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Abstract

Mice homozygous for mutations in Dact1 (Dpr/Frodo) phenocopy human malformations 

involving the spine, genitourinary system, and distal digestive tract. We trace this phenotype to 

disrupted germ layer morphogenesis at the primitive streak (PS). Remarkably, heterozygous 

mutation of Vangl2, a transmembrane component of the Planar Cell Polarity (PCP) pathway, 

rescues recessive Dact1 phenotypes, whereas loss of Dact1 reciprocally rescues semidominant 

Vangl2 phenotypes. We show that Dact1, an intracellular protein, forms a complex with Vangl2. 

In Dact1 mutants, Vangl2 is increased at the PS where cells ordinarily undergo an epithelial-

mesenchymal transition. This is associated with abnormal E-cadherin distribution and changes in 

biochemical measures of the PCP pathway. We conclude that Dact1 contributes to morphogenesis 

at the PS by regulating Vangl2 upstream of cell adhesion and the PCP pathway.
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Multiple developmental events occur at or within close proximity to the primitive streak 

(PS) in the posterior embryo. These include epithelial-mesenchymal transition (EMT) 

associated with specification of primary germ layers, ventral closure of endoderm to form 

hindgut, medial-lateral division of mesoderm, posterior elongation of the notochord, 

segment formation, and dorsal closure of neuroectoderm to form the neural tube. Planar Cell 

Polarity (PCP) and Wnt/β-catenin signaling are both involved in these processes1-4.

Vangl2 (Van Gogh-like/Strabismus) is a four-pass-transmembrane protein that plays a major 

role in the PCP pathway. By establishing asymmetric localization of both membrane and 

cytoplasmic components, this pathway regulates cell polarity and movements, particularly 

convergent-extension (CE) movements that shape germ layer derivatives shortly after 

gastrulation at the PS5. Vangl proteins directly interact with the intracellular protein 

Dishevelled (Dvl), a central component of both the PCP and Wnt/ß-catenin signaling 

pathways6. The Wnt/β-catenin pathway is mechanistically distinct from PCP; it determines 

cell decisions by regulating transcriptional activity of target genes downstream of post-

translational stabilization of the β-catenin protein7.

Mice with mutations affecting each of these pathways have phenotypes linked to events in 

the PS region. For example, mutations in Wnt3a, a posterior patterning ligand that activates 

the Wnt/β-catenin pathway, cause posterior truncation stemming from defective mesoderm 

specification1. Mutations in Vangl family members that diminish PCP activity cause neural 

tube defects traced to defective cell movements in the neuroectoderm2. Despite established 

roles in both these pathways in other systems, Dvl mutations have so far been linked only to 

PCP phenotypes in mice8.

Dact (Dapper/Frodo) proteins bind Dvl and have been shown to modulate several signaling 

pathways, including Wnt/β-catenin signaling9-13. By studying an engineered mutation in 

mouse Dact1, we have discovered strong and reciprocal genetic interactions with Vangl2. 

Biochemical and embryonic analyses reveal that this unusual genetic relationship reflects a 

role for Dact1 in post-translational regulation of Vangl2 at the PS, upstream of cell adhesion 

and PCP signaling.

RESULTS

A spectrum of posterior birth defects in Dact1 mutant mice

We genetically engineered an allelic series at the mouse Dact1 locus including two equally 

severe alleles deduced to be nulls on molecular and biochemical grounds (Supplementary 

Fig 1). One allele (Dact1neoΔ) was backcrossed for more than ten generations to the 

C57BL/6 isogenic mouse strain for use in this study; these homozygotes are hereafter 

referred to as Dact1 mutants.

Dact1 mutants are born at near Mendelian ratios (Supplementary Table 1a), but with rare 

exceptions die within a day of birth. These neonates have a short tail, no anus, no urinary 

outlet, nor external genitalia (Fig 1a-d). Internally, the vast majority have blind-ended colons 

(Fig 1e-f) and no bladder (Fig 1g-h, Supplementary Table 1b). Ureters are present but 

connect at the midline or fuse with the reproductive ducts, while the kidneys are invariably 
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hydronephrotic (Fig 1h). The kidneys also display variable developmental malformations 

ranging from fusion at the midline to complete agenesis (Fig 1h, Supplementary Table 1c). 

Rare mutants (<1%) that survive postnatally nonetheless have non-lethal genitourinary and 

digestive tract abnormalities evident upon laparotomy (Fig 1i-k). Gonads of mutants of both 

sexes are typically present and grossly normal (Fig 1h).

In addition to genitourinary and gastrointestinal phenotypes, most (~90%) Dact1 mutants 

are immediately distinguishable from littermates by virtue of segmental truncation (Fig 1a-b; 

Supplementary Table 1d). Skeletal analysis reveals segmental loss that is most commonly 

(73%) restricted to the tail (Fig 1l-m; o-p). A smaller percentage (17%) has truncations 

extending into sacral and lumbar regions (Fig 1n, q); these are rarely accompanied by 

malformations of the pelvis and hindlimbs, including sirenomelia (Fig 1r). Most severely 

truncated mutants have spina bifida (13% of total; Fig 1s). Although there are usually a few 

smaller malformed vertebrae immediately anterior to the segmental truncation, all other 

vertebrae and ribs are of normal size, morphology, and identity (Fig 1p-q). Since 

segmentation in vertebrates proceeds from anterior to posterior15, the striking lack of 

anterior segment abnormalities in Dact1 mutants suggests segmentation failure restricted to 

late developmental stages, as opposed to a more general disruption of this process16,17.

