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One challenge of analyzing samples of DNA sequences is to account for the nonnegligible polymorphisms produced by
error when the sequencing error rate is high or the sample size is large. Specifically, those artificial sequence variations
will bias the observed single nucleotide polymorphism (SNP) frequency spectrum, which in turn may further bias the
estimators of the population mutation rate θ = 4Nµ for diploids. In this paper, we propose a new approach based on the
generalized least squares (GLS) method to estimate θ , given a SNP frequency spectrum in a random sample of DNA
sequences from a population. With this approach, error rate ε can be either known or unknown. In the latter case, ε can
be estimated given an estimation of θ . Using coalescent simulation, we compared our estimators with other estimators of
θ . The results showed that the GLS estimators are more efficient than other θ estimators with error, and the estimation of
ε is usable in practice when the θ per bp is small. We demonstrate the application of the estimators with 10-kb noncoding
region sequence sampled from a human population and provide suggestions for choosing θ estimators with error.

1. Introduction

Sequencing errors can produce many problems for
evolutionary or population genetical analysis of samples
of DNA sequences (Clark and Whittam 1992; Johnson
and Slatkin 2008). Given a random sample of sequence
from a population, artificial polymorphisms caused by
sequencing error will skew both the number and the fre-
quency spectrum of the observed single nucleotide poly-
morphisms (SNPs). This will further skew any estimations
or tests based on the number and/or frequency spectrum of
the SNPs if errors are not properly taken into account. The
bias will be more prominent with increased sample size
because sequencing error accumulates linearly with sam-
ple size while θ increases slower, as implied by coales-
cent theory. Johnson and Slatkin (2008) suggested a rule of
thumb that an uncorrected estimate will be biased signifi-
cantly if nε � θ/L, where n is the sample size (i.e., number
of sequences), ε is the average error rate per site, L is the
sequence length of the given locus, and θ is the population
mutation rate of the locus. θ is equal to 4Nµ for diploids
and 2Nµ for haploids, where N is the effective population
size and µ is the mutation rate for the given locus. θ/L
typically ranges from 10−4 for species with extremely low
diversity, such as the bog turtle (Rosenbaum et al. 2007),
to 10−2 for species with extremely high diversity, such as
human immunodeficiency virus (Achaz et al. 2004). For
human populations, θ/L is approximately 10−3 (Crawford
et al. 2005). Therefore, with a typical sequencing error
rate of 10−5 on the Sanger sequencing platform (Zwick
2005), uncorrected estimates will have problem with larger
than 50 individuals (100 chromosomes) in human pop-
ulations. If next-generation sequencing technologies are
used, their higher sequencing error (10−4) (Mackay et al.
2008; Shendure and Ji 2008) may further reduce the
upper limit of sample size to only 10 chromosomes or
less.
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In response to the problem, researchers are developing
new unbiased estimators and tests for population samples
with sequencing error incorporated into the analysis. John-
son and Slatkin (2006) proposed maximum likelihood esti-
mators for θ and the scaled exponential growth rate using
the SNP frequency spectrum while accounting for sequenc-
ing error via Phred quality scores. They also studied the
effects of sequencing error on two uncorrected estimators
of θ , Tajima’s θ̂π (Tajima 1983) and Watterson’s θ̂K (Wat-
terson 1975), and proposed two unbiased estimators of θ
assuming known ε (see discussions below) (Johnson and
Slatkin 2008). Hellmann et al. (2008) proposed a method
to correct θ̂K , assuming known ε . It is similar to Johnson
and Slatkin (2008)’s θ estimator based on the total num-
ber of polymorphic sites but takes account of the uncer-
tainty of chromosome sampling in a shot-gun sequencing
of mixed diploid individuals. Lynch (2008) proposed sev-
eral methods to correct θ̂π for high-coverage shot-gun ge-
nomic sequences from a single diploid individual. Knudsen
and Miyamoto (2007) incorporated missing data, sequenc-
ing error, and multiple reads for diploid individuals into
a full-likelihood coalescent model of a sample of DNA
sequences. Their model can be used to estimate θ and ε
jointly. However, the computational intensity of calculating
the likelihood limits the application of the model to small
sample sizes (i.e., less than 20 sequences). Assuming a low
but unknown ε , Achaz (2008) proposed two new moment
estimators of θ based on the SNP number and frequency
spectrum while ignoring singletons, on which sequencing
error skews the most, and constructed two new test statis-
tics for neutrality based on the new estimators. Jiang et al.
(2009) developed a method to estimate θ and recombi-
nation rate for shot-gun resequencing data and proposed
some refinements to increase its robustness to sequencing
errors.

Here, we propose a new approach based on the gener-
alized least squares (GLS) method to estimate θ using the
SNP frequency spectrum of a random sample of DNA se-
quences from a population. It can be considered as a modi-
fication and extension of Fu (1994b)’s best linear unbiased
estimator (BLUE) estimator under the assumption of a
moderate to low ε , either known or unknown. When ε is
unknown, it can be estimated sequentially after the estima-
tion of θ . The rational here is to incorporate the variance–
covariance structure of the SNP frequency spectrum, with
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either known or unknown ancestral states of the SNPs, and
reduce the variation of the estimator. Its computational in-
tensity is higher than Achaz (2008)’s moment estimators
but much lower than Knudsen and Miyamoto (2007)’s full-
likelihood method, which makes it applicable to samples
with thousands of sequences. In the following sections, we
first introduce our GLS estimators along with some cor-
rected or uncorrected estimators of θ ; then, we compare
these estimators using coalescent simulation assuming dif-
ferent population parameters. We demonstrate their appli-
cation on a sample of DNA sequences of a 10-kilobase
noncoding region on human chromosome 22. Finally, we
discuss the advantages, limitations, and some technical is-
sues of the GLS estimators.

