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Abstract: We used a new method we developed for automated hippocampal segmentation, called the
auto context model, to analyze brain MRI scans of 400 subjects from the Alzheimer’s disease neuroi-
maging initiative. After training the classifier on 21 hand-labeled expert segmentations, we created bi-
nary maps of the hippocampus for three age- and sex-matched groups: 100 subjects with Alzheimer’s
disease (AD), 200 with mild cognitive impairment (MCI) and 100 elderly controls (mean age: 75.84; SD:
6.64). Hippocampal traces were converted to parametric surface meshes and a radial atrophy mapping
technique was used to compute average surface models and local statistics of atrophy. Surface-based
statistical maps visualized links between regional atrophy and diagnosis (MCI versus controls: P 5
0.008; MCI versus AD: P 5 0.001), mini-mental state exam (MMSE) scores, and global and sum-of-
boxes clinical dementia rating scores (CDR; all P < 0.0001, corrected). Right but not left hippocampal
atrophy was associated with geriatric depression scores (P 5 0.004, corrected); hippocampal atrophy
was not associated with subsequent decline in MMSE and CDR scores, educational level, ApoE geno-
type, systolic or diastolic blood pressure measures, or homocysteine. We gradually reduced sample
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sizes and used false discovery rate curves to examine the method’s power to detect associations with
diagnosis and cognition in smaller samples. Forty subjects were sufficient to discriminate AD from nor-
mal and correlate atrophy with CDR scores; 104, 200, and 304 subjects, respectively, were required to
correlate MMSE with atrophy, to distinguish MCI from normal, and MCI from AD. Hum Brain Mapp
30:2766–2788, 2009. VVC 2009 Wiley-Liss, Inc.
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INTRODUCTION

Alzheimer’s disease (AD) is the most common form of
dementia, affecting over 24 million people worldwide and
over 5 million in the U.S. alone [Jorm et al. 1987]. As the
disease progresses, there is a relentless decline in memory
function, which progresses to impair language, attention,
orientation, visuospatial skills, and executive function.
Imaging research has focused on detecting the earliest
signs of dementia, either by visualizing the characteristic
pathology of plaques and neurofibrillary tangles as they
accumulate in the living brain [Braskie et al., in press] or by
measuring the resulting neuronal loss observable on brain
MRI as cortical and hippocampal atrophy [Thompson and
Apostolova, 2008].
As drug candidates that might slow the progression of

Alzheimer’s pathology have begun to be developed, the

need to develop robust and sensitive imaging methods to

quantify progression of Alzheimer’s disease has become

increasingly important. To this end, the National Institute

of Aging and the pharmaceutical industry funded the Alz-

heimer’s disease neuroimaging initiative (ADNI), with the

goal of developing improved methods based on imaging

and other biomarkers, for AD treatment trials. A variety of

methods have been used to quantify structural deficits in

brain MRI including: region-of-interest measurements

(especially of the hippocampus [Frisoni et al., 1999]), the

‘‘boundary shift integral’’ technique which quantifies dif-

ferences between two successively coregistered 3D MRIs

[Fox et al., 2000], cortical thickness mapping [Burggren

et al., 2008; Lerch et al., 2008; Salat et al., 2004; Thompson

et al., 2004a], voxel-based morphometry [Good et al., 2001;

Whitwell et al., 2007], and tensor-based morphometry

[Hua et al., 2008; Studholme et al., 2004, 2006; Thompson

and Apostolova, 2008].
Because of the need to combat the disease before neuro-

nal loss is substantial, scientific interest has also focused
on mild cognitive impairment (MCI), a predementia stage
that carries a 4–6-fold increased risk of future diagnosis of
dementia, relative to the general population [Petersen,
2000; Petersen et al., 1999, 2001]. At this stage of the ill-
ness, molecular pathology and structural atrophy are most
prevalent in the hippocampus and adjacent entorhinal cor-
tex. A common biological marker of disease progression in
MCI is morphological change in the hippocampus,

assessed using volumetric measures [Jack et al., 1999;
Kantarci and Jack, 2003] or by mapping the spatial distribu-
tion of atrophy in 3D [Apostolova et al., 2006a,b; Csernansky
et al., 1998; Frisoni et al., 2006; Thompson et al., 2004a].
Parametric surface reconstruction and modeling (hippo-

campal radial mapping) [Scher et al., 2007b; Thompson

et al., 2004a; Xu et al., 2008] visualizes the profile of hippo-

campal tissue loss in 3D, showing that subregional hippo-

campal atrophy spreads in a pattern that follows the

known trajectory of neurofibrillary tangle dissemination

[Becker et al., 2006; Frisoni et al., 2006]. Distinct atrophic

profiles have also been associated with those MCI subjects

who imminently convert to AD versus those who do not

[Apostolova et al., 2006b], and with other dementias such

as Lewy Body and fronto-temporal dementia [Sabattoli

et al., 2008].
For all such studies, isolating the hippocampus in a

large number of MRI scans is time-consuming, and most
studies still rely on manual outlining guided by expert
knowledge of the location and shape of each region of in-
terest (ROI) [Apostolova et al., 2006a; Du et al., 2001]. To
accelerate epidemiological studies and clinical trials, this
process should be automated. Some automated systems
have been proposed for hippocampal segmentation
[Barnes et al., 2004; Crum et al., 2001; Fischl et al., 2002;
Hogan et al., 2000; Powell et al., 2008; Wang et al., 2007;
Yushkevich et al., 2006], but none is yet widely used.
Here, we use a fully automated segmentation approach

that we recently developed [Morra et al., 2008a,b,c,d],
called the auto context model (ACM), which is based on a
well-known machine learning approach AdaBoost [Scha-
pire et al., 1998]. For an overview of the methodology and
validation please refer to an in-press paper located at
http://www.loni.ucla.edu/�thompson/PDF/JMorra-MIC-
CAI08.pdf [Morra et al., 2008b]. As ACM can accurately
segment the hippocampus, we were interested in using it
to assess factors that affect hippocampal morphology in a
large database. ACM is a pattern recognition based
approach [Duda et al., 2001], and as such it requires a
training set and a testing set. For training, we used 21
hand labeled hippocampi, and we tested the approach on
400 other subjects. All results in this article are only for the
400 testing subjects. After using ACM to segment the hip-
pocampus on our 400 test subjects, we then applied a sta-
tistical mapping approach based on parametric surface
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meshes [Bansal et al., 2007; Csernansky et al., 1998; Styner
et al., 2000; Thompson et al., 2004a; Wang et al., 2007]. We
used these statistical maps to answer several biological
questions regarding AD. We tested the following hypothe-
ses: (1) that spatial maps would reveal systematic patterns
of hippocampal differences between large groups of AD,
MCI, and healthy elderly subjects, and factors that affect
atrophy; (2) that MCI subjects who deteriorated and devel-
oped AD during a 1-year follow-up period would show
greater atrophy than those who did not; and (3) that there
would be greater hippocampal atrophy in carriers of the
ApoE4 (apolipoprotein E4) allele that confers heightened
risk for AD [Roses et al., 1995] versus noncarriers. To con-
firm the clinical relevance of these anatomical measures,
we hypothesized that there would be correlations between
hippocampal atrophy and several widely used measures of
brain function (Mini-Mental State Exam (MMSE) and
Clinical Dementia Rating global scores, and sum-of-boxes
scores). We correlated baseline hippocampal atrophy with
subsequent clinical decline over a 1-year follow-up period.
To examine factors influencing the disease process, we also
correlated hippocampal atrophy with depression severity,
educational level, cardiovascular measures (systolic and dia-
stolic blood pressure), and serum measures. Finally, to eval-
uate the statistical power of our mapping methods and pro-
vide practical information for users of this technique, we
gradually reduced the sample size to determine how many
subjects would be required, in future studies, to detect asso-
ciations between hippocampal atrophy and each of our clin-
ical, behavioral, and genetic measures.