Embryonic defects in Dact1 mutants

The earliest developmental differences we detect in Dact1 mutants occur at embryonic day 

(E) 8.25, shortly after segmentation begins when the embryo has 4-7 newly formed 

somites15. Unstained wild type and mutant embryos are indistinguishable anteriorly (Fig 2a-

b), and whole mount mRNA in situ hybridization (WISH) using an Uncx4.1 probe that 

marks the posterior compartment of each segment16, demonstrates that somites are normal 

(Fig 2a-b insets) at this stage. Nonetheless, Dact1 mutants are misshapen posteriorly in the 

region of the PS. Viewed dorsally, the wild type embryo has a rounded posterior contour 

(Fig 2a) whereas Dact1 mutants are slightly spade shaped: widening abnormally before 

tapering to a more pointed tip (Fig 2b asterisk). As morphological differences in Dact1 

mutants are confined to the posterior, we quantified them by measuring Length-Width Ratio 

(LWR) specifically in this region (“Posterior LWR”; Methods). Posterior LWR at the 6-7 

somite stage is significantly reduced in Dact1 mutant embryos compared to wild type (1.57 

± 0.05 vs. 1.85 ± 0.04, p = 0.0008) (Fig 2c). We also detected a significant reduction 

compared to wild type in the Posterior LWR of Vangl2Lp/+ embryos (1.67 ± 0.04 vs. 1.85 ± 

0.04, p = 0.0096) (Fig 2c), which are heterozygous for a semidominant allele in Vangl218. 

Consistent with a prior report3, using LWR based on the whole embryo (“whole embryo 

LWR”; Methods), we detected no significant differences between wild type (9.42 ± 0.23) 

and Vangl2Lp/+ (9.05 ± 0.36; p = 0.4) at the 6-7 somite stage, nor between wild type and 

Dact1 mutants (9.48 ± 0.43; p = 0.9) (Fig 2d). Since CE movements in the posterior embryo 

have been shown to be affected in Vangl2Lp/+ embryos at this stage4, our findings suggest 

that Posterior LWR reflects cell movements within this embryonic region, and that these are 

disrupted in Dact1 mutants.

We next used a panel of WISH markers to assess morphology of individual tissues in this 

region. Viewed from either the ventral or lateral aspect, WISH for Shh shows that the 
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presumptive notochord domain19 is broader in Dact1 mutants and does not extend as far 

posteriorly beyond the last-formed somite (labeled by Uncx4.1 WISH) (Fig 2e-h). There are 

also differences in morphology of the posterior endoderm, which like the presumptive 

notochord domain does not extend as far posteriorly and is delayed in folding ventrally to 

form the hindgut diverticulum (Fig 2g-h). Presomitic mesoderm labeled with Dll1 is normal 

in volume but is redistributed around the shortened axial and ventral structures (Fig 2i-j). 

Unlike the shortened axial mesoderm and endoderm, the ectoderm in Dact1 mutants extends 

to the posterior tip of the embryo, even in mutants where ventral defects are severe (Fig 2i-j 

arrows).

Consistent with these WISH data, cross section at the PS reveals that all three germ layers 

are present in the posterior Dact1 mutant embryo at the 6 somite stage, but there is a notable 

divergence from wild type morphology. The endoderm is open ventrally and fails to form a 

tubular hindgut with columnar epithelium (Fig 2k-l). Ectoderm morphology is variable but is 

often 1 to 2 cells thicker apical-basally, and is more acutely folded (Fig 2k-l insets & 

asterisk). Rates of proliferation and cell death are not significantly different in this region 

even in mutants with severely affected morphology (Supplementary Fig 2).

To investigate how these early morphological defects progress, we examined the 

development of germ layer derivatives at later stages. At E9.5, presomitic mesoderm 

expressing Dll1 continues to extend fully posteriorly in mutants, as does the overlying 

ectoderm (Fig 2m-n). However, axial structures that normally separate left from right 

presomitic (paraxial) mesoderm terminate more anteriorly, such that this tissue assumes an 

abnormal Y-instead of a U-shape when viewed dorsally (Fig 2o-p).

The posterior segments that are frequently missing in Dact1 mutants are generated only after 

E9.5 from the presomitic mesoderm (PSM) located in the tail bud15. Concordantly, Uncx4.1 

WISH reveals segmental defects only after E9.5 and only in the most recently formed 

somites (Fig 2q-r). Segmentation is governed in part by the somitogenesis cycle, a regular 

oscillation of gene expression in the PSM, and some mutations that cause segmental loss 

disrupt this cycle throughout development20. We tested whether Dact1 mutants have 

disruptions in the somitogenesis cycle at late stages by examining expression of well-

established somitogenesis genes such as Lfng16,20. Expression of Lfng and other 

somitogenesis cycle markers was disrupted in Dact1 mutants by E10.5 (Fig 2s-t; 

Supplementary Table 2). However, these somitogenesis cycle defects never occurred before 

E10 and never in isolation: mutant tail buds by this stage invariably displayed extensive 

anatomical disorganization and evidence of histolysis including absence of the tail gut 

(posterior endoderm), severe shortening of the notochord, and pockets of pooled blood and 

serous fluid (Fig 2u-x; Supplementary Table 2).

Taken together, these embryological data suggest that the Dact1 mutant phenotype arises 

from a primary defect in germ layer morphogenesis at the PS; segmental truncations in these 

mutants are associated with failed somitogenesis occurring in the context of tail bud 

disorganization and deterioration at later stages.
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PCP but not Wnt/β-catenin signaling is affected in Dact1 mutant embryos

Work in other systems has suggested that Dact1 primarily modulates Wnt/β-catenin 

signaling9,10,12,13. We accordingly asked whether Wnt/β-catenin pathway defects underlie 

the earliest observable Dact1 mutant phenotypes in the posterior embryo. We measured 

Wnt/β-catenin target mRNA levels by Quantitative Reverse Transcriptase PCR (QPCR) at 

the stage when morphological differences are first detected in Dact1 mutants (5-7 somites). 

