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SYMPOSIUM

Abstract
Aim:
The aim of this article was to use continuous glucose error-grid analysis (CG-EGA) to assess the accuracy 
of two time-series modeling methodologies recently developed to predict glucose levels ahead of time using 
continuous glucose monitoring (CGM) data.

Methods:
We considered subcutaneous time series of glucose concentration monitored every 3 minutes for 48 hours by 
the minimally invasive CGM sensor Glucoday® (Menarini Diagnostics, Florence, Italy) in 28 type 1 diabetic 
volunteers. Two prediction algorithms, based on first-order polynomial and autoregressive (AR) models, 
respectively, were considered with prediction horizons of 30 and 45 minutes and forgetting factors (ff) of 0.2, 
0.5, and 0.8. CG-EGA was used on the predicted profiles to assess their point and dynamic accuracies using 
original CGM profiles as reference.

Results:
Continuous glucose error-grid analysis showed that the accuracy of both prediction algorithms is overall 
very good and that their performance is similar from a clinical point of view. However, the AR model seems 
preferable for hypoglycemia prevention. CG-EGA also suggests that, irrespective of the time-series model, 
the use of ff = 0.8 yields the highest accurate readings in all glucose ranges.

Conclusions:
For the first time, CG-EGA is proposed as a tool to assess clinically relevant performance of a prediction 
method separately at hypoglycemia, euglycemia, and hyperglycemia. In particular, we have shown that 
CG‑EGA can be helpful in comparing different prediction algorithms, as well as in optimizing their 
parameters.
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Background

Noninvasive or minimally invasive sensors 
have been developed that allow continuous glucose 
monitoring (CGM) for several days.1 There is a general 
agreement that, in the near future, CGM will improve 
diabetes management by facilitating the appropriate 
patient reaction to hazardous and potentially life-
threatening events, such as hypo- and hyperglycemia. 
For instance, in order to allow the patient to prevent 
such events, alerts could be generated on the basis of 
prediction of glucose concentration ahead of time using 
past CGM data and appropriate time-series models. 

A method (potentially usable in real time) based on 
modeling of CGM time series was developed2 to forecast 
future glucose levels for a given prediction horizon 
(PH), e.g., 30 or 45 minutes. The methodology is based 
on the description of past glucose data through either 
a first-order polynomial or a first-order autoregressive 
(AR) model with parameters identified at each sampling 
time by weighted least squares. Results, obtained with 
Glucoday® (Menarini Diagnostics, Florence, Italy) time 
series (3-minute sampling rate) measured in 28 subjects, 
showed that with both time-series models, glucose can 
be predicted with a sufficient margin to mitigate critical 
glycemic events, with a slightly better performance of 
the AR model.

Computing (in real time) glucose prediction can be 
useful in improving the mitigation/prevention of hypo- 
and hyperglycemic events. However, the prediction 
strategy must be as accurate and reliable (from a 
clinical point of view) as possible. In this work we 
propose the assessment of glucose prediction methods 
by continuous glucose error-grid analysis (CG-EGA). 
CG‑EGA is an approach originally introduced3 to 
evaluate the clinical accuracy of CGM sensors in 
terms of both blood glucose (BG) values and BG rate 
of change. In this article, CG‑EGA was used to assess 
the performance and clinical accuracy of prediction 
methodologies rather than sensors. In particular, we 
used CG-EGA to evaluate the clinical accuracy of the 
two prediction algorithms proposed in Sparacino et al.2 
This allowed us to evaluate the clinical impact of using 
predicted glucose levels instead of measured ones in 
making clinical decisions and in preventing hypo- and 
hyperglycemic events. 

Materials and Methods

Subjects
The database consisted of 28 time series obtained in 
type 1 diabetic patients with the GlucoDay (Menarini 
Diagnostics), a minimally invasive sensor composed 
of a subcutaneous microdialysis probe connected to a 
light portable apparatus worn with a belt.4 Each time 
series consisted of subcutaneous glucose concentrations 
determined every 3 minutes for the duration of the 
study (about 48 hours). This same data set was used in 
Sparacino et al.2