2. Methods
2.1 Assumptions

Sequencing error at each site is usually modeled as a
binomial or Poisson variable with parameter p= nε . As de-
fined in the Introduction, n is the sample size (i.e., number
of sequences) and ε is the average error rate per site. Here,
we simplify the model by assuming that each site has at
most one sequencing error, which occurs with probability
P. As a rule of thumb, this assumption is approximately
valid with P < 0.01. We further assume that when a se-
quencing error occurs on an ancestral (or mutant) allele,
the probability that it leads to an existing allele (mutant or
ancestral) is u and the probability that it yields a new al-
lele is 1−u. For example, if only point mutation is consid-
ered and assuming that a nucleotide has equal probability
to be read incorrectly as one of the other three nucleotides,
u = 1/3. For a sample of n sequences with length L ran-
domly sampled from a population, we designate ξi as the
(unknown) number of true polymorphic sites with mutation
size i (or SNP class i, i.e., there are i copies of the mutant
allele in the sample) and ξi,k as the observed number of
sites with n− i−k copies of the ancestral allele, i copies of
the mutant alleles and k copy of the new allele (other than
mutant and ancestral alleles) produced by sequencing error
(k = 0,1).

2.2 Approximate GLS Estimators of θ When ε is
Unknown

If ε or p is unknown but assumed to be relatively
small, it is easy to see that most errors are singletons (ξ0,1

or ξn−1,1) because ξ0�∑n−1
i=1 ξi with assumption of infinite

site model and a reasonable θ (Achaz 2008). In another
words, ξi ≈ ξi,0 for 2 � i � n− 1. By ignoring singletons,
we removed most of the errors so that ε ≈ 0 in the remain-
ing SNP classes based on which new estimators can be de-
veloped. For example, Achaz (2008) proposed θ̂K−ξ1

and
θ̂K−η1 estimators, which are modified Watterson (1975)’s
θ̂K estimator and θ̂π−ξ1

and θ̂π−η1 estimators, which are
modified Tajima (1983)’s θ̂π estimator (see details below).
Fu (1994b) proposed a θ estimator based on the GLS
method (θ̂BLUEu and θ̂BLUE f , called BLUE estimators in
Fu 1994b), which makes full use of the observed numbers
of SNP frequency classes, so that it has much less vari-

ability than either Watterson (1975)’s or Tajima (1983)’s
estimator.

Following Achaz (2008)’s idea that because single-
tons are much more likely to be errors comparing to other
SNP class, an estimator based on the SNP spectrum ex-
cluding singletons will be robust to errors. Here, we briefly
describe the modification of Fu (1994b)’s GLS method by
ignoring all singletons and triple allele. See Fu (1994a,
1994b) for more technique details of the method. We first
rewrite the expectations, variances, and covariances of the
observed number of SNP classes as:

E (ξi) = ρiθ (1)

Var (ξi) =Cov(ξi,ξi) = ρiθ +σiiθ 2 (2)

Cov(ξi,ξ j) = σi jθ 2, (3)

where 1� i� n−1. The values of ρi and σi j are dependent
on the population model, which can be obtained theoreti-
cally or numerically using simulation. Assuming a Wright–
Fisher model with constant population size, no selection,
and recombination, their explicit formulas are known (Fu
1995). Writing in a matrix form, we have

E (Y ) = Xθ

Var (Y ) = V̂ ,

where

Y =




ξ2
...

ξn−1


 , X =




ρ2
...

ρn−1




and V̂ is calculated with equations (2) and (3). Then, the
corresponding GLS estimator of θ is

θ̂BLUE−ξ1
=
[
X
′
V̂−1X

]−1
X
′
V̂−1Y.

Because the calculation of V̂ needs prior estimation
of θ , the θ̂BLUE−ξ1

is calculated iteratively (Fu 1994a,
1994b): 1) give an initial value of θ , say θ0 = θ̂π , 2) cal-
culate V̂ with θ0; 3) calculate θ̂BLUE−ξ1

with V̂ and let
θ1 = θ̂BLUE−ξ1

; 4) update V̂ with θ1; and 5) repeat step
3 and 4 until θ̂BLUE−ξ1

converges.
If the ancestral state of each SNP is unknown (i.e., we

do not know which allele is ancestral and which is mutant)
then we need to fold the counting of ξi and ξn−i to include
all SNPs with a minor allele frequency i and major allele
frequency n− i or vice versa. In the folded case,

Y =

(
ξ2+ξn−2

...

)
,X =

(
ρ2+ρn−2

...

)

and V̂ is changed accordingly. The corresponding estima-
tor, designated as θ̂BLUE−η1 , can be calculated with the
same iterative process as described above.