We validated this assay using previously studied signaling mutants4,17 and the established 

Wnt/β-catenin targets, Dll1 and Axin221. Levels of both these targets were significantly 

reduced in posterior tissues from Wnt3a null embryos compared to control littermates (% of 

average wild type for Dll1: 16 ± 2 vs. 100 ± 10; p<0.0001, for Axin2: 42 ± 7 vs. 100 ± 14; 

p=0.004) (Fig 3a-b). Moreover, levels of these targets were not significantly different in 

posterior tissues from heterozygotes for the semidominant PCP signaling mutant Vangl2Lp 

(% of average wild type for Dll1: 121 ± 11 vs. 100 ± 9; p=0.2, for Axin2: 77 ± 11 vs. 100 ± 

20; p = 0.3) (Fig 3c-d). Dact1 mutant posterior tissues showed no significant differences in 

these Wnt/β-catenin target gene levels compared to controls (% of average wild type for 

Dll1: 95 ± 8 vs. 100 ± 7; p = 0.6, for Axin2: 85 ± 17 vs. 100 ± 15; p = 0.5) (Fig 3e-f). 

Similarly, we measured levels of activated β-catenin protein at E9 by immunoblot with 

dephospho-specific β-catenin antibody (mAb 8E7)22; there were no significant differences 

compared to controls (% of average wild type = 81 ± 8 vs. 100 ± 10; p = 0.2) (Fig 3g-h). 

Finally, when assessed by WISH, expression of the posterior Wnt/β-catenin signaling targets 

Dll1 and Brachyury (T) were not significantly reduced in Dact1 mutant embryos (Fig 2i-j, 

m-p; Supplementary Fig 3a-b). We also detected no differences in levels of the p120-catenin 

(Ctnnd1) or Dvl proteins (Supplementary Fig 3c-d), previously shown to be regulated by 

Dact family members in other contexts9,13,23.

Some of the phenotypes observed in Dact1 mutants, such as neural tube defects, broadening 

of the presumptive notochord domain, and differences in posterior LWR, resemble those 

known to result from PCP pathway disruptions4,24. Among several putative intracellular 

effectors, PCP signaling is linked to regulation of two kinases: Rho associated kinase4 and 

c-Jun N-terminal Kinase (JNK)5. We tested whether activities of these kinases are altered in 

the Dact1 mutant posterior embryo. To assess Rho kinase activity we used immunoblotting 

with a phospho-specific antibody to measure amounts of its phosphorylated substrate, 

Mypt125. In E8 posterior embryo lysates from Dact1 mutants, levels of phosphorylated 

Mypt1 were significantly reduced compared to controls (% of average wild type = 69 ± 9 vs. 

100 ± 8; p = 0.03) (Fig 3i-j). We measured activated JNK in posterior embryo lysates at E9 

through direct phosphorylation of a GST-Jun fusion protein normalized against total JNK 

recovered in a pull-down assay26. Endogenous JNK activity was unambiguously increased 

in Dact1 mutant posterior embryos at this stage (% of average wild type = 258 ± 19 vs. 99 ± 

13; p = 0.0005) (Fig 3k-l).

In summary, molecular, biochemical, and embryonic assays at early phenotypic stages do 

not support changes in Wnt/β-catenin signaling in Dact1 mutants; they instead indicate 

defects in the PCP pathway.
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Mutations in Dact1 and Vangl2 exhibit reciprocal genetic rescue

In mice, synergy with one copy of Vangl2Lp to cause neural tube defects is generally 

accepted as evidence that a genetic locus participates in the PCP pathway3. Because Dact1 

mutants display a partially penetrant neural tube defect (spina bifida) and also have 

abnormalities in embryological and biochemical measures associated with PCP signaling, 

we predicted that mice homozygous for the Dact1 mutation and heterozygous for Vangl2Lp 

would display severe defects in neural tube closure.

Unexpectedly, mutations in Dact1 and Vangl2 mutually rescue each other, such that nearly 

all Dact1 mutant mice heterozygous for Vangl2Lp appear grossly normal and display neither 

Vangl2Lp semidominant nor Dact1 recessive phenotypes (Fig 4a-d). From a cross conducted 

in a 97% isogenic C57Bl/6 genetic background, approximately 80% (9/11) of 

Dact1-/-;Vangl2Lp/+ mice had normal genitourinary (GU) systems, normal gastrointestinal 

(GI) systems, no segmental truncation, and no neural tube defects, compared to 

Dact1-/-;Vangl2+/+ littermates of which 100% (11/11) had GU phenotypes, 90% (10/11) had 

GI phenotypes, >50% (6/11) had segmental truncation, and ~20% (2/11) had spina bifida 

(Fig 4e red vs. blue; Supplementary Table 3a). Vangl2 mutant-mediated rescue of the Dact1 

mutant phenotype is not due to a molecular peculiarity of the Vangl2Lp allele because a very 

similar pattern of rescue is observed with an independently derived allele27, Vangl2Lp-m1Jus 

(Fig 4e green vs. yellow; Supplementary Table 3a). Conversely, whereas more than 80% of 

animals heterozygous for either Vangl2Lp or Vangl2Lp-m1Jus (5/6 & 8/10 respectively) 

display the characteristic semidominant curly tail (Looptail) phenotype, penetrance of this 

phenotype drops to <65% (11/17 & 9/22 respectively) when animals are heterozygous, and 

to ≤20% (1/10 & 3/15 respectively) when homozygous, for the Dact1 mutant allele (Fig 4f; 

Supplementary Table 3b). Nevertheless, although Dact1 loss rescues the semidominant 

Loop-tail phenotype, it does not rescue the recessive craniorachischesis phenotype of 

homozygous Vangl2 mutant embryos (Supplementary Fig 4).