Prediction Algorithms

For each time series, glucose data are described locally 
by a time-series model. In Sparacino and co-workers,2 
to which we refer the reader for details, two possible 
models were considered: a first-order polynomial and a 
first-order AR model. In essence, having a fixed model 
structure, model parameters are fitted at each sampling 
time, tN, against past glucose data yN, yN - 1, yN - 2, ...y1. 
During parameter estimation, the sample relative to k 
instants before the actual sampling time (i.e., yN - k) is 
weighted by the scalar (ff)k, where the forgetting factor 
(ff) regulates how past data participate in determination 
of the time-series model (i.e., the higher the ff, the 
longer the memory of the past). Then, the fitted model 
is used to predict the glucose level for a preset PH (e.g., 
with a sampling interval of 3 minutes, PH = 45 minutes 
corresponds to a 15-step-ahead prediction). Because 
Glucoday has no on-board data smoothing or artifact 
rejection, flat low-pass filtering was applied before 
applying the prediction algorithm, which removed 
large spikes occasionally corrupting the time series (for 
details, see Sparacino et al.2). 

Figure 1 displays a representative CGM time series 
(thin line), together with the corresponding predicted 
profile (solid line) obtained by the polynomial model 
with PH = 45 minutes and ff = 0.8 (subject #27). In the 
predicted profile, the glucose level depicted at time t 
was calculated PH minutes in advance, at time t–PH. 
Thus, there is an implicit burn-in interval, which can 
cause rather large errors in the first hour of prediction. 
Notably, the predicted profile is more irregular than the 
measured profile and it is obviously delayed. Sparacino 
and colleagues2 discussed (with several examples) how 
tuning the parameters of the prediction algorithm, 
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i.e., ff and PH, affects delay and smoothness of the 
prediction profile.

in the P-EGA are defined depending on the reference 
rate of BG change. In order to merge R-EGA and P‑EGA 
analysis, CG-EGA computes combined R-EGA and 
P‑EGA accuracy in the three clinically relevant regions 
of hypoglycemia, euglycemia, and hyperglycemia. This 
allows the assessment of sensor performance on an 
error-grid matrix, defined by the extent at which a 
sensor reading would result in accurate, benign, or 
wrong treatment.

Assessment of Prediction Algorithms by CG-EGA
The novelty of this article is the use of CG-EGA to 
assess and compare prediction algorithms. We propose 
that CG‑EGA can be used to evaluate the clinical 
accuracy of a prediction approach, as well as its impact 
on decisions to prevent hypo- and hyperglycemic events. 
Specifically, the 28 predicted profiles were merged in 
order to generate a single “global” time series (which 
resulted consisting of 22,961 samples). Then, CG-EGA 
was used to assess the point and dynamic accuracy of 
the “global” predicted time series using corresponding 
measured CGM profiles as reference. In other words, 
with respect to Kovatchev and co-workers,3 reference BG 
and sensor BG time series were replaced by measured 
and predicted time series, respectively. This allowed us 
to evaluate the clinical impact of using predicted instead 
of measured glucose levels in diabetes management. 

Results

P-EGA and R-EGA
P-EGA and R-EGA scatter plots graphically represent 
the accuracy of a prediction strategy. Figure 2 shows 
P‑EGA (left) and R-EGA (right) obtained using 
polynomial (top) and AR (bottom) models with ff = 0.8 
and PH = 30 minutes (for clarity, while CG-EGA analysis 
was carried out on 22,961 samples, results for only 2870 
are displayed). P-EGA clearly shows that nearly all 
the predicted-measured glucose data pairs fall in the 
AP zones for both polynomial and AR models, thus 
confirming that they both provide an accurate proximity 
between recorded and predicted glucose time series.  
A very few pairs of points fall in the BP zone for both 
time-series models. Less than 10 pairs of points fall in 
the overcorrection CP and in the failure to detect DP 
zones, especially if the AR model is considered. None fall 
in the erroneous reading EP zone. There are no apparent 
differences between P-EGA plots of polynomial and AR 
models, with the exception of a wider spread of the 
former in the BP zone with BG levels under 150 mg/dl.  
R-EGA also shows that the majority of the predicted-
measured glucose pairs fall in the AR and BR zones 

Figure 1. A representative CGM time series (thin line) vs predicted 
profile (thick line) obtained with the first-order polynomial model with 
PH = 45 minutes and ff = 0.8 (subject #27).