METHODS

Subjects

The ADNI [Mueller et al., 2005a,b] is a large multisite
longitudinal MRI and FDG-PET (fluorodeoxyglucose posi-
tron emission tomography) study of 800 adults, ages 55 to
90, including 200 elderly controls, 400 subjects with mild
cognitive impairment, and 200 patients with AD. The
ADNI was launched in 2003 by the National Institute on
Aging (NIA), the National Institute of Biomedical Imaging
and Bioengineering (NIBIB), the food and drug administra-
tion (FDA), private pharmaceutical companies and non-
profit organizations, as a $60 million, 5-year public-private
partnership. The primary goal of ADNI has been to test
whether serial MRI, PET, other biological markers, and
clinical and neuropsychological assessment can be com-
bined to measure the progression of MCI and early AD.
Determination of sensitive and specific markers of very
early AD progression is intended to aid researchers and
clinicians to develop new treatments and monitor their
effectiveness, as well as lessen the time and cost of clinical
trials. The Principal Investigator of this initiative is Michael
W. Weiner, M.D., VA Medical Center and University of
California, San Francisco.

All subjects underwent thorough clinical/cognitive
assessment at the time of scan acquisition. As part of each
subject’s cognitive evaluation, the MMSE was administered
to provide a global measure of cognitive status based on
evaluation of five cognitive domains [Cockrell and Fol-
stein, 1988; Folstein et al., 1975]; scores of 24 or less (out of
a maximum of 30) are generally consistent with dementia.
Two versions of the Clinical Dementia Rating (CDR) were
also used as a measure of dementia severity [Hughes
et al., 1982; Morris, 1993]. The global CDR represents the
overall level of dementia and a global CDR of 0, 0.5, 1, 2,
and 3, respectively, indicate no dementia, very mild, mild,
moderate, or severe dementia. The ‘‘sum-of-boxes’’ CDR
score is the sum of six scores assessing different areas of
cognitive function: memory, orientation, judgment and
problem solving, community affairs, home and hobbies,
and personal care. The sum of these scores ranges from 0
(no dementia) to 18 (very severe dementia). Table I shows
the clinical scores and demographic measures for our sam-
ple. The elderly normal subjects in our sample had MMSE
scores between 26 and 30, a global CDR of 0, a sum-of-
boxes CDR between 0 and 0.5, and no other signs of MCI
or other forms of dementia. The MCI subjects had MMSE
scores ranging from 24 to 30, a global CDR of 0.5, a sum-
of-boxes CDR score between 0.5 and 5, and mild memory
complaints. Memory impairment was assessed via educa-
tion-adjusted scores on the Wechsler Memory Scale—Logi-
cal Memory II [Wechsler, 1987]. All AD patients met
NINCDS/ADRDA criteria for probable AD [McKhann
et al., 1984] with an MMSE score between 20 and 26, a
global CDR between 0.5 and 1, and a sum-of-boxes CDR
between 1.0 and 9.0. As such, these subjects would be con-
sidered as having mild, but not severe, AD. Detailed exclu-
sion criteria, for example, regarding concurrent use of psy-
choactive medications, may be found in the ADNI protocol
(page 29, http://www.adni-info.org/images/stories/Docu-
mentation/adni_protocol_03.02.2005_ss.pdf). Briefly, sub-
jects were excluded if they had any serious neurological
disease other than incipient AD, any history of brain
lesions or head trauma, or psychoactive medication use
(including antidepressants, neuroleptics, chronic anxio-
lytics or sedative hypnotics, etc.).
Throughout this article, we show whether or not a

linkage exists between hippocampal morphology and
different covariates of interest, including diagnosis
(normal, MCI, AD), MMSE, global CDR, sum-of-boxes
CDR, change (over 1 year) in diagnosis, change in
MMSE, change in global CDR, change in sum of boxes
CDR, the ApoE genotype, depression severity assessed
using the GD (geriatric depression) scale [Yesavage
et al., 1982], systolic and diastolic blood pressure,
plasma homocysteine level, and educational level. Based
on the available data at the time of writing, only base-
line scans were analyzed, to maximize the sample size,
but predictions of changes in clinical scores during the
year after the baseline scan were also assessed, where
available.
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The study was conducted according to Good Clinical
Practice, the Declaration of Helsinki and U.S. 21 CFR Part
50-Protection of Human Subjects, and Part 56-Institutional
Review Boards. Written informed consent for the study
was obtained from all participants before protocol-specific
procedures, including cognitive testing, were performed.

Training and Testing Set Descriptions

As noted earlier, when using a pattern recognition
approach to identify structures in images, two nonoverlap-
ping sets of images must be defined, for training and
testing [Powell et al., 2008, Morra et al., 2008c]. The train-
ing set consists of a small sample of brain images, repre-
sentative of the entire dataset, which are manually traced
by experts. The testing set is a group of brain images that
are to be segmented by the algorithm but have not been
used for training the algorithm. Our training set consisted
of 21 brain images, from seven healthy elderly individu-
als, seven individuals with MCI, and seven individuals
with AD, and our testing set consisted of 100 healthy indi-
viduals, 200 individuals with MCI, and 100 individuals
with AD. We chose to train on 21 subjects because this
number was sufficient in previous studies that varied the
training sample size [Morra et al., 2008]; smaller training
sets degraded segmentation performance. We used 400
testing brains, in three diagnostic groups whose size
matched the expected proportions that the final ADNI
sample will have, once all the data has been acquired.
Each of the three groups (AD, MCI, and controls) was

age- and gender-matched as closely as possible as shown
in Table I.
To visualize the demographics of the dataset used in our

experiments, Figure 1 gives an illustration of all subjects in
the testing group broken down by age, sex, and diagnosis.
The sex distribution with respect to age is comparable, but
there is slightly higher variance in age in the MCI and AD
groups.

MRI Acquisition and Preprocessing

All subjects were scanned with a standardized MRI
protocol, developed after a major effort evaluating and
comparing 3D T1-weighted sequences for morphometric
analyses [Jack et al., 2008; Leow et al., 2006].
High-resolution structural brain MRI scans were

acquired at multiple ADNI sites using 1.5 Tesla MRI scan-
ners manufactured by General Electric Healthcare, Siemens
Medical Solutions, and Philips Medical Systems. ADNI
also collects data at 3.0 T from a subset of subjects, but to
avoid having to model field strength effects in this initial
study, only 1.5 T images were used. All scans were
collected according to the standard ADNI MRI pro-
tocol (http://www.loni.ucla.edu/ADNI/Research/Cores/
index.shtml). For each subject, two T1-weighted MRI scans
were collected using a sagittal 3D MP-RAGE sequence.
Typical 1.5 T acquisition parameters are repetition time
(TR) of 2,400 ms, minimum full excitation time (TE), inver-
sion time (TI) of 1,000 ms, flip angle of 88, 24 cm field of
view, acquisition matrix was 192 3 192 3 166 in the x-, y-,
and z- dimensions yielding a voxel size of 1.25 3 1.25 3

TABLE I. Demographic data are shown for several of the covariates tested throughout this article, with

standard deviations in parentheses

N Males/females Age (years) MMSE Global CDR
Sum of

boxes CDR MMSE change
Global CDR

change

Normal 100 47/53 76.62 (4.83) 29.14 (0.86) 0 (0) 0.015 (0.086) 20.14 (1.42) 0.053 (0.15)
MCI 200 100/100 75.45 (7.03) 26.94 (1.86) 0.5 (0)a 1.48 (0.84)a 21.21 (2.88)a 0.048 (0.23)
AD 100 50/50 75.86 (7.25) 23.41 (1.86) 0.78 (0.25)a 4.48 (1.56)a 22.62 (4.57)a 0.19 (0.53)

Sum of boxes
CDR change

Change in
diagnosis ApoE4 (%)

Years
of education

Systolic blood
pressure (mmHg)

Diastolic blood
pressure (mmHg)

Homocysteine
(lM/L) GD scale

Normal 0.11 (0.41) 1 32 15.87 (1.84) 137.9 (18.80) 76.19 (9.52) 9.27 (2.56) 0.79 (1.11)
MCI 0.80 (1.36)a 26/22 53.5 15.61 (3.16) 135.5 (17.31) 74.55 (11.01) 10.39 (2.87)a 1.58 (1.39)a

AD 1.53 (2.17)a 22 66 14.96 (3.31)b 137.51 (17.02) 75.22 (10.64) 10.13 (3.09)b 1.74 (1.42)a

aP < 0.01.
bP < 0.05.
Only statistics for the subjects in the test set are reported because those are the brains used to obtain the clinical results presented
throughout the article. All changes in scores refer to changes measured over a one-year interval following the baseline MRI scans. For
the change in diagnosis, entries represent the number of subjects that converted to that diagnosis (positive entries indicate a diagnosis
moving to the next level of disease and negative entries indicate a downgrade of one level in diagnosis). For the sub-analysis of subjects
who changed diagnosis, only those who converted from MCI to AD were examined here because there were fewer than 3 subjects who
underwent conversions of other types (e.g., MCI to normal). Presence of the ApoE4 allele, a risk gene for AD, may be modeled as a bi-
nary characteristic, so this column represents the number, as a percentage of the total N for that group that carry at least one copy of
the ApoE4 allele. P-values were determined only for the testing MCI and AD groups versus the testing normal group. Throughout the
article, all P-values were obtained from a two sided t-test.
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Figure 1.