After the θ is estimated, p can be approximated as

p̂=
ξ1,0+ξ0,1−E

(
ξ1|θ̂
)

ξ1,0+ξ0,1−E
(
ξ1|θ̂
)
+ξ0,0

(4)
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for unfolded counting or

p̂=

ξ1,0+ξ0,1+ξn−1,0+ξn−1,1

−E
(
ξ1|θ̂
)−E

(
ξn−1|θ̂

)
ξ1,0+ξ0,1+ξn−1,0+ξn−1,1−E

(
ξ1|θ̂
)

−E
(
ξn−1|θ̂

)
+ξn,0+ξ0,0

, (5)

for folded counting, where E
(
ξ1|θ̂
)

and E
(
ξn−1|θ̂

)
are

calculated using equation (1) with θ replaced by θ̂ . Then,
ε̂ is simply p̂/n. For convenience, we use the subscript of
the θ estimator used in ε̂ to designate different ε̂s. For ex-
ample, ε̂BLUE−ξ1

means the ε̂ calculated using θ̂BLUE−ξ1
.

2.3 GLS Estimators of θ When ε is Known

When ε is known, we can develop a more precise GLS
estimator of θ by making full use of this information. First,
we need to derive expectations, variance, and covariances
of ξi,k. For simplicity, letting ξi = 0 if i< 0 or i� n then

E (ξi,0|p,θ) = E (ξi)+ p
i+1

∑
k=i−1

bk
i−k,0E (ξk)

× (i= 0, · · · ,n) (6)

E (ξi,1|p,θ) = p
i+1

∑
k=i

bk
i−k,1E (ξk)

× (i= 0, · · · ,n−1) (7)

Var (ξi,0|p,θ) = p
i+1

∑
k=i−1

ck
i−k,0,i−k,0E (ξk)

+ p2
i+1

∑
k=i−1

dk
i−k,0,i−k,0E (ξk)

+
i+1

∑
k=i−1

j+1

∑
l= j−1

(
ak

i−k,0+bk
i−k,0 p

)

×
(

al
j−l,0+bl

j−l,0 p
)

Cov(ξk,ξl)

(i= 0, · · · ,n) (8)

Var (ξi,1|p,θ) = p
i+1

∑
k=i

ck
i−k,1,i−k,1E (ξk)

+ p2
i+1

∑
k=i

dk
i−k,1,i−k,1E (ξk)

+ p2
i+1

∑
k=i

j+1

∑
l= j

(
bk

i−k,1

)

×
(

bl
j−l,1

)
Cov(ξk,ξl)

(i= 0, · · · ,n−1) (9)

Cov
(
ξi,0,ξ j,0|p,θ

)
= p

i+1

∑
k=i−1

j+1

∑
l= j−1

δk=lc
k
i−k,0, j−k,0E (ξk)

+ p2
i+1

∑
k=i−1

j+1

∑
l= j−1

δk=ld
k
i−k,0, j−k,0E(ξk)

+
i+1

∑
k=i−1

j+1

∑
l= j−1

(
ak

i−k,0+bk
i−k,0 p

)

×
(

al
j−l,0+bl

j−l,0 p
)

Cov(ξk,ξl)

(i= 0, · · · ,n; j = 0, · · · ,n; i �= j) (10)

Cov
(
ξi,1,ξ j,1|p,θ

)
= p

i+1

∑
k=i

j+1

∑
l= j

δk=lc
k
i−k,1, j−k,1E (ξk)

+ p2
i+1

∑
k=i

j+1

∑
l= j

δk=ld
k
i−k,1, j−k,1E (ξk)

+ p2
i+1

∑
k=i

j+1

∑
l= j

(
bk

i−k,1

)

×
(

bl
j−l,1

)
Cov(ξk,ξl)

(i= 0, · · · ,n−1; j = 0, · · · ,n−1; i �= j)
(11)

Cov
(
ξi,0,ξ j,1|p,θ

)
= p

i+1

∑
k=i−1

j+1

∑
l= j

δk=lc
k
i−k,0, j−k,1E (ξk)

+ p2
i+1

∑
k=i−1

j+1

∑
l= j

δk=ld
k
i−k,0, j−k,1E (ξk)

+
i+1

∑
k=i−1

j+1

∑
l= j

(
ak

i−k,0+bk
i−k,0 p

)

×
(

bl
j−l,1 p

)
Cov(ξk,ξl)

(i= 0, · · · ,n; j = 0, · · · ,n−1) , (12)

where δk=l is an index function, which equals to 1 if k = l
or 0 otherwise; ai

m, j, bi
m, j, ci

m, j1,k, j2
, and di

m, j1,k, j2
are func-

tions of i, j, j1, j2, m, k, n, and u. Their detailed ex-
pression and the derivation of the above formulas can be
found in the Appendix. E (ξi), Var (ξi), and Cov(ξi,ξ j)
(1� i, j � n−1) can be calculated using equations (1)–
(3).