Continuous Glucose Error-Grid Analysis 
An algorithm able to predict glucose fluctuation ahead 
of time using CGM data can be useful in improving the 
treatment of diabetes. However, the prediction must be 
as clinically accurate and reliable as possible. In order 
to assess the usability of predicted glucose profiles 
from a clinical point of view, we propose the use of CG-
EGA described briefly here. For a detailed description 
of CG‑EGA, we refer the reader to the quoted literature.

CG-EGA was originally designed to evaluate the clinical 
accuracy of CGM sensors in terms of precision of both 
BG readings and BG rate of change.3 Augmenting the 
original Clarke error-grid analysis,5 CG-EGA examines 
temporal characteristics of CGM data. The analysis 
combines estimates of point and rate precision in a 
single accuracy assessment presented for each one of 
three preset BG ranges: hypoglycemia, euglycemia, and 
hyperglycemia. CG-EGA examines the clinical impact of 
sensor errors, e.g., what type of clinical outcome might 
occur if the patient took action based on erroneous 
CGM feedback about BG levels and rate of change. As 
pointed out elsewhere,3 BG fluctuations are a continuous 
process in time. To reflect the temporal characteristics 
of BG, a new concept of rate-error grid analysis (R-EGA) 
was introduced, and the traditional Clarke EGA was 
modified into a new point-error grid analysis (P-EGA). 
The R-EGA scatter plot is divided into different zones 
(A through E), which have clinical meaning similar 
to the original EGA.5,6 In particular, if a measure falls 
within the accurate AR zone, then there is a nearly 
perfect agreement between reference and sensor glucose 
rates of change. Zone BR includes benign errors that do 
not cause inaccurate clinical interpretation or, if they 
do, treatment action is unlikely to occur or to result 
in a negative outcome. Similarly, corresponding zones 
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for both models. This confirms the very good clinical 
agreement between measured and predicted glucose 
levels. Occasional pairs of points fall in the CR zone (i.e., 
overestimation/underestimation of the measured glucose 
rate of change). Finally, only a few pairs of points fall 
in the erroneous DR and ER zones where the predicted 
profile fails to detect significant changes in the measured 
profile or results in fluctuations opposite to the true rate 
of change. 

AR and BR zones for both models. This confirms the good 
clinical agreement between measured and predicted 
glucose levels, even if a longer PH is considered. A few 
pairs of points fall in the CR zone. This means that the 
measured glucose profile would only very rarely lead 
to overtreatment. Finally, only a few pairs of points fall 
within DR and ER zones.

Figure 2. P-EGA (left) and R-EGA (right) obtained for the “global” 
predicted glucose profile using first-order polynomial (top) and first-
order AR (bottom) models with ff = 0.8 and PH = 30 minutes.

Figure 3. P-EGA (left) and R-EGA (right) obtained for the “global” 
predicted glucose profile using first-order polynomial (top) and first-
order AR (bottom) models with ff = 0.8 and PH = 45 minutes.

Figure 3 shows P-EGA (left) and R-EGA (right) obtained 
using polynomial (top) and AR (bottom) models, again 
with ff = 0.8 but with PH = 45 minutes. P-EGA shows 
that nearly all predicted-measured glucose pairs of 
points fall in the AP and BP zones for both polynomial 
and AR models, even if a higher PH is considered.  
As expected, recorded and predicted glucose time series 
are very close, but P-EGA scatter plots are more spread 
than those with PH = 30 minutes. A few pairs of points 
fall in the overcorrection zone CP, in the failure to detect 
zone DP and also in the erroneous zone EP. No differences 
are evident between the P-EGA plots obtained by the 
two models, with the exception of a higher spread of 
the polynomial model in the BP zone for BG ≤150 mg/dl.  
However, these points correspond to prediction errors 
that do not cause inaccurate clinical interpretation. R‑EGA 
scatter plots (Figure 3, right) show that the majority of 
the predicted-measured glucose pairs of points fall in the 

The wider spread of the scatter plots obtained with 
PH = 45 minutes (as compared to PH = 30 minutes), 
especially in P-EGA, and the presence of a few pairs 
of points in the erroneous EP zones are not unexpected 
because as reported elsewhere,2 an increase of PH 
causes a larger prediction error and wider oscillations 
in predicted profiles. The same procedure was also 
applied for ff = 0.2 and 0.5, with both considered PH 
values (not shown). Similar results were obtained.