A visual representation of the testing data set. This plot shows a breakdown of all subjects by

age, sex, and diagnosis. The points have been spread out along the horizontal axis to make it

easier to see members of each diagnostic group. [Color figure can be viewed in the online issue,

which is available at www.interscience.wiley.com.]

Figure 2.

Volumetric analysis for the three different diagnostic groups. Within each diagnostic group, the

left hippocampus is slightly smaller than the right; this was only significant for the MCI group in

all subjects (P 5 0.0068) and the female MCI group (P 5 0.00842). The error bars represent

standard errors of the mean. [Color figure can be viewed in the online issue, which is available

at www.interscience.wiley.com.]
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1.2 mm3 [Jack et al., 2008]. In-plane, zero-filled reconstruc-
tion (i.e., sinc interpolation) yielded a 256 3 256 matrix for
a reconstructed voxel size of 0.9375 3 0.9375 3 1.2 mm3.
The ADNI MRI quality control center at the Mayo Clinic
(in Rochester, MN) selected the MP-RAGE image with
higher quality based on standardized criteria [Jack et al.,
2008]. Additional phantom-based geometric corrections
were applied to ensure spatial calibration was kept within
a specific tolerance level for each scanner involved in the
ADNI study [Gunter et al., 2006].
Additional image corrections were also applied, using a

processing pipeline at the Mayo Clinic, consisting of: (1) a
procedure termed GradWarp for correction of geometric
distortion due to gradient nonlinearity [Jovicich et al.,
2006], (2) a ‘‘B1-correction,’’ to adjust for image intensity
nonuniformity using B1 calibration scans [Jack et al., 2008],
(3) ‘‘N3’’ bias field correction, for reducing intensity inho-
mogeneity [Sled et al., 1998], and (4) geometrical scaling,
according to a phantom scan acquired for each subject
[Jack et al., 2008], to adjust for scanner- and session-specific
calibration errors. In addition to the original uncorrected
image files, images with all of these corrections already
applied (GradWarp, B1, phantom scaling, and N3) are avail-
able to the general scientific community, as described at
http://www.loni.ucla.edu/ADNI. Ongoing studies are
examining the influence of N3 parameter settings on meas-
ures obtained fromADNI scans [Boyes et al., 2008].

Image Preprocessing

To adjust for global differences in brain positioning and
scale across individuals, all scans were linearly registered
to the stereotactic space defined by the International Con-
sortium for Brain Mapping (ICBM-53) [Mazziotta et al.,
2001] with a 9-parameter (9P) transformation (three trans-
lations, three rotations, three scales) using the Minctracc
algorithm [Collins et al., 1994]. Globally aligned images
were resampled in an isotropic space of 220 voxels along
each axis (x, y, and z) with a final voxel size of 1 mm3.

Manual Hippocampal Delineation Criteria

Hippocampi were traced using anatomical boundaries
and landmarks as detailed in Mega et al. [Mega et al.,
2002] and Narr et al. [Narr et al., 2002] with a validated
protocol used in several prior studies [Lin et al., 2005;
Thompson et al., 2004b]. Beginning rostrally at the poste-
rior uncus, the hippocampus was outlined with the
superior border defined by the alveus, demarcating the
amygdala superiorly from the underlying hippocampus,
excluding the parahippocampal gyrus medially and its
white matter inferiorly. Progressing posteriorly, the head
of the hippocampus exhibits its characteristic digitations
with its superior and medial border defined by the tempo-
ral horn of the lateral ventricle, the lateral border by the
transverse (choroidal) fissure, and the inferior border by
the hippocampal sulcus. When the hippocampal sulcus is

not open, a line was drawn from its indentation to the
temporal horn. Ammon’s horn takes on its typical appear-
ance at the level of the lateral geniculate through the body
of the hippocampus. Measurements at this level include
the dentate gyrus, cornu ammonis fields four through one,
the subiculum, and the alveus and fimbria. The limit
between the subiculum and the transentorhinal cortex of
the parahippocampal gyrus was defined by a line from the
inferior border of the subiculum to the medial edge of the
dentate gyrus as it curves into the hippocampal sulcus.
The first section that contains a complete view of the cere-
bral peduncles is defined as the posterior limit of the hip-
pocampal head. The hippocampal body’s posterior limit is
defined as the first slice in which all four colliculi are
visualized. This process takes about half an hour per scan.

Segmentation Overview

For an in-depth overview of ACM with AdaBoost,
including mathematical details and validation experiments,
please refer to our previous work [Morra et al., 2008a,
Morra et al., 2008c]. Briefly, our algorithm uses a set of
expertly hand-labeled segmentations to learn a classifica-
tion rule for hippocampal versus nonhippocampal regions
using a modified AdaBoost method, based on �13,000 fea-
tures (image intensity, position, image curvatures, image
gradients, tissue classification maps of gray/white matter
and CSF, and mean, standard deviation, and Haar filters
of size 1 3 1 3 1 to 7 3 7 3 7). Here the training set con-
sisted of 7 age-and sex matched subjects of each of three
diagnostic groups (AD, MCI, and normal), yielding a total
of 21 hand-segmented training images. As all brains have
been linearly registered to a standard template, the point-
wise summation of all the training masks is used to devise
a basic shape before capturing the global shape of the hip-
pocampus. We also included curvature, gradient, mean,
standard deviation, and Haar filters of the shape prior as
features. During each iteration of ACM—our extension to
AdaBoost—the Bayesian posterior distribution of the label-
ing is fed back in as an input, along with its neighborhood
features, as a new feature for AdaBoost to use as a weak
learner. In validation studies using a leave-one-out
approach and standard overlap and distance error metrics
[Morra et al., 2008c], these automated segmentations
agreed well with human raters; any differences are compa-
rable to differences between trained human raters; and our
error metrics compare favorably with those previously
reported for other automated hippocampal segmentations.
For this article, we only changed two parameters, relative
to the implementation described in [Morra et al., 2008c].
First, we used 70 iterations of AdaBoost, an AdaBoost cas-
cade depth of three nodes, and four ACM iterations. These
changes were mainly made for speed purposes, as training
takes less than 12 h with this formulation (we note that
although the training phase is very computer intensive,
the segmentation of new hippocampi takes less than a mi-
nute per brain).
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One problem inherent in any automated segmentation
algorithm is how to deal with partial voluming effects.
Because the resolution of MRI scans is not sufficient to
resolve the exact boundary of the hippocampus, some vox-
els will contain both hippocampus and a neighboring
structure (such as the amygdala or CSF). However, we
were not able to cope with these effects because we were
focusing on assigning each voxel to a specific tissue class
(in the hippocampus or not). If our training set contained
probabilities (how much of a given voxel is hippocampus),
we could in theory learn a model that incorporates these
probabilities, but our training set only consisted of binary
labels. One could also derive a post hoc method estimating
the volume fraction of hippocampal tissue in partial vol-
umed voxels by removing the thresholding step at the end
of our algorithm. Our automated classifier outputs a proba-
bility at each voxel (which may be considered as a maximum
a posteriori or MAP probability in a Bayesian framework)
representing the likelihood that a particular voxel belongs to
the hippocampus, and this floating-point value is thresh-
olded. This could be considered as an approximation of the
fraction of that voxel containing hippocampal tissue (this
obviously onlymakes sense at the region boundary). If poste-
rior probabilities were retained in the analysis and used for
inference, it would require a more in depth study to prove
their validity. In other ongoing work [Aganj et al., 2008], we
have examined the effects of using a partial volume classifica-
tion model on cortical thickness segmentation, rather than a
binary classification at the voxel level. Even so, in this study,
given that we have only binarized data to train with, we did
not examine partial voluming effects.