In practice, ξ1,0 and ξ0,1 are indistinguishable even
when the ancestral states are known. To avoid the above
difficulties, we combine observations of ξ1,0 and ξ0,1.
The general formulas for calculating the expectation of
the combined observations and the variance–covariance
of the combined observation with other (combined)
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observations are

E

(
∑

i
ξxi,yi |p,θ

)
=∑

i
E (ξxi,yi |p,θ) (13)

Var

(
∑

i
ξxi,yi |p,θ

)
=∑

i
Var (ξxi,yi |p,θ)

+
i

∑
j=1

i

∑
k=1

Cov
(
ξx j ,y j ,ξxk,yk |p,θ

)
(14)

Cov

(
∑

i
ξxi,yi ,ξw,z|p,θ

)
=∑

i
Cov(ξxi,yi ,ξw,z|p,θ)

(15)

Cov

(
∑

i
ξxi,yi ,∑

j
ξw j ,z j |p,θ

)
=∑

i
∑

j
Cov
(
ξxi,yi ,ξw j ,z j |p,θ

)
,

(16)

where ξxi,yi , ξw,z, and ξw j ,z j can be any given ξk,0 or ξk,1.
For example, to apply equations (13)–(14) to ξ1,0 and ξ0,1,
we simply let x1 = 1, y1 = 0, x2 = 0, and y2 = 1. By incor-
porating E (ξ0) = L−∑n−1

i=1 E (ξi), we have

E (ξ1,0+ξ0,1|p,θ)

= ρ1θ +Lp+

(
−

n−1

∑
i=1

ρi+
2u
n

ρ2+
1−u−n

n
ρ1

)
θ p.

A GLS estimator can be calculated as follows. If the
ancestral state of each site is known or can be inferred from
outgroups, let

Y =




ξ1,0+ξ0,1

ξ2,0

...

ξn−1,0

ξ1,1

...

ξn−1,1



, X10 =




ρ1

ρ2

...

ρn−1

0
...

0



,

X01 =




L

0
...

0

0
...

0



, X11 =




−∑n−1
i=1 ρi+

2u
n ρ2+

1−u−n
n ρ1

∑2+1
k=2−1 bk

2−k,0ρk

...

∑n−1+1
k=n−1−1 bk

n−2−k,0ρk

∑1+1
k=1 bk

1−k,1ρk

...

∑n−1+1
k=n−1 bk

n−2−k,1ρk




then

E (Y ) = X10θ +X01 p+X11 pθ . (17)

The GLS estimator of θ is

θ̂GLS =
[
(X10+X11 p)

′
V̂−1 (X10+X11 p)

]−1

× (X10+X11 p)
′
V̂−1 (Y −X01 p) , (18)

again V̂ is an estimation of the variance–covariance matrix
of Y , which can be calculated using equations (8)–(16).
The same iterative process described above is then used
to calculate θ̂GLS. In the case that ancestral states are un-
known, we need to further fold ξi,0 with ξn−i,0

(
2� i< n

2

)
,

and ξi,1 with ξn−i−1,1
(
2� i< n−1

2

)
because they are indis-

tinguishable. Let

Y =




ξ1,0+ξ0,1+ξn−1,0+ξn−1,1

ξ2,0+ξn−2,0

...

ξ1,1+ξn−2,1

...



,

X10 =




ρ1+ρn−1

ρ2+ρn−2

...

0
...



,

X01 =




L

0
...

0
...



,

X11 =




−∑n−1
i=1 ρi+

2u
n ρ2+

1−u−n
n ρ1+

2u
n ρn−2

+ 1−u−n
n ρn−1 ∑2+1

k=2−1 bk
2−k,0ρk

+∑n−2+1
k=n−2−1 bk

n−2−k,0ρk

...

∑1+1
k=1 bk

1−k,1ρk+∑n−2+1
k=n−2 bk

n−2−k,1ρk

...




and follow the same steps as described for θ̂GLS. We
can calculate the GLS estimator with folded observations.
Later in this paper, we designate θ̂GLS f to be the GLS esti-
mator using folded observations and θ̂GLSu to be that using
unfolded observations.

2.4 Comparing to Other Estimators of θ Using
Simulation

Three types of corrected and uncorrected estimators
of θ were compared in this study, which will be briefly
introduced below. Johnson and Slatkin (2006)’s method
was not compared because here, we assume the detailed
Phred quality scores is unknown. Neither did we include
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FIG. 1.—Efficiency of θ and ε estimators with increase of ε . Only the subscripts of the estimators were shown.

Knudsen and Miyamoto (2007)’s method because of its
computational intensity and limitation to small sample
sizes. Hellmann et al. (2008) and Johnson and Slatkin
(2008)’s estimators based on the total number polymorphic
sites should have similar performances, so only the latter
was included in our comparison.

The first type of estimator (type I) is based on the to-
tal number of polymorphic sites. An uncorrected estima-
tor of this type is the widely used Watterson’s estimator
θ̂K = K/an (Watterson 1975), where an = ∑n−1

i=1 1/i and K
is the total number of polymorphic sites in the sample. As-
suming a known ε , Johnson and Slatkin (2008) proposed a
corrected estimator (with modification):

θ̂Kc =
K−E [q2]L

an (1−E [q1]−E [q2])
,

where

E [q1] =
1
an

n−1

∑
i=1

1
i

[(
ε

m−1

)i

(1− ε)n−i

+(1− ε)i
(

ε
m−1

)n−i

+ ε
m−2
m−1

(
ε

m−1

)n−1
]
,

E [q2] = 1− (1− ε)n− ε
(

ε
m−1

)n−1

,

and m is the total number of possible alleles in a site. As-
suming an unknown but small ε , Achaz (2008) proposed

two corrected estimators of this type. They are θ̂K−ξ1
=(

∑n−1
i=2 ξi

)
/(an−1) for unfolded observations and θ̂K−η1 =(

∑n−2
i=2 ξi

)
/ [an−n/(n−1)] for folded observations.