To summarize, genetic experiments demonstrate that recessive Dact1 mutant phenotypes are 

abrogated by mutation of one Vangl2 allele, and conversely that semidominant Vangl2 

mutant phenotypes are ameliorated by loss of Dact1. Failure to rescue the homozygous 

Vangl2 mutant phenotype demonstrates that a functional allele of Vangl2 is required for this 

reciprocal genetic interaction.

Dact1 and Vangl2 are binding partners

One mechanism whereby Dact1 could regulate Vangl2 is through physical interaction. We 

tested this hypothesis through a series of co-immunoprecipitation (coIP) and pull-down 

assays, results of which are schematically summarized in Figure 5a-c.

When co-expressed in human embryonic kidney (HEK 293) cells, the Vangl2 protein coIPs 

with Dact1 (Fig 5d). We determined the region of Dact1 responsible for this interaction 

through a panel of Dact1 deletion constructs. Loss of the C-terminal 88 amino acids (aa) of 

Dact1 almost completely eliminates association with Vangl2, and the residual interaction is 

abolished by deletion of an additional 62 aa (Fig 5d). Under identical conditions, the same 

panel of Dact1 constructs shows a different coIP pattern with Dvl2: Progressive C-terminal 
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deletions of Dact1 reduce but do not eliminate association with Dvl2 until elimination of aa 

311-778 (Fig 5e). The Dact1 PDZb caps a longer stretch of 28 highly conserved aa14, and 

so we made specific deletions to probe how this region compares to the immediately 

upstream 60 aa in coIPs with Vangl2 versus Dvl2. Deletion of the Dact1 C-terminal 28 aa 

has no effect on association with Vangl2 (Fig 5f), but reduces association with Dvl2 at least 

as much as larger deletions (Fig 5g). Conversely, internal deletion of the adjacent 60 aa has 

no effect on Dact1 association with Dvl2 (Fig 5g), but reduces association with Vangl2 

similar to larger deletions (Fig 5f). Taken together these data strongly suggest that separate 

domains of Dact1 contribute to complex formation with Vangl2 versus Dvl2.

We similarly used a series of Dvl2 deletion constructs to probe whether different conserved 

regions of Dvl are responsible for associations with Dact1 versus Vangl2. Consistent with 

prior reports6,28, we found that the Dvl PDZ domain is the main contributor to the Dvl-

Vangl2 interaction (Fig 5h). We also found that a “Dishevelled Specific” (DS) domain 

(Methods) contributes modestly to this interaction (Fig 5h). In contrast, using the same 

panel of Dvl2 constructs under identical conditions we found that deletion of the PDZ and 

DS domains reduces but does not eliminate the Dvl-Dact1 interaction (Fig 5i). Taken 

together, these coIP data strongly suggest that besides PDZ-b/PDZ binding12, a middle 

region of Dact1 also contributes to interactions with Dvl2 outside the PDZ domain, 

consistent with some prior reports9,10.

These experiments indicate that different domains contribute to associations between Dact1 

and Dvl2 versus either of these proteins with Vangl2. In a final assay we asked whether 

Vangl2 can bind directly to Dact1 in the absence of Dvl proteins. Since Dvl proteins are 

specific to metazoans, we bacterially expressed and purified recombinant GST fusion 

proteins corresponding to the amino-and carboxy-terminal regions of Dact1 and asked 

whether they bind to full-length Vangl2 protein synthesized in a wheat germ extract. The C-

terminal half of Dact1 binds specifically to Vangl2 in this Dvl-free system, supporting the 

conclusion that the Dact1-Vangl2 interaction is direct (Fig 5j).

Dact1 regulates Vangl2 at the PS

By prior report, Vangl2 is expressed at low levels in the posterior endoderm and at higher 

levels in the neuroectoderm, which is contiguous with ectoderm in the PS region29,30. 

Dact1 is expressed in a potentially overlapping domain in the posterior ectoderm and 

mesoderm31. This suggests that Dact1 and Vangl2 might functionally interact in these 

tissues, particularly in the PS ectoderm.

Using WISH we confirmed that the mRNA distributions of Dact1 (Fig 6a-b) and Vangl2 

(Fig 6c-d) overlap in PS ectoderm. As expected for a transmembrane protein and consistent 

with prior reports29, an affinity-purified antibody detects Vangl2 protein primarily on 

surfaces of epithelial cells in the PS ectoderm and endoderm, as well as more weakly on 

scattered surface subdomains of adjacent mesenchymal cells (Fig 6e inset; arrowheads). The 

adhesion protein E-cadherin shows a partially overlapping distribution with Vangl2 in all 

germ layers, but is concentrated at the apical and basal surfaces and is generally less 

apparent on the lateral membranes of ectoderm cells (Fig 6f-g inset).
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In the PS ectoderm of Dact1 mutants, Vangl2 cell surface signal is significantly increased 

(Fig 6h; Supplementary Fig 5b; e). Moreover, cell surface E-cadherin is also significantly 

increased and colocalizes with the Vangl2 signal, no longer displaying enrichment on the 

apical-basal vs. lateral cell surfaces (Fig 6i-j; Supplementary Fig 5b; f). This is a post-

translational effect, as levels of both the Vangl2 and E-cadherin mRNAs are not altered 

(Supplementary Fig 6a-b). In these mutants, cells with high Vangl2 and E-cadherin form a 

bulge at the position of the PS where EMT normally occurs (Fig 6j dotted lines).