Linking Shape and Disease Factors

After all the hippocampal segmentations had been per-
formed, we correlated hippocampal shape with different
disease-related factors using a map-based statistical analy-
sis. To accomplish this, 3D parametric surface models
were constructed from each segmentation, and these mod-
els were geometrically averaged across subjects within
each diagnostic group. This results in 3D average surface
maps for each diagnostic group and statistical maps relat-
ing morphology to different covariates, such as diagnosis,
genotype, clinical scores, future decline, etc. We used a
surface averaging approach used in many prior studies
[Thompson et al., 2004a] but we also note that there are many
other systems under active development by our group and
others [Shi et al., 2007; Terriberry et al., 2007; Vaillant and
Glaunes, 2005;Wang et al., 2007] to establish pointwise corre-
spondence for subcortical surfaces. Some use automatically
defined intrinsic geometric landmarks on the subcortical sur-
face to enforce higher-order correspondences across subjects
when averaging anatomy across a group.
To create a measure of ‘‘radial size’’ for each subject’s

hippocampus, first a medial curve was computed thread-
ing through the hippocampus, and the distance from each
surface point to this curve was calculated, providing a

measure that is sensitive to local atrophy. As in prior
work, regressions were performed to assign a P-value to
each point on the surface in order to link radial size to dif-
ferent covariates of interest. Finally the P-maps are pre-
sented as color coded average subcortical shapes.
All our permutation tests are based on measuring the

total area of the hippocampus with suprathreshold statis-
tics, after setting the threshold at P < 0.01. To correct for
multiple comparisons and assign an overall P-value to
each P-map [Nichols and Holmes 2002; Thompson et al.,
2003], permutation tests were used to determine how
likely the observed level of significant atrophy (proportion
of suprathreshold statistics, with the threshold set at P <
0.01) within each P-map would occur by chance
[Thompson et al., 2003, 2004a]. The number of permuta-
tions N was chosen to be 100,000, to control the standard
error SEP of omnibus probability P, which follows a bino-
mial distribution B(N, P) with known standard error [Edg-
ington and Onghena, 2007]. When N 5 8,000, the approxi-
mate margin of error (95% confidence interval) for P is
around 5% of P; to further improve upon this, we ran
100,000 permutations, with 0.05 chosen as the significance
level. We prefer to use the overall extent of the suprathres-
hold region as we know that atrophy is relatively distrib-
uted over the hippocampus, and a set-level inference is
more appropriate for detecting diffuse effects with moder-
ate effect sizes at many voxels, rather than focal effects
with very high effect size (which would be better detected
using a test for peak height in a statistical map).
When reporting permutation test results, one-sided hy-

pothesis testing was used, that is, we only considered statis-
tics in which the AD or MCI group showed greater atrophy
than the controls, in line with prior findings. Likewise, the
correlations are reported as one-sided hypotheses, that is, sta-
tistics are shown in the map where the correlations are in the
expected direction, for example, greater atrophy associated
with lower MMSE scores, and with higher CDR scores. As a
post hoc verification, we also confirmed that the maps in the
other direction were indeed null (i.e., they do indeed have
null CDFs when evaluated using the FDRmethod).

False Discovery Rate

To assess our method’s power to establish linkages
between morphology and disease, we created cumulative
distribution function (CDF) plots of the P-values in our
subcortical maps. These CDF plots are commonly created
as an intermediate step, when using the false discovery
rate (FDR) method to assign overall significance values to
statistical maps [Benjamini and Hochberg 1995; Genovese
et al., 2002; Storey, 2002; Zhu et al., 2007]. As they show
the proportion of supra-threshold voxels in a statistical
map, for a range of thresholds, these CDF plots offer a
measure of the effect size in a statistical map. They also
may be used to demonstrate which methodological choices
influence the effect size [Brun et al., 2007; Chiang et al.,
2007; Lepore et al., 2007].
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A CDF of the P-values may be used to assess how well
a method can capture a known relationship between anat-
omy and disease, or to discover new relationships. In a
plot of the observed P-values versus those that would be
expected under the null hypothesis (of no correlation), the
line y 5 x represents the null distribution, where on
average, k% of the map falls below P 5 k/100, for any k,
0 5 � k � 5 100. However, large upward inflections of
this line typically represent significant relationships, as
reflected in the P-maps. In choosing to plot the empirical
CDF of P-values, we note that this chosen presentation is
the flip of the more common FDR PP plot.

RESULTS

Volume Analysis

Because it is widely known that reductions in hippo-
campal volume are associated with declining cognitive
function [Jack et al., 1999], we first examined overall dif-
ferences in hippocampal volume for each of our three
diagnostic groups.
Figure 2 and Table II show that there is a sequential

reduction in volume between AD, MCI, and healthy con-
trols, consistent with many prior studies [Convit et al.,
1997]. Figure 2 also illustrates that the right hippocampus
is slightly larger than the left, reaching significance in the
MCI group, which is also in line with previous studies
[Jack et al., 1989; Jessen et al., 2006; Laakso et al., 2000a,b;
Pennanen et al., 2004; Ridha et al., 2006; Wang et al., 2003,
2006]. This shows that the segmentations of the hippo-
campi from brain MRIs we are working with show the

expected profile of volumetric effects with disease progres-
sion, and that the segmentation approach is measuring
hippocampal volumes accurately enough to differentiate
the three diagnostic groups, at least at the group level.
Table III shows strong correlations between hippocam-

pal volume and (1) MMSE score and (2) sum of boxes
CDR. Correlations are high (0.30–0.38) when all subjects
are pooled, considering the low P-values and the relatively
large sample size. Even when the three diagnostic groups
are split, MMSE correlations are highest in MCI, and sum
of boxes CDR correlations are highest in AD. Also, Table
IV shows the same correlations when controlling for diag-
nosis, age, and sex. Although the partial correlation values
are generally closer to 0, as might be expected when con-
trolling for many variables, the pattern of significance is
generally the same. This shows that the detected associa-
tions between hippocampal atrophy and MMSE (and sum-
of-boxes CDR) are not mediated by diagnostic grouping,
age, sex, and ApoE status, the associations persist even
after adjustment for these other factors.

Diagnostic and Clinical Score Differences

The next test we performed to validate our segmenta-
tions is to make significance maps (P-maps) for covariates
with known linkages to hippocampal morphology. For
example, it is known that regional brain atrophy in AD is
linked with diagnosis, MMSE, global CDR, and sum of
boxes CDR scores [Hua et al., 2008; Thompson et al.,
2004a]. As this is one of the largest studies of AD to date
(400 subjects), effects of potentially subtle covariates
should be detectable.

TABLE II. Mean differences in hippocampal volume (as a percentage) are shown for the groups listed in the left

column, for all subjects, as well as broken down by gender

Left all (%) Right all (%) Left male (%) Right male (%) Left female (%) Right female (%)

Normal-AD 17.75a 18.71a 19.98a 20.77a 15.03a 16.44a

Normal-MCI 9.30a 7.78a 9.80a 7.64b 8.28b 7.58b

MCI-AD 9.32a 11.85a 11.28a 14.22a 7.36a 9.59a

aP < 0.01.
bP < 0.05.