The second type of estimator (type II) is based on
the average difference between two sequences. An uncor-
rected estimator of this type is Tajima’s θ̂π =

(n
2

)−1 ∑n
i< j πi j

(Tajima 1983), where πi j is the number of difference be-
tween sequences i and j. Johnson and Slatkin (2008)’s cor-
rected estimator of this type (with modification) is

θ̂πc =
θ̂π −E [p2]L

1−E [p1]−E [p2]
,

where

E [p1] =
2ε (1− ε)

m−1
+
(m−2)ε2

(m−1)2

E [p2] = 2ε (1− ε)+
m−2
m−1

ε2.

Achaz (2008)’s corrected estimators of this type are

θ̂π−ξ1
=

2
(n−1)(n−2)

n−1

∑
i=2

i(n− i)ξi

for unfolded observations and

θ̂π−η1 =
2

n(n−3)

n−2

∑
i=2

i(n− i)ξi

for folded observations.
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FIG. 2.—Efficiency of θ and ε estimators with increase of n. Only the subscripts of the estimators were shown.

The third type of estimator (type III) compared is the
GLS estimator. Our estimators are corrected GLS estima-
tors, which can be considered an extension to Fu (1994b)’s
uncorrected GLS estimators θ̂BLUEu and θ̂BLUE f for un-
folded and folded counting, respectively.

We compared the performances of the estimators us-
ing coalescent simulations (e.g., Hudson 2002). We as-
sumed a Wright–Fisher model with constant population
size, no selection, no recombination and a simple infinite
sites model for mutation. For each combination of parame-
ters, 10,000 samples were simulated. Only point mutations
(u = 1/3) were simulated. The GLS estimation iteration
was stopped either when the absolute value change be-
tween the update of θ̂GLS is smaller than 10−3 or when
200 updates of equation (18) was conducted (see Methods
for details). Sequencing error at each site was simulated
to follow a binomial distribution with parameter p. Be-
cause θ̂BLUE−ξ1

, θ̂BLUE−η1 , θ̂K−ξ1
, θ̂K−η1 , θ̂π−ξ1

, θ̂π−η1 ,
θ̂BLUEu, and θ̂BLUE f assume at most two alleles at each
site, for those estimators if a site has more than one type
of non-ancestral allele, the one with the largest count is
regarded as the mutant allele and all other non-ancestral
alleles are regarded as errors from ancestral alleles. For ex-
ample, if a site has two non-ancestral alleles with counts
1 and 2 then it will be added to ξ2 instead of ξ1. p̂ was
calculated with equation (4) using θ̂BLUE−ξ1

, θ̂K−ξ1
, and

θ̂π−ξ1
or with equation (5) using θ̂BLUE−η1 , θ̂K−η1 , and

θ̂π−η1 .

3. Results
3.1 Simulation Comparison

For each set of simulated samples with a given combi-
nation of parameters, we compared the mean and variance
of each estimator. We also calculated the mean squared er-
ror (MSE) of each estimator and the variance of an optimal
estimator, Vmin. For θ , the large-sample approximation of

Vmin is Vmin (θ) = θ
[
∑n−1

i=1 (θ + i)−1
]−1

(Fu and Li 1993).
Because we know the actual number of errors introduced
in each simulated sample, say nerr, we simply use nerr/nL
as the optimal estimator of ε and calculated its variance
Vmin (ε) in simulated samples. The ratio Vmin/MSE indi-
cates the relative efficiency of each estimator to the optimal
estimator.

As expected, with increasing p, via either an increas-
ing error rate ε or an increasing sample size n, the un-
corrected θ estimators perform poorly (data not shown).
The four uncorrected θ estimators (θ̂K , θ̂π , θ̂BLUEu, and
θ̂BLUE f ) are upper biased significantly with increasing ε
because they assume every polymorphism is a result of
mutation. As a result, the uncorrected θ estimators are the
least efficient estimators comparing to the corrected ones
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FIG. 3.—Efficiency of θ and ε estimators with increase of L and θ/L. Only the subscripts of the estimators were shown.

(data not shown). Among them, θ̂BLUEu and θ̂BLUE f are
the most sensitive to sequencing error, whereas θ̂π is the
least sensitive. Looking at this in another way, although
under the null hypothesis of no sequencing error, the order
of their relative efficiency is θ̂BLUEu > θ̂BLUE f > θ̂K > θ̂π ,
the order is totally reversed when p is larger. The above
observations can be partially explained by the weight each
estimator puts on ξi. Although θ̂K puts equal weight on ev-
ery ξi, θ̂π puts less weight on ξi than on ξ j if i< j. On the
contrary, θ̂BLUEu puts more weight on ξi because under the
assumption of no error, ξi is a more reliable observation
than ξ j. However, the opposite is true with errors.

