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Abstract
Sound scoring methods for sequence database search algorithms such as Mascot and Sequest are
essential for sensitive and accurate peptide and protein identifications from proteomic tandem
mass spectrometry data. In this paper, we present a software package that interfaces Mascot with
Percolator, a well performing machine learning method for rescoring database search results, and
demonstrate it to be amenable for both low and high accuracy mass spectrometry data,
outperforming all available Mascot scoring schemes as well as providing reliable significance
measures. Mascot Percolator can be readily used as a stand alone tool or integrated into existing
data analysis pipelines.
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Introduction
Technological advances in the field of mass spectrometry (MS) enable high-throughput
shotgun proteomics experiments1,2 producing thousands of tandem-MS spectra.3-5
Database search engines are currently the method of choice for annotating spectra with
peptide sequences, the most widely used being Sequest,6 Mascot7 and X!Tandem.8
Database search algorithms calculate for every peptide spectrum match (PSM) a score that
reflects the quality of the cross-correlation between the experimental and the computed
theoretical peptide spectrum. The scored PSMs are ranked, and typically, only the best
matches for each spectrum are reported. However, the top peptide match of a spectrum is not
necessarily correct, and therefore, sensitivity and accuracy of peptide and protein
identification are reliant on sound scoring schemes. Many alternative methods have been
applied: from manual heuristic rules,9 such as simple score thresholds, to more complex
systems that score and classify PSM based on an ensemble of features, thereby exploiting
information present in the search results that is otherwise not used.10-14

A crucial step forward in assessing the reliability of reported PSMs was the introduction of
the target/decoy search strategy pioneered by Moore et al.:15 data is not only searched
against the standard sequence database (target), but also against a reversed,15 randomized,
16 or shuffled17 database (decoy). PSMs obtained from the decoy database can be used to
estimate the number of incorrect target PSMs and directly enable the estimation of the well-
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established false discovery rate18 (FDR). In this context, the FDR can be interpreted as the
expected proportion of incorrect PSMs among the selected set of identifications.19 Since
FDRs are not a function of the underlying score, the q-value metric, proposed by Storey and
Tibshirani20 in the field of genomics, was applied to mass spectrometry by Käll et al.19,21
The q-value can be understood as the minimal FDR at which a PSM is accepted, hence,
enabling the association of specific q-values with any PSM in a data set.19,21 However, it is
important to note that the q-value measure is always a result of all PSMs in a data set; for
example, with a q-value cutoff of 0.05, one would expect 5% incorrect PSMs in the data set.

With the advent of high accuracy instrumentation, it was anticipated that peptide
identification specificity would improve, since peptide mass accuracy in the region of a few
ppm reduces the search space by orders of magnitude.22-24 However, our recent study,
employing the target/decoy search strategy to evaluate the performance of Mascot, revealed
that this is not necessarily the case.25 Mascot reports a probability-based Mascot Identity
Threshold (MIT) for each individual spectrum query, above which a PSM is considered to
be a significant peptide assignment.25 Our study demonstrated that the MIT was
anticonservative (low specificity, but high sensitivity) for stringent peptide mass tolerance
settings (small search space) and conversely very conservative (high specificity, but low
sensitivity) for relaxed parameter settings. Mascot also reports an empirical Mascot
Homology Threshold (MHT) at which a Mascot score can be considered a significant outlier
from the score distribution of all peptide matches to a given spectrum. Overall, the MHT
was shown to be more sensitive than the MIT, but is only reported for PSMs where
sufficient peptide candidates are scored, for example, at relaxed search parameter settings.
These findings led us to implement the Adjusted Mascot Homology Threshold (AMT),
utilizing the MHT at relaxed search parameters that, combined with a peptide mass
deviation filter (AMT/mass-filter) on mass error recalibrated data, was shown to be the most
sensitive Mascot scoring method available for high accuracy data.25

However, a limitation of the AMT/mass-filtering strategy is that it requires a fixed mass
tolerance filter in order to subsequently determine a score threshold that maintains a
predefined FDR. A more flexible implementation would be to use both features, the score
cutoff and the mass deviation, in combination for discrimination of correct and incorrect
PSMs. This can be achieved using the recently introduced iterative machine learning method
called Percolator14 that utilizes target/decoy data.