CG-EGA Accuracy Table
The CG-EGA computes the so-called error-grid matrix3 
in which predicted glucose levels are considered to be 
clinically accurate when they fall into the A or B zones 
in both P-EGA and R-EGA. Clinically benign errors are 
those with acceptable point accuracy (i.e., A or B P-EGA 
zones) and certain errors in rate accuracy (i.e., C, D, or 
E R-EGA zones), which are unlikely to lead to negative 
clinical consequences. Clinically significant errors are 
those that could lead to a negative clinical action and 
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outcome. Zones considered clinically benign depend on 
the absolute BG level and are therefore different across 
the three BG ranges.3 

Table 1 presents the CG-EGA error-grid matrix as 
defined.3 In particular, combined P-EGA and R-EGA 
results for the “global” predicted glucose profile 
obtained using either the polynomial or the AR time-
series model with ff = 0.8 and PH = 30 minutes are 
reported in the top and bottom sections, respectively, 
of Table 1. According to Table 1, the percentage of 
clinically accurate predictions or predictions resulting 
in benign errors in the polynomial model are 94.5% at 
hypoglycemia (91.9% accurate + 2.6% benign), 98.7% at 
euglycemia (93.1% accurate + 5.6% benign), and 93.9% 
at hyperglycemia (83.4% accurate + 10.5% benign), thus 
confirming that performance of the polynomial model is 
accurate in both normal and critical glucose ranges. The 
percentage of accurate predictions is significantly higher 
in hypoglycemia compared to hyperglycemia, which is 
of particular importance for the forecast of potentially 
life-threatening events. The highest percentage of 

accurate readings plus benign errors is obtained at 
euglycemia, probably because of the smoothness (i.e., 
small changes in the value of the first time derivative) 
of the measured time series in the euglycemic range.

Table 1 shows that the percentage of clinically 
acceptable predictions of the AR model is 96.0% at 
hypoglycemia (94.3% accurate + 1.7% benign), 99.0% at 
euglycemia (90.5% accurate + 8.5% benign), and 93.2% 
at hyperglycemia (78.8% accurate + 14.4% benign). The 
difference between the percentage of accurate readings 
plus benign errors obtained at hypo- and hyperglycemia 
is slightly higher than that with the polynomial model. 
This is confirmed by the hypoglycemic percentage of 
accurate predictions, which is now 20% higher than 
that at hyperglycemia, with a very low percentage of 
benign errors (i.e., 1.7% at hypoglycemia vs 14.4% at 
hyperglycemia). This result shows that the predictive 
strategy based on the first-order AR model is able 
to achieve excellent accuracy as well. As with the 
polynomial model, the percentage of accurate readings 
plus benign errors is highest in the euglycemic range. 

Table 1.
Combined P-EGA and R-EGA Results for “Global” Predicted Glucose Profile Obtained Using First-Order 
Polynomial (Top) and First-Order AR Time-Series (Bottom) Models with ff = 0.8 and PH = 30 Minutes in the Form of 
CG-EGA Error-Grid Matrix
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A 79.2% 3.5% 0.0% 61.4% 10.8% 0.1% 55.4% 3.2% 0.2% 0.1% 0.0%

B 12.7% 1.2% 0.0% 16.0% 4.9% 0.0% 22.8% 2.0% 0.0% 0.0% 0.0%

uC 0.3% 0.0% 0.0% 1.8% 0.7% 0.0% 4.7% 0.6% 0.0% 0.0% 0.0%

IC 1.8% 0.7% 0.0% 1.5% 0.5% 0.0% 3.2% 0.7% 0.0% 0.0% 0.0%

uD 0.0% 0.0% 0.0% 0.2% 0.1% 0.0% 1.0% 0.3% 0.0% 0.0% 0.0%

ID 0.2% 0.0% 0.0% 0.5% 0.3% 0.0% 1.4% 0.2% 0.0% 0.0% 0.0%

uE 0.1% 0.0% 0.0% 0.5% 0.1% 0.0% 2.1% 0.5% 0.0% 0.0% 0.0%

IE 0.3% 0.0% 0.0% 0.4% 0.2% 0.0% 1.4% 0.2% 0.0% 0.0% 0.0%
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A 83.4% 2.2% 0.0% 63.7% 5.4% 0.0% 51.1% 1.5% 0.1% 0.0% 0.0%