TABLE III. This table reports the correlations between hippocampal volumes and clinical covariates

Left HP
volume
in AD

Left HP
volume
in MCI

Left HP
volume
in CTLs

Left HP
volume
in all

Right HP
volume
in AD

Right HP
volume
in MCI

Right HP
volume
in CTLs

Right HP
volume
in all

MMSE 0.050 0.146a 0.119a 0.296a 0.111b 0.170a 0.094b 0.318a

Sum of Boxes CDR 20.226a 20.134a 20.042 20.326a 20.362a 20.218a 20.072 20.382a

aP < 0.01.
bP < 0.05.
Correlations with global CDR are not reported because all MCI patients had a value of 0.5 and all control patients had a value of 0, so
correlation is not defined.
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Figure 3 shows the P-maps for each pairwise diagnostic
comparison (AD/MCI/Normal), and correlations between
atrophy and MMSE scores, global CDR, and sum of boxes
CDR scores, as the covariates. These results would be
anticipated based on previous studies of HP volume in
AD; the level of atrophy is strongly associated with diag-
nosis (with greatest effects for the AD vs. normal compari-
son), MMSE scores, and CDR scores. The overall signifi-
cance of these mapping results was confirmed by both the
permutation tests of Table VII and the FDR analysis of Fig-
ure 4. The MMSE and CDR maps resemble each other in
part because in our sample MMSE was relatively highly
correlated with global CDR scores (Pearson’s r 5 20.694)
and sum-of-boxes CDR (r 5 20.594); and, partly by defini-
tion, global and sum-of-boxes CDR scores are highly corre-
lated (r 5 0.656).
As diagnosis, MMSE scores, and CDR scores correlated

with hippocampal atrophy as predicted (Figs. 3, 4, and 5),
and because the accuracy of the hippocampal segmenta-
tions was satisfactory on independent test data, we went
on to explore effects of other more subtle factors that
might be associated with atrophy.
Clinical assessments of disease severity (MMSE, CDR)

also show associations with morphology that generally have
higher effect sizes than categorization based on diagnosis
alone. Even so, these maps must be interpreted cautiously,
as MMSE and CDR are used to help determine who is con-
trol versus MCI versus AD, so significant correlations may
simply reflect the diagnostic classification. As such, maps of
MMSE effects, for example, are not necessarily revealing
regions in which atrophy is selectively associated with
MMSE independent of diagnosis, as the possible range of
MMSE scores is almost completely determined by diagno-
sis. We therefore also computed maps of within-group cor-
relations, to assess effects of MMSE, and the two CDR
measures (sum-of-boxes and global) within each of the
three diagnostic groups as shown by Figure 6 and Table
V. This is a much more challenging effect to detect, as it
relies on detecting effects of MMSE within a restricted range.
In addition to testing for group differences using univar-

iate statistics, it is also important to adjust for confounding
effects of other covariates that might influence the diagnos-

tic and clinical correlations. The best way to do this is to
create P-maps while controlling for various other covari-
ates using the general linear model (multiple regression).
Figure 7 shows the three diagnostic P-maps and the three
clinical score P-maps computed after controlling for effects
of age, sex, and ApoE status. The clinical score correlations
also controlled for diagnosis. As shown by the permuta-
tion test results from Table VI, the effects of the primary
covariate of interest, in each case, remained significant af-
ter controlling for the other covariates, showing the robust-
ness of the associations.

Predicting Future Cognitive Decline

One goal of ADNI is to find measures in brain images
that might predict future clinical decline, either for thera-
peutic planning, or to adjust for factors that influence
morphology in future clinical trials. To study this, we
correlated hippocampal morphology at baseline with sub-
sequent change, over the following 1 year, in MMSE,
global CDR, and sum of boxes CDR scores. Correlation
maps were created to identify any regionally specific hip-
pocampal deformations that might predict future clinical
decline. Such associations have already been found for vol-
umetric measures [Devanand et al., 2007] and using maps
to predict conversion, stability, or recovery from MCI
[Apostolova and Thompson, 2007]. In our MCI group, 26
out of 200 subjects converted to AD by 1 year after base-
line. Fewer than three subjects had other types of conver-
sions (e.g., control to AD), so we only correlated atrophy
with a binary variable denoting conversion from MCI to
AD versus remaining diagnosed as MCI.
Figure 8 shows maps revealing some regions in which

atrophy appears to correlate with future outcomes, but
these maps were not significant overall after multiple com-
parisons correction via permutation testing (see Table VII).
We do not present our FDR analysis of these results,
because none crossed the y 5 20x line except at the origin.
Right hippocampal atrophy at baseline was associated at
trend level (P 5 0.056) with future changes in the sum
of boxes CDR score, but a trend-level finding of this
magnitude is likely to occur by chance when assessing sev-

TABLE IV. This table reports the correlations between hippocampal volumes and clinical covariates, after

controlling for diagnosis, age, and sex (diagnostic control was only possible in the full sample)

Left HP
volume
in AD

Left HP
volume
in MCI

Left HP
volume
in CTLs

Left HP
volume
in all

Right HP
volume
in AD

Right HP
volume
in MCI

Right HP
volume
in CTLs

Right HP
volume
in all

MMSE 0.061 0.167a 0.121 0.105b 0.115 0.164a 0.103 0.132a

Sum of Boxes CDR 20.214b 20.138b 20.046 20.140a 20.354a 20.214a 20.097 20.245a

aP < 0.01.
bP < 0.05.
Correlations with global CDR are not reported because all MCI patients had a value of 0.5 and all control patients had a value of 0, so
correlation is not defined.
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eral covariates, and would not therefore survive a Bonfer-
roni correction. Even so, if a more liberal threshold is
applied to define the suprathreshold region (P 5 0.05 at
each voxel), right hippocampal atrophy was associated
with future decline in the sum-of-boxes CDR score (P 5
0.036, corrected). This link requires verification in future
samples. No significant correlations were found between
baseline atrophy and future conversion from MCI to AD,
but this assessment may be underpowered, because only
26 of the 200 MCI subjects had converted 1 year after their
baseline scan. However, 1 year may not be enough time to
observe drastic effects, and the therapeutic goal is to start
AD treatment many years before onset (up to 10 years
beforehand). Hopefully in a longer range study, more pre-
dictive effects will be observed.

Effects of ApoE Genotype

In healthy elderly subjects, presence of the ApoE4 allele
is correlated with future development of AD [Beffert et al.,
1999]. In fact, in our sample, while only 32 (32%) of the

controls carried at least one copy of the ApoE4 allele, 107
(54%) of the MCI subjects and 66 (66%) of the AD subjects
carried at least one copy of the ApoE4 allele, meaning that
the genotype is less common in those who are healthy.
ApoE4 is also associated with differences in cortical mor-
phology on MRI in healthy children [Shaw et al., 2007],
and with ventricular and hippocampal morphology in el-
derly subjects [Chou et al., 2008; Pievani et al., 2007,
Burggren et al., 2008].
Whether there is any direct association between ApoE4

and hippocampal morphology in aging is not yet clear, so
we correlated presence of the ApoE4 allele with the level
of hippocampal degeneration, both (1) in the entire sample
and (2) in subjects who had not yet developed AD (i.e.,
MCI and control groups).
As shown in Figure 9, there appear to be regional correla-

tions between ApoE4 and morphology locally in the hippo-
campal head, but these are not significant after permutation
testing (see Table VII), either in the non-AD subjects or in
the entire sample. FDR analysis also showed no correlation.
Negative findings have little value in small samples, but our

Figure 3.

Significance maps (P-value maps) show strong associations

between hippocampal shape (local volumetric atrophy) and diag-

nosis (left columns) and cognitive and clinical scores (right col-

umns), where blue implies 0.1 or greater. All six maps show

strong statistical correlations that were confirmed in permuta-

tion tests. The right hippocampal head shows greater atrophy in

MCI versus normal groups; the right hippocampal tail shows at-

rophy only in AD-MCI and AD-control comparisons. Most hip-

pocampal regions show greater atrophy in AD than MCI. For

the diagnostic comparisons, we used the number of subjects in

each of the two groups being compared, for the clinical mea-

surement groups, we used all 400 subjects. [Color figure can be

viewed in the online issue, which is available at www.interscience.

wiley.com.]
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finding of no ApoE4 effect in a sample of 370 subjects sug-
gests that any direct effect of ApoE4 on morphology must
be relatively subtle. This lack of an effect could also result
from the fact that it has been shown that the effects of
ApoE4 diminish with age [Juva et al., 2000]. Because all of
our subjects are relatively old, the ApoE4 effects may no lon-
ger be present. Also, effects of ApoE4 may be more readily
observed in a longitudinal study. Finally, it may be that

manual tracing could pick up an ApoE4 effect that auto-
mated tracings may miss; even though the automated
method is capable of handling 400 scans efficiently, it may
be less sensitive than a manual method applied to the same
sample if it were feasible to trace all of them.
It has been hypothesized that ApoE2 may be a protec-

tive allele, guarding against the onset of MCI or AD [Roses
et al., 1995]. Even so, we found no appreciable correlation
between HP morphology and presence of the ApoE2 allele.
In our dataset, only 22 individuals carried the ApoE2 ge-
notype, so its rarity means a statistically significant corre-
spondence would be difficult to observe even in a sample
this large.

