R50 rs1376251 Dominant 1.31 (0.97–1.78) 0.08 1.25 (0.93–1.70) 0.1 0.20

OR13G1 rs1151640 Additive 1.14a (1.01–1.28) 0.03 1.15a (1.02–1.30) 0.02 0.04

ZNF627 rs4804611 Additive 0.98a (0.87–1.12) 0.8 0.97a (0.85–1.11) 0.7 0.78

VAMP8 rs1010 Recessive 0.87 (0.70–1.08) 0.2 0.87 (0.70–1.08) 0.2 0.29

HNRPUL1 rs11881940 Additive 1.27a (1.07–1.51) 0.007 1.28a (1.15–2.32) 0.006 0.03

CD93 rs3746731 Recessive 1.26 (1.06–1.49) 0.01 1.24 (1.05–1.48) 0.01 0.03

FCAR rs11666735 Dominant 1.16 (0.91–1.46) 0.2 1.16 (0.92–1.47) 0.2 0.29

Near CDKN2A/B rs10757274 Recessive 1.39 (1.15–1.69) ,0.001 1.39 (1.15–1.69) ,0.001 0.01

95% CI, 95% confidence interval; CHD, coronary heart disease; HR, hazard ratio. Primary model adjusted for sex, year of birth and smoking. Secondary model additionally adjusted
for hypertension, diabetes mellitus, BMI, plasma HDL cholesterol, and plasma triglycerides. aHazard ratio per risk allele. bFDR, false-discovery rate.
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than patients with levels below the median (42.2 vs. 45.0 years,
respectively, P , 0.001, data not shown).

In conclusion, we have confirmed the previously found associ-
ations between four polymorphisms and CHD in a large popu-
lation of patients with FH. Further studies should elucidate the
pathophysiological mechanisms underlying these associations.
Genetic association studies will lead to further identification of
potential modifier genes for CHD in FH patients or other high-risk
populations. If replicated, these genetic risk factors can be incor-
porated into better tools for CHD risk prediction.

Supplementary material
Supplementary Material is available at European Heart Journal
online.
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In vivo molecular imaging of angiogenesis, targeting avb3 integrin
expression, in a patient after acute myocardial infarction
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A 35-year-old Caucasian male presented with chest pain and nausea in the
emergency room. The initial ECG displayed sinus-rhythm with ST elevation
in I, aVL, V1 –5, ST-depression in III, and aVR and pathological Q waves in
V1 –5. The laboratory results showed severely elevated cardiac enzymes.

Percutaneous coronary intervention (PCI) with stenting of the
completely occluded proximal left anterior descending (LAD) was
performed without complications.

Two weeks after the myocardial infarction and PCI, the patient
underwent MRI and PET/CT evaluation based on a clinical research
protocol (study approved by the ethics committee). Cine-MRI (steady-
state-free-precession) displayed an impaired systolic function (left ventricu-
lar ejection fraction, 33%). Fifteen minutes after contrast injection (0.2 mmol
gadolinium-diethlenetriamine pentaacetic acid), a nearly complete trans-
mural delayed enhancement (.75%) was observed in the anterior-,
anteriorseptal-, anteriorlateral-, and apical-wall (Panels A, D).

The positron emission tomography (PET) examination (Biograph 16 PET/
CT, Siemens, Germany) with 13N-ammonia revealed a severely reduced
myocardial blood flow in the distal anterolateral, apical and inferoseptal
region. (Panels B, E).

A novel avb3-targeting PET agent (18F-Galakto-RGD) was used to assess
integrin expression, which potentially represents angiogenesis involved in
the regeneration process after myocardial infarction. The avb3 integrin is
a key mediator of angiogenesis and thus may be an important diagnostic
and therapeutic target associated with myocardial repair processes after
ischaemic injury. Focal tracer retention was localized in the infarcted area
defined by the extent of delayed enhancement MRI and severely reduced
myocardial blood flow (MBF) (Panels C, F). This signal may indicate the myocardial healing taking place within the infarcted area as
demonstrated in animal models.

Panel A and D. CMR with delayed enhancement (arrows) extending from the anterior wall to the apical region in the four- (A) and
two-chamber (D) view. Panel B and E. Identically reproduced location and geometry with severely reduced myocardial blood flow
using 13N-ammonia, corresponding to the regions of delayed enhancement by CMR (arrows). Panel C and F. Focal 18F-RGD signal
co-localized to the infarcted area. This signal may reflect angiogenesis within the healing area (arrows). Panel G and I. Polar map
(I: 3D) of myocardial blood flow assessed by 13N-ammonia indicating severely reduced flow in the distal LAD-perfused region.
Panel H and J. Co-localized 18F-RGD signal corresponding to the regions of severely reduced 13N-ammonia flow signal, reflecting
the extent the of avb3 expression within the infarcted area.
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