On the other hand, the efficiency of corrected θ esti-
mators is less affected by increasing p. As to those with un-
known ε , all are approximately unbiased. Their variances
are relatively unchanged with the increase of ε or even
decrease slightly with an increase of n (data not shown).
The order of their efficiency is θ̂BLUE−ξ1

> θ̂BLUE−η1 �
θ̂K−ξ1

≈ θ̂K−η1 > θ̂π−ξ1
≈ θ̂π−η1 (figs. 1 and 2, θ̂K−η1 and

θ̂π−η1 are not shown because they have a very similar ef-
ficiency as θ̂K−ξ1

and θ̂π−ξ1
, respectively). For the estima-

tors with known ε, all of them are approximately unbiased
except that θ̂GLSu and θ̂GLS f are upper biased when p >
0.01. The variances of θ̂Kc, θ̂GLSu and θ̂GLS f increase with
the increase of ε or n except when n is small (say < 100).
As a result, their efficiency decreases with increasing p

(figs. 1 and 2). With p< 0.01, the order of their efficiency
is θ̂GLSu > θ̂GLS f > θ̂Kc > θ̂πc (figs. 1 and 2). In summary,
with a small to moderate ε (when P < 0.01 and known),
θ̂GLSu and θ̂GLS f are the most efficient θ estimators;
otherwise, θ̂BLUE−ξ1

and θ̂BLUE−η1 are the most efficient
estimators.

Increasing θ , either by increasing θ/L or by L, affects
the variances but not the means of the θ estimators. The
variances of all estimators increase with the increase of θ .
As a result, the efficiency of corrected estimators decrease
with an increase of θ , with the exception of θ̂Kc, which
actually increases when θ/L is small (fig. 3). Among the
corrected estimators, the GLS estimators perform better
than others, whereas those with unfolded counting perform
better than those with folded counting (fig. 3).

The differences between the estimators of p are
smaller compared with their corresponding θ estimators.
Because the estimation of p is based on prior estimation
of θ , it is easy to understand that a more accurate esti-
mation of θ will help with a more accurate estimation of
p. In general, using a θ estimator with unfolded counting
will provide a more efficient estimation of p than using an
estimator with folded counting. Among those θ estimators
with unfolded (or folded) counting, the GLS estimator usu-
ally has the highest efficiency, whereas the type II estimator
usually has the lowest efficiency. With an increase of p, the
efficiency of the estimators of p increase to a certain level
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and then decreases (figs. 1 and 2). Even though their vari-
ances converge toward Vmin (ε) with an increase of p, they
tend to underestimate ε at the same time; and at a certain
point, the efficiency gain from the variance is not sufficient
to compensate for the efficiency loss from bias. With an in-
crease of L, the biases of the estimators do not change but
their variances decrease at the same pace as the optimal es-
timator. With the increase of θ/L, both the biases and the
variances of the estimators increase. As a result, their ef-
ficiency always decreases with an increase of θ , which is
faster with an increase of θ/L than with an increase of L
(fig. 3).

3.2 Application Example

Zhao et al. (2000) sequenced a 10-kilobase noncod-
ing region on human chromosome 22 from 64 individ-
uals collected worldwide. Homologous sequences were
obtained from a chimpanzee and an orangutan as out-
groups. Among the 78 variant sites originally found from
the alignment, 43 (including all 24 singletons) were ver-
ified by restriction fragment length polymorphism, rese-
quencing, or subcloning. Four errors were found from the
singletons, including three originated from nonvariant sites
and one originated from a doubleton. The authors also de-
scribed an error that changed a site from the 10 mutant
class to the 9 mutant class. So it is possible for us to re-
cover an uncleaned data set with five errors.

Here, we demonstrate the application of the estima-
tors using both the cleaned data set and the uncleaned data
set. The cleaned sequences were retrieved from GenBank
and aligned using MUSCLE (Edgar 2004). Ancestral states
of alleles were determined using the outgroup sequences.
After trimming and removing insertions and deletions, the
data set includes n = 128 and L = 9413 and 69 polymor-
phic sites (table 1). θ̂BLUE−ξ1

= 14.964 and ε̂BLUE−ξ1
=

2.5×10−6 were estimated using the cleaned data (table 2).
If we assume there is no error (ε = 0), θ̂GLSu = 16.300
and θ̂BLUEu = 16.238 (table 2) can be regarded as an upper
bound of the true θ . We then restored the five errors back
to the data set according to Zhao et al. (2000) (table 1).
Results show that θ̂K , θ̂π , and θ̂BLUEu are inflated by the
erroneous singletons, whereas θ̂BLUE−ξ1

is not (table 2).
Actually, θ̂BLUE−ξ1

decreases slightly to 14.499 mostly
due to a decrease in the number of doubletons. Because
we already know there are at least five errors, we know
a lower bound of ε̂ = 5/nL = 4.15× 10−6. Using this ε̂ ,
θ̂GLSu = 15.452, which is our best approximation of an up-
per bound of the true θ with the uncleaned data.