Prior reports suggest that the Vangl2Lp mutation alters the ability of mutant Vangl2 protein 

to stably accumulate at the membrane, especially asymmetrically or at points of cell 

contact18,32,33. Consistent with this, we find that in Vangl2Lp/+ embryos, Vangl2 protein 

remains detectable in cells where the wild type protein is typically expressed, but the 

membrane signal is significantly reduced compared to wild type (Fig 6k; Supplementary Fig 

5c; e). Interestingly, E-cadherin is also mislocalized in these cells: a diffuse cytoplasmic 

signal appears that is absent from wild type controls (Fig 6l). Nevertheless, some apical-

basal enrichment of E-cadherin remains evident (Fig 6l inset), and levels on the lateral edges 

of PS ectoderm cells are as low as in wild type (Supplementary Fig 5c; f).

The PS ectoderm in Dact1-/-;Vangl2Lp/+ combination mutants has Vangl2 cell surface 

staining intermediate between the high signal detected in Dact1 mutants and the low signal 

detected in Vangl2Lp/+ embryos, such that levels are not significantly different from wild 

type controls (Fig 6n inset; Supplementary Fig 5d; e). In contrast to Dact1 single mutants, 

Dact1-/-;Vangl2Lp/+ combination mutants also have normal surface levels and a more 

normal apical-basal distribution of E-cadherin in PS ectoderm cells (Supplementary Fig 5f; 

Fig 6o inset). Finally, the bulge of cells with high Vangl2 and E-cadherin found at the PS in 

Dact1 single mutants is absent from combination mutants (Fig 6p dotted lines).

To summarize, loss of Dact1 leads to increased Vangl2 and E-cadherin in the PS ectoderm 

where cells normally undergo EMT. In Vangl2Lp heterozygotes, there is partial loss of 

membrane Vangl2 signal; this most likely reflects the absence of surface-destabilized mutant 

protein made from the Loop-tail allele32. Compared to Dact1 mutants, Dact1-/-;Vangl2Lp/+ 

combination mutant embryos have partially restored cell surface Vangl2 levels, E-cadherin 

distribution, and PS morphology.

DISCUSSION

The phenotypic spectrum in Dact1 mutant mice is reminiscent of a similar spectrum of 

posterior malformations in humans34. Etiologies previously proposed to explain all or part 

of this spectrum include vascular-steal35, persistence of the embryonic cloaca36, and 

defects in posterior mesoderm formation37. Our findings suggest that this malformation 

spectrum may first originate in disturbed morphogenetic movements at the PS in the early 

embryo.

Several morphogenetic processes take place in close spatial and temporal proximity in the 

posterior embryo, each of which is likely to require dynamic regulation and polarized 

activities of Vangl2, the PCP pathway, and adhesive proteins. The first of these to occur is 
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EMT at the PS, where both Dact1 and Vangl2 are expressed but where neither protein has a 

prior established role. Our data suggest that defective EMT is the primary defect in Dact1 

mutants. Perhaps all other disrupted morphogenesis in these mutants occurs secondarily, for 

example because of decreased generation of mesoderm and endoderm precursors via EMT. 

Nonetheless we cannot rule out additional requirements for Dact1 alongside Vangl2 in 

spatially and temporally adjacent morphogenetic events, including CE movements that 

elongate and narrow axial mesoderm, mesenchymal-epithelial transition of endoderm 

precursors, or polarity and cell movements that fold and extend the hindgut.

Wnt/β-catenin signaling and E-cadherin negatively regulate each other at the PS, such that 

high E-cadherin reduces Wnt/β-catenin signal transduction in cells undergoing EMT38, and 

Wnt/β-catenin signaling reciprocally negatively regulates E-cadherin transcription39. We 

have observed no statistically significant alterations in Wnt/β-catenin signaling or in levels 

of E-cadherin mRNA in early Dact1 mutant embryos. Instead the E-cadherin protein is 

abnormally redistributed at early stages, whereas Wnt/β-catenin signaling reductions occur 

only much later in morphologically disrupted tail buds where they might contribute to 

somitogenesis failure specific to late-forming posterior segments (Supplementary Fig 6c-

h)40. In any case, the rescue of all embryonic Dact1 mutant phenotypes by concurrent 

mutation of Vangl2 powerfully demonstrates that any E-cadherin or Wnt/β-catenin effects 

contributing to these phenotypes must occur downstream of Vangl2-dependent events.

We have discovered that a developmentally crucial function of Dact1 is regulation of 

Vangl2 at the PS. Morphogenetic abnormalities in the PS region of Dact1 mutant embryos, 

while partly resembling those caused by PCP pathway reduction4, are unique in that they are 

associated with decreased phosphorylation of the myosin binding subunit of myosin 

phosphatase (Mypt1), but increased JNK activity. This agrees with evidence that 

modulations in Rho-and Jun-kinase activities reflect separate pathways downstream of 

PCP4, and that either abnormal gain or loss of upstream PCP components can cause similar 

disruptions in cell polarity, cytoskeletal dynamics, and CE movements41-44. Interestingly, 

other PCP phenotypes, such as inner ear and cardiac malformations18,45, are not evident in 

Dact1 mutants (M. Montcouquiol, D.A.F., B.N.R.C., data not shown).

We propose that complex formation between the Dact1 and Vangl2 proteins is a crucial step 

in a novel Vangl2 regulatory pathway operating during EMT at the PS. Candidate cellular 

processes that might be involved include trafficking of Vangl2 to the membrane, 

endocytosis, subcellular sequestration, or degradation. This will be clarified by identifying 

additional components of this pathway through further biochemical, cellular, embryonic, and 

genetic experimentation.