For each target and decoy PSM, Percolator computes a vector of features that is related to
the quality of the match (e.g., cross correlation scores or mass deviation). Subsequently, the
set of target and decoy PSMs are discriminated by the most relevant feature (e.g., PSM
score) and filtered to a fixed FDR (e.g., 1%). This subset (positive training set), together
with all the decoy PSMs (negative training set), is used for training a support vector
machine. The learnt classifier is then applied to all target/decoy PSMs, again followed by
FDR filtering to continue the training procedure as before (Figure 1, percolator box). It was
shown that, after a few iterations, the system converges and results in a robust classifier that
is then used to rescore each PSM in the data set. For each PSM, the associated q-value, as
well as the probability of the individual PSM being incorrect, is reported.21,26 The whole
process is fully automated and does not require any expert-driven or subjective decisions,
thereby eliminating any artificial biases. The learnt classifier is specifically adapted and
unique for each data set, thus, adapting to variations in data quality, protocols and
instrumentation.

Although Percolator was originally designed for Sequest use only, the availability of a
standard input format enables the use of Percolator as a generic machine learning algorithm
where target/decoy data are available. We have therefore implemented a Mascot extension
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(“Mascot Percolator”) that extracts and computes relevant features from the Mascot search
results, trains Percolator, applies the resulting classifier to each PSM and writes a result file.
We first assessed the AMT/massfiltering approach with Mascot Percolator, but also
extended this method with more features directly available from Mascot search results, such
as Mascot scoring information, peptide and protein properties. Moreover, an extended
feature set comprising information not directly accessible from Mascot search results,
including ion matching statistics and intensity information, was explored. We have
evaluated the performance of Mascot Percolator with high precursor mass accuracy LC-MS/
MS data sets. We also benchmarked it with the low mass accuracy LC-MS/MS data set used
in the original Percolator publication. In a final assessment, we validated the q-value
accuracy reported by Percolator with a protein standard data set. Mascot Percolator is freely
available at http://www.sanger.ac.uk/Software/analysis/MascotPercolator/ including
databases, peak lists and results as presented in this article.

Methods
Samples

Sample 1—A nuclear protein extract of murine embryonic stem cells (2 mg/mL) was
reduced with 1 mM dithiothreitol (Sigma) at 70 °C for 10 min followed by alkylation with 2
mM iodoacetamide (Sigma) at room temperature (25 °C) for 30 min. Ten micrograms of
total protein was separated on a NuPAGE Novex 4-12% Bis-Tris gel (Invitrogen). The gel
was stained with colloidal Coomassie Blue (Sigma). The entire gel lane was excised into 48
bands, destained with 50% acetonitrile, and subsequently digested with sequencing grade
trypsin (Roche) overnight. Peptides were extracted with 5% formic acid, 50% acetonitrile
twice and vacuum-dried in a SpeedVac (Thermo Fisher Scientific). Peptides were
redissolved in 0.5% formic acid and subjected to LC-MS/MS.

Sample 2—Yeast (Saccharomyces cerevisiae strain S288C) sample; see Käll et al.14

Sample 3—A standard protein set of 48 human proteins (Sigma, Universal Proteomics
Standard Set UPS1) was reduced with Tris(2-carboxyethyl)phosphine hydrochloride
(TCEP), and alkylated with iodoacetamide as above, followed by digestion in solution with
sequencing grade trypsin (Roche Applied Science) overnight. To minimize the chance of
detection of low-abundance contaminants in the protein standard sample, a very low
concentration of 10 fmol (per protein) was directly subjected to the LC-MS/MS.