4. Discussion

The results reported here show that the GLS estima-
tors of θ perform well with a small to moderate sequenc-
ing error rate ε . When P < 0.01, the GLS estimators with
a known ε (θ̂GLSu and θ̂GLS f ) are the most efficient estima-
tors. For the θ estimators with unknown ε , the GLS estima-
tors (θ̂BLUE−ξ1

and θ̂BLUE−η1 ) are relatively more efficient
than other corrected estimators. In general, the GLS esti-
mators using unfolded observation are superior to those
using folded observations. In addition, because the GLS

Table 1
Counting of Sites with Different Number of Mutant Alleles in
the Example Data Set

No. of Mutant Site Counts (Cleaned) Site Counts (Uncleaned)

1 18 22
2 20 19
3 3 3
4 3 3
5 1 1
7 1 1
8 3 3
9 0 1

10 4 3
12 1 1
21 1 1
27 1 1
32 1 1
45 1 1
46 1 1
54 1 1
55 1 1
56 1 1
59 1 1
69 1 1
77 1 1
79 1 1
89 1 1

114 1 1
118 1 1

Total 69 72

estimators are based on summary statistics of the sample,
the computation is much faster than Knudsen and
Miyamoto (2007)’s method based on full likelihood. From
this, we conclude that the GLS estimators are a good
balance between estimation efficiency and computation
efficiency.

The GLS estimators also have obvious limitations.
First, it assumes a maximum of one sequencing error for
each site, which may not be true when n and ε are large.
When P > 0.01, θ̂GLSu and θ̂GLS f tend to overestimate θ .
We also observe that the efficiency of θ̂GLSu and θ̂GLS f
worsens faster than that of other estimators with increase
of p. The reason is similar to that of the efficiency reverse
of θ̂BLUEu, θ̂BLUE f , θ̂K , and θ̂π with and without error, as
we briefly discussed in the Results. That is, when there are
more errors than assumed (or can be corrected), the count-
ing of rare variants is further skewed. Comparing to other
estimators, θ̂GLSu and θ̂GLS f put much more weight on rare
variants than on common variants, which causes them to
be biased more than other estimators. Although θ̂BLUE−ξ1

and θ̂BLUE−η1 are more robust to p, their efficiency de-
creases when p is large. Second, they cannot easily handle
missing data. However, with our limited simulations, we
observed that if missing data is simply imputed using the
observed allele frequencies, a random missing rate of up to
10% seems to only have a small effect on the efficiencies
of θ̂GLSu, θ̂GLS f , θ̂BLUE−ξ1

, and θ̂BLUE−η1 (data not shown).
Third, the computational complexity is higher than those of
the type I and type II estimators.

Choosing the most efficient θ estimator with error de-
pends on our knowledge of the error rate. If ε is known
and P< 0.01, θ̂GLSu or θ̂GLS f is probably a good choice. If
ε is unknown, we could first use θ̂BLUE−ξ1

or θ̂BLUE−η1 to
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Table 2
Estimations of θ and ε Using the Example Data Set

θ̂π θ̂K θ̂BLUEu θ̂BLUE−ξ1
ε̂BLUE−ξ1

θ̂GLSu (Assumed ε)

Cleaned 8.634 12.718 16.238 14.964 2.5×10−6 16.300 (0)
Uncleaned 8.652 13.271 17.420 14.499 6.3×10−6 15.452 (4.15×10−6)

estimate θ and then estimate p. When a sequence is very
long or the sample size is very large, computational inten-
sity may be a limitation. In this case, θ̂K−ξ1

or θ̂K−η1 is a
good alternative.

In this paper, ε is estimated sequentially after an esti-
mation of θ . Although this estimation is biased downward,
it is reasonable when θ/L is small. It is possible to estimate
ε and θ jointly using a similar iterative process as that used
in the GLS estimators. That is, before we update θ̂GLS , we
update p with

p̂GLS =
[(

X01+X11θ̂
)′

V̂−1 (X01+X11θ̂
)]−1

× (X01+X11θ̂
)′

V̂−1 (Y −X10θ̂
)
, (19)

where θ̂ is the estimation of θ in the previous step. How-
ever, our simulation shows that the performance is not as
good as a simple estimate of θ ignoring singletons and then
estimating ε using singletons and the estimate of θ .

There are some technical issues associated with the
computational complexity of the GLS estimators. One is
the calculation of V̂−1 in equation (18). Depending on the
numerical methods used, sometimes a true inverse of V̂
may be hard to calculate. In our experience, when that hap-
pens, a generalized inverse can be used without noticeable
problems. Another issue is the convergence of θ̂GLS. With
our limited simulations, the convergence rate is typically
larger than 99.9% for most combination of parameters and
never less than 99.7%.