Other Covariates

We also explored some other covariates previously asso-
ciated with AD. Higher blood pressure [Skoog et al., 1996],
elevated homocysteine levels [Morris, 2003], poorer educa-
tional level [Stern et al., 1994], and measures of clinical
depression [Ballmaier et al., 2004, 2008] have each been
shown to be associated with AD. Therefore, we attempted
to detect linkages between these factors and regional hip-
pocampal morphology.
Figure 10 shows that there is little evidence of any asso-

ciation between regional HP morphology and blood pres-
sure measures, years of education, and homocysteine lev-
els; none of these maps was significant overall after correc-
tion for multiple spatial comparisons. Table VII shows the
overall significance of these maps. The only measure that
was significantly associated with atrophy was depression
scores; an FDR analysis is shown in Figure 11. Greater at-
rophy of the right hippocampal head was found in those
subjects with higher geriatric depression scores (P 5 0.004,
corrected), an effect clearly seen in the maps (white colors).
The underlying biological explanation for this is not clear,
but genotype may be important, because smaller hippo-
campal volumes in late-onset depression have been linked
to the long variant of the promoter region of the serotonin
transporter gene [Taylor et al., 2005]. One postmortem
study showed that the presence of a lifetime history of
depression was associated with increases in AD-related
neuropathological changes in the hippocampus [Rapp
et al., 2006]. Some studies of hippocampal atrophy in el-
derly depressed subjects have hypothesized that ischemic
small-vessel disease in the hippocampus may be impli-
cated in the pathogenesis of elderly depression [Ballmaier
et al., 2008]. Even so, the correlation between hippocampal
atrophy and depression may be mediated by concomitant
atrophy in other limbic regions, such as the anterior cingu-
late gyrus, where cortical atrophy has been associated with
apathy in AD patients [Apostolova et al., 2007].

Reducing the N

One final avenue that we explored was how many
subjects were necessary to detect a statistically significant

Figure 4.

Cumulative distribution functions (CDFs) of significance maps

for factors previously associated with hippocampal volumes in

AD studies. According to the FDR formulae, the rightmost inter-

section of the y 5 20x line and the CDF for a significance map,

other than the origin, represents the q-value, that is, the highest

P-value threshold for which there are at most 5% false positives.

When CDFs cross the line y 5 20x at a point other than the or-

igin, there is a significant effect, that is, the map can be thresh-

olded in a way that keeps the proportion of false positives under

5%. If other factors are equal (such as sample size), in general, a

larger q-value indicates a more powerful correlation between

the covariate and the level of atrophy, in the sense that there is

a broader range of statistic thresholds that can be used to limit

the rate of false positives to at most 5%. The AD group was

powerfully distinguished from controls (blue line) and from MCI

(red line), with a q-value of 0.280, which implies that 28.0% of

the P-map has significant P-values (less than 0.05), the highest

allowable threshold that still controlled the FDR. Here the sum-

of-boxes CDR (top trace) is the clinical measure correlating

most strongly with atrophy. MMSE and global CDR (dotted lines)

show relatively powerful linkages. AD was powerfully distin-

guished from controls (blue line) and from MCI (red line), with

over 1/4 of the hippocampal surface showing significant differen-

ces at the highest allowable threshold that still controlled the

FDR. In these maps, statistics from left and right HP surfaces are

pooled. The y-value at the intersection point between the CDF

and the line y 5 20x may be thought of as the proportion of the

hippocampal surface in which there are significant results, while

keeping the proportion of false positives under 5%. [Color figure

can be viewed in the online issue, which is available at www.

interscience.wiley.com.]
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Figure 5.

Correlation coefficients (r-maps) for the three diagnostic com-

parisons, showing the strength of association between radial hip-

pocampal size and diagnosis, as well as with cognitive and clinical

scores. The correlations in the MMSE map are positive (blue col-

ors) because a higher MMSE score is associated with less degen-

eration (opposite to all the other ones). These maps correlate

very closely with the corresponding P-maps, and so they are not

shown for the other covariates. Note that in general, the corre-

lations with radial atrophy are around 0.4, in regions where sig-

nificant correlations are detected, which is very similar to the

level of correlations between overall hippocampal volumes and

the same clinical measures (in Table V). [Color figure can be

viewed in the online issue, which is available at www.interscience.

wiley.com.]

Figure 6.

These are the P-maps for clinical covariates broken down by diag-

nosis, where blue implies P-values of 0.1 or greater. They show

where a correlation between radial atrophy and clinical score can

be detected within each of the three diagnostic groups. The signifi-

cance of each of these maps, assessed by permutation, is shown in

Table V. Associations with sum-of-boxes CDR (left panels) are

very strong for both left and right hippocampi in AD and MCI, but

not in controls. The global CDR scores (middle panels) associate

with atrophy only in AD, but not in MCI or controls, as all MCI

patients have a global CDR value of 0.5 and all controls have a

global CDR of 0. Associations with MMSE are weaker than

expected (only significant in MCI on the right), perhaps because

MMSE was used to help define diagnosis, leading to a very re-

stricted range of MMSE scores in each map. [Color figure can be

viewed in the online issue, which is available at www.interscience.

wiley.com.]



linkage between diagnosis or clinical scores and morphol-
ogy. To investigate this, we randomly threw out subjects
from our initial sample of 400, yielding groups of size N 5
304, N 5 200, N 5 104, N 5 40, and N 5 24. These num-
bers were chosen to preserve the 1:2:1 relationship
between normal, MCI, and AD sample sizes, while main-
taining the gender balance in all groups. All the final sam-
ple sizes were therefore multiples of eight, as sets of one
normal, two MCI, and one AD subject of each sex (i.e.,
eight subjects overall) were successively eliminated, to cre-
ate smaller samples. For each different N, a random num-
ber was used to throw out samples; therefore, smaller sam-
ples are not necessarily subsets of the larger ones.
As shown in Figure 12, reducing the sample size, N,

generally decreases the detected effect size, as expected.
Clinical assessments of disease severity (MMSE, CDR) also
show associations with morphology that generally have
higher effect sizes than categorization based on diagnosis
alone. This is natural as the clinical assessments are contin-
uous rather than categorical measures. Figure 12 also
shows how many subjects are necessary to detect a specific
effect reliably (i.e., reject the null hypothesis, if FDR is
used to control for multiple comparisons). Forty subjects
sufficed to discriminate AD from normal groups and to
correlate atrophy with CDR clinical scores (global CDR
and sum of boxes CDR). 104 subjects were sufficient to
correlate atrophy with MMSE, and 200 and 304 subjects,
respectively, were required to distinguish MCI from nor-
mal and MCI from AD. In general, more extensive regions
of statistical association were detected with larger samples.