METHODS

Targeting Construct

Approximately 7 kb of Dact1 genomic DNA from the 129/Sv mouse strain was inserted into 

pGKneoF2L2DTA246 to create the Dact1 targeting vector (Supplementary Fig 1). Correct 

targeting through homologous recombination in ES cells was confirmed by Southern blot 

and PCR. Mice carrying the targeted allele were created using standard embryo 
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manipulation and chimera breeding techniques. An allelic series at the Dact1 locus was 

created by crossing to the EIIa∷Cre (The Jackson Laboratory, Bar Harbor, ME) and FLPe 

transgenic mouse strains in order to excise loxP-flanked and FRT-flanked sequences 

respectively. Genotyping was performed by genomic PCR using allele-specific primers: The 

primers Dact1intron1 and Dact1intron2 (See Supplementary Table 4 for this and all other 

primer sequences) are separated by 689 bases of genomic sequence in wild type, but only 

190 bases in the excised (mutant) allele; amplifying a mutant-specific PCR product of 243 

bases. The primers Dact1exon2 (near start exon 2) and Dact1intron2 (near the start of intron 

2) are both within the floxed region; amplifying a wild type-specific PCR product of 330 

bases. Amplification parameters for wild type: 30 cycles X (95°C 30 seconds, 52°C 30 

seconds, 72°C 30 seconds); for mutant: 38 cycles X (95°C 30 seconds, 57°C 30 seconds, 

72°C 30 seconds).

Antibody generation

The Dact1 antibody was created by injecting rabbits with a peptide corresponding to aa 

373-386 (coded within exon 4), followed by affinity purification. It is available from AbD 

Serotec.

General Microscopy and Imaging

As described14,40.

Skeleton Preparation

As described16.

Whole Mount mRNA in situ Hybridization

As described40 using LacZ probe to nucleotides 576-939 and previously established 

probes14,16,19,29.

LWR measurements

Whole Embryo Length to Width Ratio (LWR): Whole embryo length (L) was the average 

distance along a straight line to the posterior tip of the embryo from the anterior tips of the 

right and left head folds. Whole embryo width (W) was the distance between the lateral 

edges of the left and right somites positioned in the middle of the anterior-posterior axis 

(L/2). LWR was calculated as L/W.

Posterior Length to Width Ratio (LWR): Posterior length (L) was the average distance along 

a straight line to the posterior tip of the embryo from the posterior edges of the most 

posterior (last formed) left and right somites. Posterior embryo width (W) was the widest 

lateral distance across the embryo (perpendicular to L) in the region corresponding to L 

(posterior to the last formed somite). LWR was calculated as L/W.

Proliferation and Apoptosis measurements

To measure proliferation and apoptosis, embryos were sectioned and stained for phalloidin, 

Hoescht 33258, and phospho-histone-H3 (Millipore) or active caspase-3 (BD Biosciences), 
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respectively. Staining was visualized on a Nikon C1si Spectral Confocal microscope. A 

single confocal plane from each 20μm section was used to avoid double counting of cells. 

Graphs show the average percent proliferative or apoptotic cells across all sections (n = 2 

embryos for each genotype, 5 sections per embryo) from the same genotype. There were no 

significant differences between mutants and controls for all these measures.

Quantitative RT-PCR

As described14 with the following modifications: Samples were embryonic tissues posterior 

to the last-formed somite. 0.5-1μg of total RNA was used for cDNA synthesis. Primers: 

QAxin2F, QAxin2R, QDll1F, QDll1R, QVangl2F, QVangl2R, QLacZF, QLacZR and for E-

cadherin as described47.

JNK assay

Embryonic tissues posterior to the last-formed somite were homogenized in 100ul buffer 

and assayed as described26.

Western blots, CoIPs, GST pull-downs, expression and deletion constructs

Association assays were performed essentially as described48. GST pull downs were in PBS 

+ 0.1% Triton-X-100 (Roche), 0.1% insulin. Binding was at 4°C for 30 minutes, followed 

by 3 X 5 minute washes in binding buffer at 4°C. 35S-labelled in vitro translated proteins 

were synthesized in the TNT coupled wheat germ extract system (Promega). cDNAs were 

obtained commercially or by RT-PCR from wild type mouse total RNA. Expression and 

deletion plasmids were constructed using standard restriction digest and/or PCR techniques, 

and confirmed by sequencing. For Dvl2 the DS (pfam02377; aa 160-232), PDZ (cd00992; 

aa 265-352) and combined deletions are precise inverse PCR-mediated deletions of these 

domains as defined on the NCBI Uniprot website. The b (basic) domain is a conserved 

Arginine/Lysine-rich stretch located just upstream of the PDZ49, corresponds to aa 231-249 

of mouse Dvl2, and is therefore distinct from the DS domain. Commercial antibodies 

(sources): Activated ß-Catenin “ABC” (Millipore)22, Vangl2, Dvl1, Dvl3, HA, FLAG 

(Santa Cruz Biotech), Dvl2 (Cell Signaling Technology), p120catenin (BD Biosciences), α-

tubulin (Sigma-Aldrich), Phospho-Mypt (T696) (Millipore), Total Mypt1 (BD Biosciences).

Genotyping of Vangl2 and Wnt3a alleles

Vangl2Lp—Genotyping for crosses was performed by Crp microsatellite PCR50. 

Genotypes of all combination mutant (experimental) and control littermates was verified by 

genomic PCR amplification and sequencing of alleles. Primers for PCR: Vangl2LpF and 

Vangl2LpR; for sequencing: Vangl2Lpseq.