LC-MS/MS Analysis
Peptides were analyzed using an online nano-LC-MS/MS system comprising an LTQ FT
(Thermo Fisher Scientific), a hybrid linear ion trap and a 7-T Fourier transform ion
cyclotron resonance mass spectrometer, coupled with an Ultimate 3000 Nano/Capillary LC
System (Dionex). Samples were first loaded and desalted on a trap (0.3 mm inner diameter
(i.d.) × 5 mm) at 20 μL/min with 0.1% formic acid for 5 min and then separated on an
analytical column (75 μm i.d. × 15 cm) (both PepMap C18, LC Packings) over a 30-min
linear gradient of 4-40% CH3CN, 0.1% formic acid for sample 1. The flow rate through the
column was 300 nL/min. For sample 3, the separation gradient was a 120-min gradient
4-32% CH3CN/0.1% formic acid on a Atlantis C18 column (100 μm i.d. × 25 cm, Waters).

The LTQ FT mass spectrometer was operated in standard data-dependent acquisition mode
controlled by Xcalibur 1.4 software. The survey scans were acquired on the FT-ICR (m/z
400-2000 for sample 1, or 400-1500 for sample 3) at a resolution of 100 000 at m/z 400, and
one microscan was acquired per spectrum. For sample 1, the top three most abundant
multiply charged ions with a minimal intensity at 1000 counts were subjected to MS/MS in
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the linear ion trap at an isolation width of 3 Th. For sample 3, the top 5 most abundant
doubly and triply charged ions were subjected to MS/MS with the isolation width of 1.5 Th.

Precursor activation was performed with an activation time of 30 ms and activation Q at
0.25. The normalized collision energy was set at 35%. The dynamic exclusion width was set
at 5 ppm with two repeats and a duration of 30 s for sample 1, 10 ppm with 1 repeats and
duration of 60 s for sample 3. To achieve high mass accuracy, the automatic gain control
target value was regulated at 4 × 105 (for sample 1) or 1 × 106 (for sample 3) for FT and 1 ×
104 for the ion trap with a maximum injection time of 1000 ms for FT and 100 ms for the
ion trap (sample 1) or 250 ms (sample 3). The instrument was externally calibrated using the
standard calibration mixture of caffeine, a small peptide (sequence: MRFA) and Ultramark
1600.

RAW Data Analysis
LTQ FT MS raw data files were processed to peak lists with BioWorks 3.2 (Thermo Fisher
Scientific). Processing parameters were as follows: precursor masses were set to 800-4500
Da, grouping was enabled allowing 50 intermediate MS/MS scans, precursor mass tolerance
was set to 10 ppm, minimum ion count in the MS/MS was at 15. The number of minimum
scans per group was set to 1. For sample 3, grouping was disabled.

LC-MS/MS analysis and RAW conversion for sample 2 has been previously performed and
described by Käll et al.14

Ms/Ms Database Searching
Sample 1—Peak lists (38 058 spectra) were searched with Mascot 2.2 using the following
parameters: enzyme = trypsin (allowing for cleavage before proline27); maximum missed
cleavages = 2; variable modifications = carbamidomethylation of cysteine, oxidation of
methionine; product mass tolerance = 0.5 Da. The International Protein Index (IPI) database
version 337 (Mus musculus) was used as a protein sequence database. Common external
contaminants from cRAP (a maintained list of contaminants, laboratory proteins and protein
standards provided through the Global Proteome Machine Organisation, http://
www.thegpm.org/crap/index.html, were appended. The compounded database contained 51
355 sequences and 23 635 027 residues. For FDR assessment, a separate decoy database was
generated from the protein sequence database using the decoy.pl Perl script provided by
Matrix Science. This script randomizes each entry, but retains the average amino acid
composition and length of the entries.

Data was searched at 100 ppm peptide mass tolerance to evaluate the mass accuracy of the
data set. After a correction25 of a systematic mass deviation of 3 ppm, 90% and 99% of all
PSMs with a Mascot score greater than 30 fell within a ±5 and ±20 ppm mass window,
respectively. For the most stringent mass tolerance settings where Mascot thresholds are
most sensitive, the data was searched at 20 ppm. Moreover, data was also searched at 500
ppm peptide mass tolerance to enable mass accuracy filtering combined with the adjusted
MHT (Adjusted Mascot Threshold, AMT25). The mass deviation filter was set to 5 ppm,
which was shown to be the most effective filter setting in combination with the AMT
(Supporting Information Figure 1).

