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Vesicular secretion is a fundamental process in the body 
with vesicle fusion releasing vesicle contents to the outside.  
This process called exocytosis is usually thought of as leading to 
an all-or-none release of content; regulation of secretory output 
dependent on regulating the numbers of fused vesicles. However, 
it is well established that the fusion pore that forms when the 
vesicle membrane fuses with the cell membrane is dynamic.  
More recent evidence indicates the dynamic opening and closing, 
and the size of the fusion pore, are limiting factors to the release 
of vesicle content. What remains unclear is whether these fusion 
pore behaviors are under cellular control and therefore relevant 
to cell physiology.

Accumulating evidence over the last two years points to 
myosin 2 as one regulator of fusion pore behavior. This is inter-
esting since myosin 2 activity is in turn controlled by kinases 
and phosphatases, well known to be under cellular control.  
We conclude that fusion pore behavior is likely a genuine control 
point for vesicle content release. This leads to a model for secre-
tion with secretory output controlled not only by the numbers 
of vesicles fused but also by the regulation of the behavior of 
individual vesicles.

Vesicular secretion, exocytosis, is fundamental to normal body 
function and health. It is the key process in neurotransmission, 
endocrine, paracrine, or autocrine signaling, and protein secretion 
from cells. As such it plays a pivotal role in almost every aspect 
of animal. Furthermore, secretory dysfunction is central in many 
diseases, such as type 2 diabetes and pancreatitis1-3 and the mecha-
nisms of secretory control the target for many drugs. While some 
of the core molecular components regulating secretion have been 
identified4,5 it is still largely unknown how these are orchestrated 
to control secretion.

Graded Secretion as a New Model for Secretory Control

Neurotransmitters, hormones and peptides are packed inside 
secretory vesicles and classical models for secretion propose that 
these vesicles fuse with the cell membrane and then collapse 
releasing their entire hormone content (Fig. 1A). This is therefore 
an all-or-none model of release and in terms of neurotransmis-
sion is the corollary of the classical descriptions of quantal 
neurotransmitter release.6 However, there is evidence that after 
vesicle fusion the fusion pore can open and close over time.7-10  
While this behavior can still eventuate in vesicle collapse this does 
not necessarily happen. In the neuronal cell field, the mechanisms 
of subsequent vesicle recovery are hotly contested,11,12 but in 
endocrine cells mounting evidence shows whole vesicles can be 
recaptured back into the cell in a processes termed cavicapture13 
(Fig. 1B). Significantly these recaptured vesicles can contain 
residual quantities of peptide hormones13-15 suggesting that 
fusion pore dynamics is a limiting factor in the release of peptides.  
Some papers now suggest that fusion pore dynamics might 
specifically regulate the loss of low molecular weight (<200 Da) 
neurotransmitters.14,16,17 In this new model, we here term graded 
secretion, the dynamics and size of the fusion pore lead to partial 
release of vesicle content (Fig. 1B). The differences between the 
models are fundamental to our understanding of secretory control. 
In the all-or-none model secretory output is adjusted by changing 
the numbers of vesicles fusing. In contrast, the new graded model 
places regulation of vesicle behavior as central to controlling secre-
tory output.

Possible Regulators of Post-Fusion Vesicle Behavior

It could be argued that these complex post-fusion vesicle behav-
iors are essentially random, inherent in the nature of the protein 
and lipid interactions that underlie vesicle fusion and fission. So if 
fusion pore dynamics really were a control point for vesicle content 
release then we would expect to see regulatory mechanisms. 
Gathering evidence now supports this idea of cellular control.  
It has been shown, in some cell types, that complexin II, Munc18, 
dynamin and cysteine string proteins can affect pore dynamics19 
although it is not clear whether these are regulatory factors or 
necessary, static components in a macromolecular pore complex. 
More direct evidence for second messenger control shows that 
calcium,20 and protein kinase C21 can affect fusion pore opening 
possibly acting on calcium-sensitive targets like synaptotagmin.22 
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Further, a growing number of recent reports, from a wide range of 
cell types, are reaching a consensus that F-actin and myosin 2 are 
dynamic regulators of complex vesicle behavior. Work shows that 
actin polymerization is triggered immediately after vesicle fusion 
forming an F-actin network around the vesicle23-28 that keeps the 
fusion pore open27 and stabilizes the vesicle shape.23,24,29,30 In the 
last year two reports show that myosin 2 phosphorylation directly 
regulates fusion pore opening.31,32

Myosin 2 Maintains an Open Fusion Pore

Bhat and Thorn (2009) adds to this body of evidence showing 
that in epithelial cells myosin 2 effects are specific to post-fusion 
vesicle dynamics. The time course of myosin 2 phosphorylation 
and the localization of the myosin 2A isoform are consistent with 
an action at the secretory vesicle. Imaging experiments identify the 
opening of the fusion pore as at least one target of myosin 2 action 
with both the direct myosin 2 inhibitor (-)-blebbistatin and an 

inhibitor of myosin light chain kinase (the likely regulatory kinase) 
ML-9, causing a closure of the fusion pore. This work then leads 
us to conclude myosin 2 acts, probably with F-actin, to keep the 
fusion pore open (Fig. 2). Given that myosin light chain kinase is 
calcium dependent, it supports the idea that fusion pore dynamics 
are under direct cellular control.

Concluding Remarks

We conclude that for many cell types the regulation of the post-
fusion behavior of secretory vesicles is important in the control 
of secretory output. It is now suggested that dysfunction of this 
behavior, in type 2 diabetics, may lead to premature closure of 
the fusion pore and decrease vesicle content release, leading to 
the insufficient insulin secretion often seen in the disease.33,34 
Given the potential importance for our understanding of secretory 
control in health and disease further work is needed to unravel the 
complexities of these processes.

Figure 1. Models for secretory control. (A) in the classical model the entire vesicle content is released, the vesicle collapses and membrane is recovered. 
(B) in the new model, fusion pore opening and closing regulates content release then either the entire or part of the vesicle membrane is recovered 
via an unknown mechanism. In some cases it has been shown that part vesicle content can be recovered.

Figure 2. Myosin 2 action in secretion. F-actin coating and myosin 2 phosphorylation appear after fusion. Together we hypothesize these act to maintain 
the structural integrity of the vesicle and to keep the fusion pore open to allow content loss.
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