DISCUSSION

This study is representative of several current research
efforts that use automated methods to measure hippocam-
pal atrophy in AD, including large deformation diffeomor-
phic metric mapping [Csernansky et al., 2004; Wang et al.,

2007], volumetric analysis [Geuze et al., 2005], and fluid
registration [van de Pol et al., 2007]. Clinical measures of
disease burden have also been correlated with regional hip-
pocampal atrophy in several surface-based mapping studies
of AD and MCI [Apostolova et al., 2006a; Becker et al.,
2006; Frisoni et al., 2006], Lewy body dementia [Sabattoli
et al., submitted] and vascular dementia [Scher et al.,
2007a], and of conversion between MCI and AD [Aposto-
lova and Thompson 2007; Apostolova et al., 2006b].
For each surface model, a medial curve was defined as

the line traced out by the centroid of the hippocampal
boundary [Styner et al., 2005; Thompson et al., 2004a]. The
medial curve was defined separately in each individual,
before averaging the surfaces. The operations of averaging
surfaces and defining the medial curve from a surface are
not commutative, because a medial curve derived from an
average surface would not be the same as the average of
the medial curves derived from each individual. Because
we were interested in measuring radial atrophy in each
individual, we computed these measures in each subject
with reference to their own medial curve, but plotted the
resulting statistics on the average surface for the groups
being compared.
One advantage of using the radial distance measure—

and computing it in each individual separately—is that
it is invariant to overall 3D shifts or translations of the
structure. Other methods, such as voxel based morphome-
try for example, may incorrectly pick up global shifts of
the hippocampus as compressions or expansions inside the
hippocampus. This is because the nonlinear deformations
that register structures across subjects in VBM are spatially
regularized (smooth) and may not be precise enough to
register the hippocampal boundaries exactly. By contrast,
if AD is associated with some shifting of the mean
stereotaxic position of the hippocampus, the radial dis-
tance measure will not be affected by it, and will only

TABLE V. Corrected P-values for correlations between

hippocampal atrophy and various clinical covariates

broken down by diagnosis

Left Right

MMSE AD 0.0994 0.226
MMSE MCI 0.104 0.0209
MMSE controls 0.334 0.605
Global CDR AD 0.00894 0.00377
Global CDR MCI 1 1
Global CDR controls 1 1
Sum of boxes CDR AD 0.0181 0.000230
Sum of boxes CDR MCI 0.0372 0.00923
Sum of boxes CDR control 0.194 0.475

Those in italics are deemed significant. The values of 1 (i.e., not
significant) for the global CDR measurements arise because all
MCI patients have a global CDR value of 0.5 and all controls have
a global CDR of 0, so there is no within-group variation with
which to correlate atrophy.

TABLE VI. Permutation testing for the p-maps of

Figure 7, where those in italics are deemed significant

Left Right

Normal vs. MCI 0.149 0.171
Normal vs. AD 0.00282 0.00669
MCI vs. AD 0.0309 0.0607
MMSE 0.0483 0.0395
Global CDR 0.258 0.247
Sum of boxes CDR 0.00908 0.00148

These show the significance of factors hypothesized to be associ-
ated with regional hippocampal atrophy. Most of these tests show
significant effects and are controlled for the effects of age, sex,
ApoE status and (in the case of the last three) for diagnosis. Only
the least discriminative test (global CDR has only 5 possible
scores), and the most subtle diagnostic comparison (MCI v. nor-
mal), were not significant. This may be because of the anatomi-
cally restricted area, in the hippocampal head, where atrophy is
greater in MCI than in controls at the voxel level.
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Figure 7.

Statistical maps (P-maps) of group differences and clinical corre-

lates of hippocampal atrophy, computed after controlling for ApoE

genotype (coded as noted in the methods), sex, and age (for the

maps in the left column) and after controlling for ApoE, sex, age,

and diagnosis (for the maps in the right column). The primary

covariate of interest is indicated above each set of maps. Blue in

the map signifies 0.1 or greater. [Color figure can be viewed in

the online issue, which is available at www.interscience.wiley.com.]

Figure 8.

Significance maps for the correlation between hippocampal

shape at baseline and subsequent change in clinical scores or

diagnosis over the following year, where blue denotes 0.1 or

greater. The sample size is smaller for these maps (noted in

parentheses for each map), as not all subjects had follow-up

scans at the time of this study. For the conversion map, only

those who were MCI at baseline and had a one-year follow-up

diagnosis were included. [Color figure can be viewed in the

online issue, which is available at www.interscience.wiley.com.]



detect localized reductions in volume intrinsic to the hip-
pocampus. This also makes the radial atrophy mapping
technique somewhat robust to small rotational or transla-
tional errors in registering the images across subjects, as
the radial distances are always measured with respect to a
central line threading down the center of the structure.
The radial distance is a reasonable proxy for volumetric
loss, mapping its distribution in 3D, but will not be sensi-
tive to some types of volumetric change. As radial atrophy
is measured with respect to the medial curve, the distance
measure reflects the thickness of the hippocampus in a
given section, which may not reflect an overall volume dif-
ference. For example, any anterior-to-posterior shortening
of the hippocampus would be detected by a volume mea-
sure, but the radial distance measure is not sensitive to
this type of change—it only measures the radial thickness
of the structure relative to a centerline. This may be con-
sidered a benefit rather than a limitation, as there are
some variations across normal subjects in the anterior–pos-
terior extent of the hippocampus, and these variations will
be discounted by the radial mapping approach and will
not be a source of confounding variance.
Although an FDR correction for the number of elements

in each P-map is performed, no correction for the number
of clinical markers is done. Ideally, we should lower our
threshold according to Bonferroni principles. However,
none of the permutation tests were close to the 0.05 level,
so this is not necessary. In a recent study (regarding brain
regions other than the hippocampus), we performed a 5-
fold cross-validation to assess the predictive power of mor-
phometric measures, for assessing conversion to AD from
MCI over a 6 month period, using truly independent sub-
samples [Zhang et al., 2008].

Several prior studies used 3D surface-based maps to vis-
ualize the profile of hippocampal atrophy in AD and MCI,
but they relied almost solely on manual tracing, which is
extremely time-intensive. Becker et al. [Becker et al., 2006]
found greater hippocampal atrophy in AD versus MCI (in
a total of N 5 66 subjects) with greatest differences in the
CA1 and subiculum regions. Frisoni et al. [Frisoni et al.,
2006] (N 5 68), found greater atrophy in AD versus con-
trols, with the main differences in the CA1 field and parts
of the subiculum, with CA2 and CA3 regions relatively
spared. Finally, Apostolova et al. [Apostolova et al., 2006a]
(N 5 65) found MCI vs. AD differences in CA1 for both
hippocampi, and in CA2 and CA3 only on the right.
Another approach to automatically relate Alzheimer’s

disease diagnosis and clinical scores with systematic differ-
ences in brain structure on MRI is voxel-based morphome-
try (VBM). VBM has shown promise in several previous
studies, including Chetelat [Chetelat et al., 2005] which
tracked gray matter loss in a longitudinal study of 18 MCI
patients, Whitwell [Whitwell et al., 2007], who also showed
gray matter loss over 3 years in 63 MCI subjects, and
Good [Good et al., 2002] who compared VBM to ROI anal-
ysis and showed that they compare favorably in detecting
structural differences in Alzheimer’s disease.
In our maps, the right hippocampal head shows greater

atrophy in MCI versus the normal group; the right hippo-
campal tail shows atrophy only in the AD-MCI and AD-
control comparisons. The finding of right anterior hippo-
campal atrophy in MCI is consistent with findings by de
Toledo-Morrell et al. [De Toledo-Morrell et al., 2000], who
observed that the right entorhinal cortex had greatest atro-
phy in elderly patients. Some investigators have argued
that both the EC and hippocampal formation degenerate
before the onset of overt dementia, and that EC volume is
a better predictor of conversion [Dickerson et al., 2007].
Correlations with symptoms have also been examined

using hippocampal maps. Ballmaier et al. [Ballmaier et al.,
2008] mapped atrophy of the hippocampal head in
depressed versus nondepressed elderly controls. Statistical
mapping results, confirmed by permutation testing,
showed that regional surface contractions were greater in
elderly subjects with late- versus early-onset depression in
the anterior aspects of the subiculum, and lateral-posterior
aspects of the CA1 subfield in the left hemisphere. Similar
studies of patients with Lewy body dementia showed a
more restricted pattern of hippocampal atrophy than AD
patients at a comparable level of cognitive impairment
[Sabattoli et al., 2008]. Hippocampal maps may therefore
complement cortical maps in revealing the selective
atrophic patterns that characterize different types of
dementia.
We also aimed to identify regions of hippocampal

degeneration that predicted either a change in diagnostic
classification or a decline in standard clinical measures of
functional decline. Although we correlated atrophy with
several measures of subsequent decline, only the 1-year
decline in sum-of-boxes CDR scores was close to being