Supporting Information Available: Evaluation of the performance of the Adjusted Mascot Threshold (AMT) using mass deviation
filter settings of 50, 25, 10, 5 and 3 ppm, the Mascot Percolator performance for the relaxed (500 ppm) and stringent (20 ppm) Mascot
search, the Mascot Percolator, MIT and MHT performance for the protein standard data set using the basic and extended feature set
over a range of q-values and without any enzyme constraints, supplementary feature information. This material is available free of
charge via the Internet at http://pubs.acs.org.
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Sample 2—Peak lists (35 236 spectra) were searched with Mascot 2.2. against the same
target and decoy databases that were used by Käll et al.14 The following parameters were
used: enzyme = trypsin; maximum missed cleavages = 2; fixed modification =
carbamidomethylation of cysteine; peptide mass tolerance settings = 3 Da; product mass
tolerance = 0.5 Da.

Sample 3—Peak lists (8190 spectra) were searched with Mascot 2.2 against human IPI
(June 2007, 68 322 sequences, 28 806 780 residues) including common external
contaminants from cRAP. Parameters used: enzyme = trypsin; maximum missed cleavages
= 2; variable modifications = carbamidomethylation of cysteine, oxidation of methionine
and deamidation of aspargine and glutamine; peptide mass tolerance = 20 ppm; product
mass tolerance = 0.5 Da. Furthermore, 10 randomized versions of the sequence database
were generated (using the decoy.pl script as described above) and were searched
individually under the same conditions.

Mascot Percolator
Mascot Percolator was implemented with the Java programming language, ensuring
platform independent operation. It utilizes the Mascot Java parser library provided by Matrix
Science (http://www.matrixscience.com/msparser.html) and uses the generic interface to
Percolator (Washington University, http://noble.gs.washington.edu/proj/percolator/). The
latest Percolator version 1.07 was used for this study, which should be taken into account
when comparing results of this study to the original publication of Percolator,14 where
version 1.01 was used.

Mascot Percolator performs the following operations for each run: it reads the Mascot
results files, computes the scoring features as introduced in the Results and Discussion
section and uses these for the Percolator training as was described in the Introduction. In a
last step, the result file of Percolator and the input files are merged to comprise peptide,
protein and scoring information (Figure 1).

Mascot Percolator was designed as a command line program to run either as a stand-alone
application or as a component that can be embedded into existing data processing pipelines,
allowing for streamlining data and automation. An example of executing the program
follows for illustration: “java -cp MascotPercolator.jar cli.MascotPercolator -target 11026 -
decoy 11027 -out 11026-11027”. This command line reads the Mascot results from the files
that are associated with the provided Mascot job IDs (11026. 11027), calculates the features
used for the subsequent Percolator run and writes the results and logs into files prefixed with
11026-11027. Percolator was used with its default parameters. With the use of the basic and
extended feature set, Mascot Percolator processes about 1500 and 75 PSMs/s (2.4 GHz
AMD CPU), respectively.

Data Analysis
Receiver Operating Characteristics for Mascot Percolator were generated by varying the q-
value cutoff values and reporting the corresponding number of true positives. The MIT,
MHT and AMT were used as a reference for comparison. When no MHT was reported, the
MIT was used instead, which is the default behavior of Mascot. Receiver Operating
Characteristics for the MIT and MHT were generated by varying the Mascot significance
threshold p (default 0.05) between 1 × 10−5 to 1 × 10−1, the latter representing the maximum
allowed.

Percolator factors the percentage of target PSMs that are incorrect19 into the q-value
calculation (ref 14 supplementary methods 1.1.2). For consistency, the q-value calculations
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of MIT, MHT and AMT also take this factor into account and were determined using the
software “qvality”:26 0.55 (sample 1), 0.5 (sample 2), 0.77 (sample 3).