Vangl2Lp-m1Jus—Genotyping was performed by allele-specific PCR using primers 

homologous to the wild type versus the point mutant allele (Supplementary Fig 7). We used 

the primer pair Lp-m1JusWTF and Lp-m1JusWTR to amplify a 402 base pair wild type 

allele product using the following parameters: 30 cycles X (95°C 30 seconds, 68°C 30 

seconds, 72°C 1 minute). We used the primer pair Lp-m1JusWT F and Lpm1JusMutR to 
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amplify a 402 base pair mutant allele product using the following parameters: 30 cycles X 

(95°C 30 seconds, 62°C 30seconds, 72°C 1 minute).

Wnt3a- (Wnt3aneo)—Genotyping was performed by genomic PCR with allele-specific 

primers. Primers and parameters for the wild type allele were as recommended by the 

supplier (The Jackson Laboratory). We used primer pair Wnt3aneo and Wnt3aintron2 to 

amplify a Wnt3aneo-specific 386 base pair product using parameters: 35 cycles X (95°C 30 

seconds, 65°C 30 seconds, 72°C 1 minute).

IHC (Vangl2, E-cadherin)

Embryos were dissected in PBS, fixed in 4% paraformaldehyde for 1 hour at room 

temperature (RT), and washed in PBS. For embedding, embryos were incubated in 30% 

glucose in PBS at 4°C overnight, equilibrated with equal parts 30% glucose and O.C.T. 

compound (Tissue-Tek) for 2 hours on ice, then embedded in 30% glucose and O.C.T. 

compound. Embryos were cryosectioned (20μm) at -16°C. Sections were dried at RT, 

washed 2x in PBS for 5 minutes, blocked for 1.5 hour at RT using 10% heat inactivated goat 

serum, 1% BSA in PBS, then incubated in primary antibody overnight at 4°C. Rabbit 

Vangl2 antibody18 and Mouse E-cadherin antibody (BD Biosciences) were diluted 1:500 in 

1% heat inactivated goat serum, 1% BSA in PBS. Sections were washed 5× 10 min in PBS, 

blocked, and incubated in anti-rabbit alexa fluor 488 and anti-mouse alexa fluor 568 

(Molecular Probes) diluted 1:250 overnight at 4°C. Sections were washed 5×10 min in PBS, 

mounted in Mowiol and imaged via confocal microscopy under identical non-saturating 

illumination conditions.

IHC Quantitation

Signal intensity (grey scale) was measured using ImageJ software (NIH), across a straight 

line drawn parallel to the apical surface of the PS ectoderm and bisecting 5 adjacent cells. 

Pixel intensity was normalized to the lowest value along the entire line, which was set to 0 

(background). For comparisons of cell surface intensity between cells, the 3 highest adjacent 

values corresponding to the two lateral cell surfaces (6 values total/cell) were averaged and 

plotted.

Statistical Analyses

All quantitative data were analyzed using Prism software (Graphpad). Significance was 

determined by parametric unpaired two-tailed t tests. In all cluster graphs, mean values are 

plotted as a horizontal line; numerical values for the mean, standard error, and p-value are 

reported in the corresponding Results text.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Birth phenotypes in Dact1 mutants (mut) compared to wild type (wt). a, b Outward 

appearance; arrow, short tail. c, d Genital tubercle (gt) and anus (a) are missing in mutants 

(filled arrowhead, empty arrowhead), along with the tail. e, f Mutants have a blind-ended 

colon (cn). g, h Mutants lack bladder (b vs. *), have malformed hydronephrotic (h) kidneys 

(k, fused in the mutant specimen), and misconnected ureters (ur, connected to the vas 

deferens (vd) in this mutant male). i-k, Phenotypes of rare surviving adult Dact1 mutants 

consistent with impaired uterine outflow resulting in hydrometrocolpos (top vs. bottom in i), 
and impaired digestive tract evacuation resulting in megacolon (arrow in mutant k vs. wild 

type j). l-q Skeletons; black arrows indicate identity of the terminal ossified vertebra, 

colored arrowheads in o-q indicate segmental levels: red, lumbar-1 (L1); yellow, sacral-1 
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(S1); green, caudal-1 (Cdl1). r Sirenomelia (Sm). s Spina bifida (SB). Other abbreviations: 

(a) adrenal, (c) cecum, (t) testis. Scale bars: 0.5 mm, except i-k 5 mm.
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Figure 2. 
Dact1 mutant embryonic phenotypes. a, b Early Dact1 mutant (mut) embryos appear normal 

except for their posterior contour (*); insets: Uncx4.1 WISH (somites). c, d Length-Width-

Ratio (LWR) measurements in wild type (blue), Dact1 mutants (red) and Vangl2Lp 

heterozygotes (green) posterior (c) or whole (d) embryo. e-h Shh/Uncx4.1 WISH. e, f 
ventral aspect; g, h lateral aspect. Notochord (outline in e, f; bracket in g, h) is shorter and 

broader in Dact1 mutants compared to wild type. Hindgut diverticulum (hd in g) has not 

formed in mutant (arrowhead in h). Mesenchymal tissue (*) surrounds foreshortened axial 

structures. i, j Dll1 WISH: presomitic mesoderm (psm) and ectoderm (e, arrow) length are 

normal. k, l Phalloidin-stained transverse section at the primitive streak (ps). In mutant (l) 
endoderm (en) has not closed ventrally and is thinner, whereas ectoderm (e) is thicker 

(insets) and more sharply folded (*). m-p At later stages, Dll WISH (m, n lateral aspect; o, p 
dorsal aspect) reveals presomitic mesoderm and ectoderm of normal length (arrows), but 

less extended axial tissues (dotted lines). q, r Segmental abnormalities confined to the 