TABLE VII. This table shows the permutation-corrected

P-values for all maps shown in this article

Left Right

Normal vs. MCI 0.00784 0.00884
Normal vs. AD 0.0001 0.00011
MCI vs. AD 0.00211 0.000415
MMSE 0.0001 0.0001
Global CDR 0.0001 0.0001
Sum of boxes CDR 0.0001 0.0001
Global CDR change 0.603 0.420
MMSE change 0.394 0.106
Sum of boxes CDR change 0.313 0.0557
MCI to AD 0.434 0.685
ApoE4 all 0.188 0.111
ApoE4 normal/MCI 0.834 0.373
Systolic pressure 0.546 0.501
Diastolic pressure 0.931 0.491
Homocysteine 0.612 0.446
Education 0.283 0.610
Depression 0.452 0.004

Those in italics are deemed significant. Right hippocampal atro-
phy is associated with the change in sum of boxes CDR score over
the following year at trend level, and is very close to the 0.05 sig-
nificance level.
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linked with baseline HP atrophy (P 5 0.056; a post hoc
test gave P 5 0.036, corrected, but used a less stringent
re-thresholding of the data to define suprathreshold statis-

tics). This difficulty in predicting future decline may be
due to the shortness of the follow-up interval; other stud-
ies also reported difficulties in predicting cognitive decline

Figure 9.

Significance maps for ApoE4 as the covariate, with blue being P-values of 0.1 or higher. We ran

two tests, first to determine if the ApoE4 allele was linked with hippocampal atrophy in all sub-

jects (including those with AD), and secondly in just the non-AD subjects. None of these maps

was significant after permutation testing was used for multiple comparisons correction. [Color

figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]

Figure 10.

Significance maps for other covariates including systolic and dia-

stolic blood pressure, homocysteine levels, years of education,

and depression (based on geriatric depression scores), with blue

being 0.1 or more. Each map has some areas of significance;

however only depression has a correlation with atrophy that is

significant after permutation testing (for the right hippocampus).

[Color figure can be viewed in the online issue, which is available

at www.interscience.wiley.com.]
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based on hippocampal volumes alone, especially when
concomitant subcortical brain injuries, such as lacunar
infarcts were present [Mungas et al., 2002]. By contrast,
Apostolova et al. [Apostolova et al., 2006b] recently used
the same surface mapping approach (but based on manual
HP segmentation) and predicted subsequent clinical
decline in 20 MCI subjects. Over a 2-year follow-up period,
six patients developed AD, seven remained stable, and
seven improved. Smaller hippocampi and specifically CA1
and subicular involvement were associated with future
conversion from MCI to AD, whereas MCI patients who
improved and no longer met MCI criteria at follow-up
tended to have larger hippocampal volumes and their sub-
iculum and CA1 regions were relatively preserved.
In our study, right hippocampal atrophy was associated

with depression severity, consistent with several prior
studies of elderly depression. In elderly subjects with late-
versus early-onset depression, Ballmaier et al. [Ballmaier
et al., 2008] found greater HP atrophy in the anterior
aspects of the subiculum, and lateral-posterior aspects of
the CA1 subfield in the left hemisphere. In that study, hip-
pocampal surface contractions correlated with memory
measures in late-onset depressed patients. Our maps and
those of Ballmeier et al. [Ballmaier et al., 2008] are consist-
ent with most earlier studies [Bell-McGinty et al., 2002;
Hickie et al., 2005; Lloyd et al., 2004; O’Brien et al., 2004;
Steffens et al., 2000], showing smaller hippocampal vol-
umes in elderly depressed patients compared to controls.
We detected correlations for only the right HP in this
study, consistent with several other reports that have
shown differences as being more pronounced for the right

than for the left hemisphere [Bell-McGinty et al., 2002; Stef-
fens et al., 2000].
Next, we examined other hypothesized correlations

between hippocampal morphology and educational level,
blood pressure, homocysteine levels, and depression sever-
ity. Each of these factors has been associated with AD, but
they have not yet been directly linked with hippocampal
morphology. Long term high blood pressure has been
associated with earlier AD onset [Skoog et al., 1996], ele-
vated homocysteine levels have been linked with stroke,
and to some extent with AD [Morris, 2003], a lower level
of education has been shown to be associated with demen-
tia [Stern et al., 1994], and depression commonly accompa-
nies AD [Ballmaier et al., 2004, 2008]. We showed that a
strong linkage is absent in all of these cases except for
depression, which has been supported by other studies
[Sheline et al., 1996]. Neither ApoE4 nor ApoE2 was linked
with morphology, either in those without AD or in the full
patient sample, suggesting that it is not a powerful modu-
lator of hippocampal morphology, despite its role as a risk
gene for AD that was confirmed to be over expressed in
our MCI and AD groups versus the normal controls. The
lack of detectable hippocampal differences between ApoE4
groups is also consistent with other cross-sectional MRI
studies that used manual tracing of the hippocampus [Jak
et al., 2007].
Finally, we computed empirically-based estimates of the

minimal sample sizes necessary to detect the well-known
correlations of hippocampal atrophy with diagnosis and
with clinical test scores. When conventional volumetric
measures were used, Jack et al. [Jack et al., 2003] estimated

Figure 11.

FDR analysis with depression as a covariate. Atrophy of the right hippocampus was correlated

with depression scores, but no linkage was detected for the left hippocampus. [Color figure can

be viewed in the online issue, which is available at www.interscience.wiley.com.]
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Figure 12.

Effects of varying the sample size: CDFs of P-values measuring

the effect sizes for correlations between hippocampal atrophy

and different covariates, as the sample size, N, decreases. In gen-

eral, greater effect sizes are shown by CDFs with the most rapid

upswings from the origin. In almost all cases, the results based

on smaller sample sizes show lower effect sizes than those com-

puted from larger samples. There is not a monotonically increas-

ing relation between sample size and the height of the CDF

computed from the sample, as each sample is the result of ran-

dom sampling from a population. In general however, as N

decreases, the power to detect a given effect is less. The mini-

mal effective sample sizes differ for different effects. [Color fig-

ure can be viewed in the online issue, which is available at

www.interscience.wiley.com.]
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that in each arm of a therapeutic trial, only 21 subjects
would be required to detect a 50% reduction in the rate of
decline if hippocampal volume were used as the outcome
measure. This compared with 241 subjects if MMSE scores
were used and 320 if the AD Assessment Scale Cognitive
Subscale (ADAS-Cog) were used.
Here we found that the more subtle MCI state was diffi-

cult to distinguish from either AD or normal aging with
fewer than 200–300 subjects overall, but that the four other
associations (normal vs. AD, and correlations between at-
rophy and MMSE scores, global CDR scores, and sum of
boxes CDR scores) only required 40 subjects to detect (24
was not sufficient). This finding was unexpected; prior
studies, based on manual tracings, required far fewer sub-
jects to differentiate MCI from AD and from controls
[Apostolova et al., 2006a]. The manual segmentations pre-
viously used may have produced more accurate hippo-
campal models, but they were time consuming to create
(often taking several weeks or months, making large-scale
analyses difficult or prohibitive). In our current study, our
automated approach greatly reduced our segmentation
time for a large sample (requiring less than 1 min of CPU
time on a desktop computer). Whether or not this approach
would be optimal for very small studies remains to be pro-
ven, as the improvement in automation versus the need to
trace a small training set of around 20 images may become
limiting in very small samples. Another factor that may have
led to our higher sample size requirements for group differ-
entiation is that ADNI collects scans at many acquisition
sites. Even so, major efforts have been devoted to protocol
design and calibration across scanners and sites.
In future, we plan to map the progression of hippocam-

pal atrophy over time, once the follow-up (longitudinal)
scans are available for the full ADNI sample. Morphomet-
ric correlates of disease progression may be easier to
examine with longitudinal imaging data. A further avenue
of work will apply this method to help distinguish neuro-
degenerative patterns between AD other types of demen-
tia. In our recent studies of Lewy body dementia [Sabattoli
et al., submitted] and vascular dementia [Scher et al.,
2007a], we found a more restricted pattern of hippocampal
atrophy than AD patients at a comparable level of cogni-
tive impairment.
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