Results and Discussion
Mascot Percolator Using Peptide Mass Accuracy Features

Sample 1 is a large data set acquired on a LTQ FT and is representative of a high mass
accuracy proteomics experiment. For this data set, we previously showed that the AMT/
massfiltering method was the most sensitive Mascot scoring method available:25 the data
were searched at 500 ppm peptide mass tolerance, filtered to 5 ppm (Supporting Information
Figure 1) and AMT thresholding was applied, resulting in 13 668 estimated true positive
peptide identifications at a q-value of 1.0%. In comparison, the MIT and MHT at the same
q-value only identified 10 385 and 12 338 true positives at the most restrictive (see
Methods) peptide mass tolerance setting of 20 ppm (Figure 2, AMT, MIT, MHT).

A more flexible implementation would be to use both features, the score cutoff and the mass
deviation, in combination for improved discrimination of correct and incorrect PSMs, for
example, accepting PSMs with slightly larger mass deviation given the PSM scores are
highly significant.

This can be achieved with a machine learning algorithm such as Percolator using features
relevant to the AMT/mass-filtering strategy. Accordingly, the following features were
calculated from the 500 ppm Mascot target and decoy searches and were used for Percolator
training: MHT minus Mascot score, deviation of theoretical and observed peptide mass, and
the absolute value of the mass deviation.

Mascot Percolator identified a total of 14 603 estimated true positive PSMs at a 1.0% q-
value (Figure 2, MP AMT), clearly outperforming the AMT/mass-filtering approach by 7%.
When Mascot Percolator was compared to the Mascot thresholds, it identified 41% (38%)
and 18% (17%) more true positive (unique) peptides than the MIT and MHT, respectively,
significantly outperforming both Mascot thresholds.

These results demonstrate that the combined use of the score threshold and the mass
deviation features as a discriminator outperforms the AMT/mass-filtering strategy. It should
be noted that the used features tackle systematic mass errors and random mass errors
separately, therefore, simplifying the usability since postprocessing to remove systematic
mass shifts is not required. These promising results, combined with the ability of the
Percolator algorithm to handle any number of features, motivated the assessment of more
comprehensive feature sets.

Mascot Percolator Using Extended Feature Sets
In addition to the mass deviation features described previously, features that can be directly
extracted from the Mascot search results were added as inputs to Mascot Percolator,
defining the “basic feature set” (Table 1, feature 1-9). Moreover, an “extended feature set”
that comprises fragment ion matching statistics was also considered (Table 1, feature 1-18).
However, these features are not readily available in the Mascot result files and were
therefore computed by matching the observed spectra against the theoretical spectra. Some
of these features (16-18) were calculated separately for each ion series (e.g., combinations of
b/y series, singly/doubly charged series and neutral loss series).

With the use of the target/decoy Mascot search results for subsequent Percolator training
with the basic and extended feature set, the peptide identification performance improved by
6% and 11%, respectively, as compared to the Mascot Percolator performance using only
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the AMT/mass-filtering features (Figure 2 and Supporting Information Figure 2). Since the
same number of identifications were made for the 500 ppm and 20 ppm search, the basic and
extended feature sets appear to effectively substitute the necessity for strong mass accuracy
discriminators.

Therefore, Mascot Percolator with features that include Mascot scoring and peptide features
as well as ion matching statistics identified more than 58% (52%) and 33% (29%) more true
positive (unique) peptides than the MIT and MHT, respectively, at a 1.0% q-value with a
standard 20 ppm search (Figure 2). This translates into 15% and 6% more protein
identifications over the MIT and MHT, respectively.

Overall, these results are a significant improvement over all current Mascot scoring
methods, including AMT, and eliminate the need to search high accuracy data at relaxed
mass tolerances to improve sensitivity, as discussed in ref 25.