B 10.9% 1.2% 0.0% 18.5% 2.9% 0.0% 24.6% 1.6% 0.1% 0.0% 0.0%

uC 0.4% 0.2% 0.0% 3.3% 1.0% 0.0% 6.2% 0.9% 0.0% 0.0% 0.0%

IC 0.7% 0.4% 0.0% 2.7% 0.6% 0.0% 5.3% 0.7% 0.0% 0.0% 0.0%

uD 0.0% 0.0% 0.0% 0.2% 0.1% 0.0% 1.2% 0.1% 0.0% 0.0% 0.0%

ID 0.3% 0.0% 0.0% 0.4% 0.2% 0.0% 1.1% 0.2% 0.0% 0.0% 0.0%

uE 0.0% 0.0% 0.0% 0.3% 0.1% 0.0% 2.0% 0.5% 0.1% 0.0% 0.0%

IE 0.3% 0.0% 0.0% 0.5% 0.1% 0.0% 2.4% 0.3% 0.0% 0.0% 0.0%

Accurate readings Benign Errors Erroneous Readings
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Table 2 presents CG-EGA error-grid matrices obtained 
using either a polynomial or an AR time-series model 
with variable forgetting factors (ff = 0.8, 0.5, and 0.2) 
and prediction horizons (PH = 30 and 45 minutes). 
The polynomial model with ff = 0.8 and PH = 45 
minutes shows slightly lower clinically acceptable 
readings than those obtained with PH = 30 minutes.  
In particular, the percentage of clinically accurate 
predictions or predictions resulting in benign errors are 
89.3% at hypoglycemia (84.9% accurate + 4.3% benign), 
97.4% at euglycemia (86.3% accurate + 11.1% benign), and 
91.0% at hyperglycemia (74.8% accurate + 16.2% benign). 
However, the performance of the polynomial model 
remains similar in both normal and critical glucose 
ranges. In contrast, with PH = 30 minutes the percentage 
of accurate readings plus benign errors is slightly higher 
at hyperglycemia than at hypoglycemia. As expected, the  
highest percentage of clinically acceptable predictions is 
obtained at euglycemia. Similar results are found for the 
AR model, which results in clinically acceptable predictions 
of 89.9% at hypoglycemia (86.5% accurate + 3.4% benign), 
97.3% at euglycemia (81.7% accurate + 15.6% benign), and 
89.6% at hyperglycemia (67.2% accurate + 22.4% benign). 
The difference between percentage of accurate readings 
plus benign errors obtained at hypo- and hyperglycemia 
is very similar to that obtained using the polynomial 
model, suggesting that the AR model is able to achieve 
a good accuracy in predicting potentially life-threatening 
hypoglycemia as well, even if PH increases. Similarly to 
the polynomial model, the highest percentage of accurate 
readings plus benign errors is at euglycemia. Finally, as 
shown in Table 2, results obtained with lower ff values 
(i.e., ff = 0.2 and 0.5) are less satisfactory. 

These findings suggest that the prediction methodology 
based on either a first-order polynomial or a first-order 
AR time-series model2 is accurate in both normal and 
critical glucose ranges. The AR model appears preferable 
for PH = 30 minutes because it provides a slightly higher 
percentage of clinically acceptable readings at both hypo- 
and euglycemia. However, the difference between the 
two models disappears at PH = 45 minutes. Evaluated 
via a t test, the difference between results obtained 
by the two models obtained with different ff and PH 
values was not significant. Thus, the hypothesis that 
the two models have an equivalent impact on clinical 
outcome cannot be rejected statistically. Among the used 
combinations, the first-order AR model with ff = 0.8 
appears preferable because, with an equivalent impact on 
clinical outcomes, it allows for a slightly higher temporal 
gain for preventing hypo/hyperglycemic events. Finally, 
irrespective of the model used, ff = 0.8 is the best among 

the three tested ff values, yielding the highest percentage 
of accurate predictions in all three BG ranges.