Suriben et al. Page 18

Nat Genet. Author manuscript; available in PMC 2010 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



newest somites in the tail bud (insets) can be detected by Uncx4.1 WISH at later stages 

(insets: close-up and dorsal view). s, t Somitogenic clock abnormalities in Dact1 mutant tail 

buds revealed by abnormal asymmetric Lfng WISH (arrows). u-x Representative 

parasagittal (u, w); and transverse (v, x) sections through wild type (u, v) and Dact1 mutant 

(w, x) tail buds at E10.5. Dact1 mutants with abnormal somites (asterisk in w) also have 

severely disrupted posterior tissues and pooled blood at their ventral posterior tip 

(arrowhead in w, x); the neural tube (nt) nonetheless extends toward the tail bud tip. Dotted 

lines in u, w indicate approximate position of transverse sections from different embryos in 

v, x. Other abbreviations: (hf) head-folds, (s1-s8) somites, (hg) hindgut, (m) mesoderm, (n) 

notochord, (tg) tail gut. Scale bars = 0.1 mm. Statistical analysis (c, d): parametric unpaired 

two-tailed t test, horizontal line = mean; n.s. p > 0.05, **p < 0.01, ***p < 0.001

Suriben et al. Page 19

Nat Genet. Author manuscript; available in PMC 2010 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Biochemical correlates of PCP signaling are specifically affected at early phenotypic stages. 

Insets: assays were conducted on posterior tissue lysates from E8 and E9 embryos as shown. 

All graphs: closed circles, wild type (+/+); open circles, mutant littermates. a-h Wnt/β-

catenin assays. QPCR for endogenous targets of Wnt/β-catenin signaling at E8 reveals that 

Dll1 and Axin2 mRNA levels are significantly reduced in Wnt3a null embryos (a, b), but 

not in Vangl2Lp heterozygotes (c, d), nor in Dact1 mutants (e, f). Similarly, levels of 

unphosphorylated (activated) β-catenin protein are not significantly reduced in Dact1 

mutants at E9 (g, h). i-l PCP pathway biochemistry. Phosphorylation of Mypt1, a target of 

Rho kinase, is significantly reduced in Dact1 mutants at E8 (i, j), whereas JNK activity is 
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robustly increased at E9 (k, l). Statistical analyses: parametric unpaired two-tailed t tests, 

horizontal line = mean; n.s. p > 0.05, *p < 0.05, ***p < 0.001
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Figure 4. 
Mutations in Dact1 and Vangl2 mutually rescue. a-d Posterior phenotypes of littermates 

from a Dact1 × Vangl2 mutant intercross. a Dact1+/+;Vangl2+/+ neonate (wild type) has a 

normal tail. b Dact1+/-;Vangl2Lp/+ neonate (trans-heterozygous) has a curly tail (Lp, left 

panel) typical of the semidominant Loop-tail phenotype, while the genital tubercle (gt) and 

anus (a) are normal (as expected for a Dact1 heterozygote, right panel). c 
Dact1-/-;Vangl2+/+ neonate has the shortened tail (Sh; left panel), absent genital tubercle 

and anus (filled and empty arrowheads, right panel) typical of Dact1 mutants. d 
Dact1-/-;Vangl2Lp/+ combination mutant neonate (genetically rescued mutant) has a normal 

genital tubercle (gt), anus (not shown), and tail. e Quantitation of phenotypes and affected 

organs in Dact1 mutant littermates that either carry (red) or don’t carry (blue) the Vangl2Lp 

allele, or that either carry (green) or don’t carry (yellow) the Vangl2Lp-m1Jus allele (see also 

Supplementary Table 3a). f The Dact1 mutant allele reciprocally rescues, in a dose-

dependent manner, Loop-tail phenotypes produced by heterozygosity for either Vangl2Lp 

(left, darker bars) or Vangl2Lp-m1Jus (right, lighter bars) (see also Supplementary Table 3b). 

Other abbreviations: (umb) umbilicus. Scale bar: 1 mm.
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Figure 5. 
The Dact1 and Vangl2 proteins associate independently of Dvl. a-c Schematic summaries of 

coIP and GST pull-down data. d-i coIPs of proteins recombinantly expressed in human 

embryonic kidney cells. d Vangl2 coIPs with full-length Dact1, but loses affinity as the 

Dact1 C-terminus is progressively deleted. e Dvl2 coIPs with Dact1 unless both the C-

terminus and middle region are deleted. f, g Separate C-terminal subregions of Dact1 

mediate coIP with Vangl2 (f) versus Dvl2 (g). h Vangl2 coIPs with full-length Dvl2 unless 

the Dvl2 PDZ domain is deleted; there is also a slight contribution from the Dvl2 DS 

domain. i Dact1 coIPs with Dvl2 even in the absence of both these domains. j A GST-fusion 

protein incorporating the Dact1 C-terminus binds to Vangl2 protein synthesized in a wheat 

germ extract with no Dvl proteins.
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Figure 6. 
Dact1 and Vangl2 functionally interact at the PS. a, b WISH Dact1 c, d WISH Vangl2 a, c 
Dorsal aspect showing neural fold (arrow) and approximate level of sections in b & d 
(dotted lines) b, d Transverse section at PS level. e-p Confocal fluorescent 

immunohistological localization of Vangl2 (green) and E-cadherin proteins (red) at the PS in 

Dact1+/+;Vangl2+/+ (wild type; e-g), Dact1-/-;Vangl2+/+ (Dact1 mutant; h-j), 
Dact1+/+;Vangl2Lp/+ (Loop-tail; k-m), and Dact1-/-;Vangl2Lp/+ (genetically rescued 

mutant; n-p). Abbreviations as in Figure 2. Scale bars in a-d 0.1 mm, in e-p 0.05mm.
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