Mascot Percolator Applied to Low Mass Accuracy Data
The following evaluation is concerned with sample 2, a yeast data set acquired on a LTQ
instrument that was used for the evaluation of Sequest Percolator. To enable comparison of
Mascot Percolator and Sequest Percolator, the subsequent experiments were therefore not
only based on the same data, but also on the same target/decoy databases and search
parameters as described by Käll et al.,14 with the only exception being the trypsin
specificity parameter.

With the use of the MIT and MHT, 6426 and 7541 true positive identifications (Figure 3,
MIT, MHT) were made at a q-value of 0.7% and 1.0%, respectively (the Mascot
significance threshold is limited to 0.1, corresponding to a q-value of 0.7%). Using the basic
feature set with Mascot Percolator improved sensitivity over MIT and MHT by more than
39% and 19%, respectively, at a 1.0% q-value (Figure 3, MP basic). Sensitivity was further
boosted by more than 40% when the extended feature set was applied (Figure 3, MP
extended). Compared to the MIT and MHT, this relates to a (unique) peptide identification
gain of 84% (74%) and 57% (49%), respectively, at the standard 1.0% q-value, translating to
57% and 38% more protein identifications, respectively. Overall, these results further
support the performance advantages of Mascot Percolator over the default MIT and MHT.

Moreover, the difference in performance of Mascot Percolator between the basic and
extended feature set was significantly more prominent than it was with data from sample 1,
highlighting that feature contribution can vary substantially for different data sets and
demonstrating the dynamic and adaptive property of the Percolator algorithm (ref 14,
supplement 2). It could be speculated that low accuracy data benefit from more
discriminating features, while high accuracy data already reach the maximum sensitivity
with the basic feature set due to the more restrictive search parameters and known charge
states.

In addition, Käll et al. identified trypsin-specificity as a strong discriminating feature and
consequently they searched without enzyme specificity.14 However, this practice is
significantly more CPU intensive due to the larger search space. Search times in Mascot are
1 order of magnitude slower when semitrypsin is specified instead of trypsin, and 2 orders of
magnitude slower when no enzyme specificity is defined instead of trypsin (http://
www.matrixscience.com/pdf/2006WKSHP1.pdf). Therefore, Mascot Percolator does not
make use of any enzyme specificity related features, but maintains sensitivity with the
extended feature set and performance is comparable to that of Sequest Percolator (Figure 3).
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Validation with a Standard Protein Data Set
The robustness and precision of the q-value was validated in the supplemental material of
the original Percolator publication.14 The employed target/decoy search strategy for q-value
estimation is a widely accepted approach, but various methods exist for generating the decoy
databases. Therefore, we evaluated the accuracy of the q-value as a result of the Matrix
Science decoy.pl script (see Methods) with a protein standard data set (sample 3). Ten
Mascot searches were performed and analyzed with Mascot Percolator, using the same
target but independently generated random databases. This enabled computation of the
standard error for the q-value calculations. For every estimated q-value, the corresponding
observed FDR was determined by counting the incorrect PSMs that did not match the
expected protein sequences.

It was found that q-value estimates for both Mascot Percolator versions (basic and extended
feature set) were in very good agreement with the results obtained by the expected protein
sequences (Figure 4). This implies that the gain in sensitivity (Supporting Information
Figure 3) with Mascot Percolator is limited to valid sequences within the expected error
rates. Moreover, the same data set was used for a more demanding no-enzyme search and
showed similar accuracy of the q-value estimates, demonstrating robust scoring (Supporting
Information Figure 4).

Overall, the q-value evaluations have shown that none of the chosen features introduced any
bias toward severe under- or overestimation of the q-values and that these can be seen as
accurate and reliable estimates of the real error rates. This is a significant improvement over
the standard Mascot results using the MIT or MHT, for which we have previously shown
that the actual FDR can differ by several fold from the expected FDR.25

Conclusion
The Percolator machine learning algorithm was recently introduced to rescore Sequest
results and demonstrated significantly improved sensitivity for peptide and protein
identification. Percolator learns a classifier independently for each data set, thereby adapting
to inherent variations between different data sets, such as changing analytical protocols or
instrumentation. In this work, we have implemented and evaluated Mascot Percolator, a
software package that interfaces Mascot with Percolator. It automatically extracts and
computes relevant features from target/decoy Mascot search results, trains Percolator,
applies the resulting classifier to each PSM and writes a result file. Mascot Percolator has
been developed as a command line tool and can be readily integrated into existing pipelines
or be used as a stand-alone application. A large number of features that are relevant to the
quality of a PSM, such as Mascot scores, parent and fragment mass accuracy, peptide,
protein, as well as ion matching statistics, among others, were explored.