Conclusions
Previously introduced methods2 were implemented to 
obtain a prediction of glucose fluctuation from past 
continuous monitoring data 30 or 45 minutes ahead of 
time. Two different time-series models were used: first-
order polynomial and AR models. Results demonstrated 

Table 2.
Percentage of Accurate Readings Plus Benign Errors, 
Accurate Readings, Benign Errors, and Erroneous 
Readings for First-Order Polynomial and First-Order 
AR Predictive Models with ff = 0.8, 0.5, and 0.2 and 
PH = 30 and 45 Minutes, Respectively
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P
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 =
 3

0 ff = 0.8 94.5 96.0 98.7 99.0 93.9 93.2

ff = 0.5 97.2 96.8 98.5 98.3 92.6 91.7

ff = 0.2 97.5 97.5 97.9 98.0 91.4 90.8

P
H

 =
 4

5 ff = 0.8 89.3 89.9 97.4 97.3 91.0 89.6

ff = 0.5 91.4 90.3 96.9 96.5 89.9 87.9

ff = 0.2 92.3 90.6 97.9 96.1 91.4 87.4

ACCURATE 
READINGS

P
H

 =
 3

0 ff = 0.8 91.9 94.3 93.1 90.5 83.4 78.8

ff = 0.5 93.6 93.3 87.8 84.9 75.8 71.6

ff = 0.2 91.7 92.6 82.8 81.5 69.5 66.9
P

H
 =

 4
5 ff = 0.8 84.9 86.5 86.3 81.7 74.8 67.2

ff = 0.5 81.0 82.8 77.3 74.3 64.4 58.5

ff = 0.2 79.7 81.4 82.8 70.0 69.5 55.0

BENIGN 
ERRORS

P
H

 =
 3

0 ff = 0.8 2.6 1.7 5.6 8.5 10.5 14.4

ff = 0.5 3.6 3.5 10.7 13.4 16.8 20.1

ff = 0.2 5.8 4.9 15.1 16.5 21.9 23.9

P
H

 =
 4

5 ff = 0.8 4.3 3.4 11.1 15.6 16.2 22.4

ff = 0.5 10.4 7.5 19.6 22.2 25.5 29.4

ff = 0.2 12.6 9.2 15.1 26.1 21.9 32.4

ERRONEOUS 
READINGS

P
H

 =
 3

0 ff = 0.8 5.5 4.0 1.3 1.0 6.1 6.8

ff = 0.5 2.8 3.2 1.5 1.7 7.4 8.3

ff = 0.2 2.5 2.5 2.1 2.0 8.6 9.2

P
H

 =
 4

5 ff = 0.8 10.8 10.1 2.6 2.7 9.0 10.4

ff = 0.5 8.6 9.7 3.1 3.5 10.1 12.1

ff = 0.2 7.7 9.4 2.1 3.9 8.6 12.6
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that both models allow a satisfactory prediction of future 
glucose levels, with a temporal gain and a precision 
depending on two parameters—PH and ff. 

The specific goals of this article were (i) to investigate 
the utility of the CG-EGA for assessing the predictive 
performance of these two glucose time-series models, 
(ii) to compare their performance from a clinical 
point of view, and (iii) to determine ff and PH values 
that provide the best glucose prediction in terms of 
clinical accuracy. Tuning of the model parameters and 
assessment of the clinical accuracy of prediction were 
based on the CG‑EGA,3 which considers both glucose 
levels and direction and rate of their fluctuations. This is 
a new application of this analysis, which was originally 
designed for evaluation of the accuracy of CGM sensors.3 

Results obtained on 28 Glucoday time series of Sparacino 
and colleagues2 suggest that the prediction based on 
either a first-order polynomial or a first- order AR time-
series model is accurate in both normal and critical 
glucose ranges. The AR model seems preferable when 
a PH of 30 minutes is considered because it provides a 
slightly higher clinically acceptable percentage of readings 
at both hypo- and euglycemia. However, this difference 
disappears when PH = 45 minutes is considered, and the 
performance of the two models is virtually identical from 
a clinical point of view. Since the AR model appears to 
allow for a slightly higher temporal gain in preventing 
hypo- and hyperglycemic events,2 its use is preferable, as 
already speculated.2 Irrespective of the time-series model 
used, ff = 0.8 yields the highest accurate readings in all 
the three glycemics for these 3-minute sampled Glucoday 
data. 

Future work on the assessment of glucose prediction 
algorithms may include an investigation of ways to 
compare and complement the information coming from 
CG-EGA with that provided by other metrics, e.g., the 
quantitative indices of prediction delay and irregularity 
reported in Sparacino et al.2 and the clinical prediction 
performance index proposed in Facchinetti et al.7
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