Several java programs for calculating the GLS estima-
tors are available upon request or can be downloaded from
http://sites.google.com/site/jpopgen/.
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Appendix

Assume that originally, there are ξi sites of muta-
tion size i. Under the sequencing error model, it can pro-
duce sites with configuration (mutant, ancestral, and error)
(i,n− i,0), (i− 1,n− i+ 1,0), (i− 1,n− i,1), (i+ 1,n−
i−1,0), or (i,n− i−1,1). We denote the configuration as
(i+m,n− i−m− j, j) and its number as Xi

i+m,n−i−m− j, j,

with ∑Xi
i+m,n−i−m− j, j = ξi. Then,

E
(
Xi

i,n−i,0|ξ , p
)
= ξi (1− p)

E
(
Xi

i−1,n−i+1,0|ξ , p
)
= ξi

i
n

up

E
(
Xi

i−1,n−i,1|ξ , p
)
= ξi

i
n
(1−u) p

E
(
Xi

i+1,n−i−1,0|ξ , p
)
= ξi

n− i
n

up

E
(
Xi

i,n−i−1,1|ξ , p
)
= ξi

n− i
n
(1−u) p

Var
(
Xi

i,n−i,0|ξ , p
)
= ξi (1− p) p

Var
(
Xi

i−1,n−i+1,0|ξ , p
)
= ξi

i
n

up

(
1− i

n
up

)

Var
(
Xi

i−1,n−i,1|ξ , p
)
= ξi

i
n
(1−u) p

(
1− i

n
(1−u) p

)

Var
(
Xi

i+1,n−i−1,0|ξ , p
)
= ξi

n− i
n

up

(
1− n− i

n
up

)

Var
(
Xi

i,n−i−1,1|ξ , p
)
= ξi

n− i
n
(1−u)

× p

(
1− n− i

n
(1−u) p

)

Cov
(
Xi

i,n−i,0,X
i
i+1,n−i−1,0|ξ , p

)
= E
(
Xi

i,n−i,0Xi
i+1,n−i−1,0|ξ , p

)
−E
(
Xi

i,n−i,0|ξ , p
)

E
(
Xi

i+1,n−i−1,0|ξ , p
)

=
ξi

∑
a=0

pξi,a

a

∑
b=0

pa,b

b

∑
c=0

pb,c

a−b

∑
d=0

pa−b,d (ξi−a)d

−ξi (1− p)ξi
n− i

n
up

= uξi (ξi−1) p(1− p)

(
1− i

n

)
−ξi (1− p)ξi

n− i
n

up

=−uξi p(1− p)

(
1− i

n

)
where

pξi,a =

(
ξi

a

)
pa (1− p)ξi−a

pa,b =

(
a
b

)(
i
n

)b(
1− i

n

)a−b

http://sites.google.com/site/jpopgen/
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pb,c =

(
b
c

)
(u)c (1−u)b−c

pa−b,d =

(
a−b

d

)
(u)d (1−u)a−b−d .

Similarly, we have

Cov
(
Xi

i,n−i,0,X
i
i−1,n−i+1,0|ξ , p

)
=−uξi p(1− p)

i
n
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(
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i
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Assume all ξis (represented by ξ ) are known. Then,
Xi∗ and X j

∗ are independent, where ∗ represents any valid
configuration and i �= j. So that Cov(Xi∗,X

j
∗ ) = 0 when i �=

j. Let ξ−1 = 0 and ξn+1 = 0, then
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= p
i+1

∑
k=i

ck
i−k,1,i−k,1E (ξk)

+ p2
i+1

∑
k=i

dk
i−k,1,i−k,1E (ξk)

+ p2
i+1

∑
k=i

j+1

∑
l= j

(
bk

i−k,1

)(
bl

j−l,1

)
Cov(ξk,ξl)

Cov
(
ξi,0,ξ j,0|p,θ

)
= E
[
Cov
(
ξi,0,ξ j,0|ξ , p

)]
+Cov

[
E (ξi,0|ξ , p) ,E

(
ξ j,0|ξ , p

)]
= p

i+1

∑
k=i−1

j+1

∑
l= j−1

δk=lc
k
i−k,0, j−k,0E (ξk)
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+ p2
i+1

∑
k=i−1

j+1

∑
l= j−1

δk=ld
k
i−k,0, j−k,0E (ξk)

+
i+1

∑
k=i−1

j+1

∑
l= j−1

(
ak

i−k,0+bk
i−k,0 p

)

×
(

al
j−l,0+bl

j−l,0 p
)

Cov(ξk,ξl)

Cov
(
ξi,1,ξ j,1|p,θ

)
= E
[
Cov
(
ξi,1,ξ j,1|ξ , p

)]
+Cov

[
E (ξi,1|ξ , p) ,E

(
ξ j,1|ξ , p

)]
= p

i+1

∑
k=i

j+1

∑
l= j

δk=lc
k
i−k,1, j−k,1E (ξk)

+ p2
i+1

∑
k=i

j+1

∑
l= j

δk=ld
k
i−k,1, j−k,1E (ξk)

+ p2
i+1

∑
k=i

j+1

∑
l= j

(
bk

i−k,1

)(
bl

j−l,1

)

×Cov(ξk,ξl)

Cov
(
ξi,0,ξ j,1|p,θ

)
= E
[
Cov
(
ξi,0,ξ j,1|ξ , p

)]
+Cov

[
E (ξi,0|ξ , p) ,E

(
ξ j,1|ξ , p

)]
= p

i+1

∑
k=i−1

j+1

∑
l= j

δk=lc
k
i−k,0, j−k,1E (ξk)

+ p2
i+1

∑
k=i−1

j+1

∑
l= j

δk=ld
k
i−k,0, j−k,1E (ξk)

+
i+1

∑
k=i−1

j+1

∑
l= j

(
ak

i−k,0+bk
i−k,0 p

)

×
(

bl
j−l,1 p

)
Cov(ξk,ξl) .
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