We have shown that Mascot Percolator substantially outperforms previous Mascot scoring
methods for high and low mass accuracy data, in the best case identifying 74% and 49%
more unique peptides and 57% and 38% more proteins than using the MIT and MHT,
respectively. This demonstrates the improved discrimination potential achieved when
several factors that define the quality of a PSM are used collectively for scoring instead of
only one metric. Furthermore, we have shown that the estimated q-values are in very good
agreement with the actual FDRs and represent a significant improvement in accuracy as
compared to the Mascot thresholds.
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MS mass spectrometry

PSM peptide spectrum match

MIT Mascot identity threshold

MHT Mascot homology threshold

AMT adjusted Mascot threshold

FDR false discovery rate
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Figure 1.
Illustration of the Mascot Percolator workflow.

Brosch et al. Page 11

J Proteome Res. Author manuscript; available in PMC 2009 August 28.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 2.
For the 20 ppm Mascot search, the basic and extended Mascot Percolator (MP), the Mascot
Identity Threshold (MIT) and the Mascot Homology Threshold (MHT) performance were
determined as a function of q-value cutoffs ranging from 0 to 0.06. Moreover, the
performance of the mass-filtering (5 ppm) strategy, together with the Adjusted Mascot
Threshold (AMT) and the emulated Percolator AMT method (MP AMT), is shown for the
500 ppm Mascot search. Note: if no MHT was reported, the MIT was used.25
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Figure 3.
The number of estimated correct PSMs were determined for each q-value cutoff for the
basic and extended Mascot Percolator (MP) runs, the Adjusted Mascot Threshold (AMT),
the Mascot Identity Threshold (MIT) and Mascot Homology Threshold (MHT) as well as
for the Sequest Percolator.
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Figure 4.
The estimated q-values were plotted against the false discovery rates as reported by the
protein standard data set for the extended and the basic Mascot Percolator runs. The dotted
lines represent the standard error.

Brosch et al. Page 14

J Proteome Res. Author manuscript; available in PMC 2009 August 28.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Brosch et al. Page 15

Table 1

Features 1-9 Represent the Basic Feature Set and Features 1-18 Represent the Extended Feature Set As Used
in Mascot Percolatora

feature abbreviation feature description

1. mass Calculated monoisotopic mass of the identified peptide.

2. charge Precursor ion charge

3. mScore Mascot score

4. dScore Mascot score minus Mascot score of next best nonisobaric peptide hit

5. deltaM Calculated minus observed peptide mass (in Dalton and ppm).

6. absDeltaM Absolute value of calculated minus observed peptide mass (in Dalton and ppm)

7. isoDeltaM Calculated minus observed peptide mass, isotope error corrected (in Dalton and ppm)

8. uniquePeps None (0), one (1), two or more (2) distinct peptide sequences match same protein

9. mc Missed tryptic cleavages

10. totInt Total ion intensity (log)

11. intMatchedTot Total matched ion intensity (log)

12. relIntMatchedTot Total matched ion intensity divided by total ion intensity

13. binom Peptide Score as described in ref 28

14. fragMassError Mean fragment mass error (in Dalton and ppm)

15. absFragMassError Mean absolute fragment mass error (in Dalton and ppm)

16. fracIonsMatched Fraction of calculated ions matched (per ion series)

17. seqCov Sequence coverage of matched ions (per ion series)

18. intMatched Matched ion intensity (per ion series)

a
Further discussion of these features can be found in supplemental information 1 (Supporting Information).

J Proteome Res. Author manuscript; available in PMC 2009 August 28.


