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The mistranslation-induced protein misfolding hypothesis predicts that selection should prefer high-fidelity codons at
sites at which translation errors are structurally disruptive and lead to protein misfolding and aggregation. To test this
hypothesis, we analyzed the relationship between codon usage bias and protein structure in the genomes of four model
organisms, Escherichia coli, yeast, fly, and mouse. Using both the Mantel–Haenszel procedure, which applies to cate-
gorical data, and a newly developed association test for continuous variables, we find that translationally optimal codons
associate with buried residues and also with residues at sites where mutations lead to large changes in free energy (∆∆G).
In each species, only a subset of all amino acids show this signal, but most amino acids show the signal in at least one
species. By repeating the analysis on a reduced data set that excludes interdomain linkers, we show that our results are
not caused by an association of rare codons with solvent-accessible linker regions. Finally, we find that our results depend
weakly on expression level; the association between optimal codons and buried sites exists at all expression levels, but
increases in strength as expression level increases.

Introduction

Synonymous mutations are usually referred to as
“silent,” but increasing evidence shows that they expe-
rience significant selection pressures in a wide range of
organisms. For example, selection on synonymous sites
has been linked to transcription, splicing, DNA secondary
structure, and messenger RNA secondary structure and sta-
bility (Xia 1996; Vinogradov 2003; Chamary and Hurst
2005a, 2005b; Hoede et al. 2006; Parmley et al. 2006;
Warnecke and Hurst 2007; Stoletzki 2008). The strongest
selection pressure on synonymous sites, at least in mi-
crobes, seems to be selection for translational efficiency.
This pressure causes highly expressed genes to be encoded
predominantly by codons corresponding to highly abun-
dant transfer RNAs (tRNAs). It has been observed in bac-
teria, plants, yeast, fly, worm, and even mammals (Ikemura
1981, 1985; Sharp et al. 1986; Akashi and Eyre-Walker
1998; Duret 2002; Urrutia and Hurst 2003; Comeron 2004;
Wright et al. 2004; Lavner and Kotlar 2005).

Selection for translational efficiency may reflect se-
lection for rapid translation (speed selection), selection for
translation with high fidelity (accuracy selection), or both.
Akashi (1994) argued that selection for translational ac-
curacy should lead to inhomogeneous codon usage within
genes. More important sites (i.e., sites that are less robust
to translation errors) should be more frequently encoded by
codons with high fidelity than other sites. Akashi (1994)
found such a signal in Drosophila. Later, others found sim-
ilar results in Escherichia coli, yeast, worm, and mammals
(Stoletzki and Eyre-Walker 2007; Drummond and Wilke
2008).

Akashi (1994) suggested to classify sites as impor-
tant or not depending on whether they are conserved at
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the amino acid level in an orthologous sequence. But
although there is good evidence that evolutionary conser-
vation reflects functional (Lichtarge et al. 1996) and struc-
tural (Koshi and Goldstein 1995; Mirny and Shakhnovich
1999, 2001a, 2001b; Schueler-Furman and Baker 2003)
constraints, multiple other factors influence evolutionary
conservation as well. Among them are the divergence time
between orthologous sequences, the background rate of
amino acid substitutions (which can vary over several or-
ders of magnitude among genes within the same organ-
ism), mutational biases, and random chance. Moreover, the
relative frequency of mutations at sites with different bio-
chemical properties (e.g., solvent accessibility) changes
with sequence divergence (Sasidharan and Chothia 2007).
Ultimately, instead of linking codon usage bias to con-
served or variable sites, we would like to link codon usage
bias to sites with specific biochemical properties. In line
with this reasoning, Akashi (1994) carried out a second
analysis in which he showed that preferred codon usage
was increased in putative zink finger and homeodomain re-
gions of transcription factors.

Motivated by Drummond and Wilke’s (2008) hypoth-
esis that translational accuracy selection minimizes the
misfolding of mistranslated proteins, we test here whether
translationally optimal codons are associated with struc-
turally sensitive sites, that is, sites at which translation er-
rors are particularly likely to cause misfolding. We focus
on residues’ solvent accessibility because substitutions in
the solvent-shielded core of proteins tend to be particu-
larly disruptive (Matthews 1993; Tokuriki et al. 2007). As a
second measure of structural sensitivity, we use computa-
tionally predicted changes in free energy upon mutation
(∆∆G values).

We consider four model organisms, E. coli, Saccha-
romyces cerevisiae, Drosophila melanogaster, and Mus
musculus. We define translationally optimal codons as
those that are overrepresented in highly expressed genes
and address the following questions: 1) Are optimal
codons more likely to encode residues in the core of pro-
teins or on the surface? 2) Is such an association a general
characteristic for all amino acids or does it depend on the
type of amino acid encoded? 3) Are the results affected by
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gene expression level? 4) Are the results affected by an ex-
cess of rare codons in interdomain linkers? 5) Are optimal
codons more likely to occur at sites for which computa-
tional modeling predicts that amino acid substitutions are
particularly disruptive?

Materials and Methods
Structural Data

To match gene sequences to protein structures, we
used the GTOP (Genomes TO Protein structures and func-
tions) database (Kawabata et al. 2002). We saved a match
in the database for further calculation if its region of sim-
ilarity was longer than 80% of the protein length and its
sequence identity was larger than 40% of the sequence
in the Protein Data Bank (PDB). This process yielded
822, 403, 947, and 1464 matches in E. coli, S. cerevisiae,
D. melanogaster, and M. musculus, respectively.

For each protein with a match, we obtained the cor-
responding 3D crystal structure from the PDB. For ev-
ery match, we retained only the specific matching peptide
chain. After aligning the gene sequence and the sequence
from the crystal structure with MUSCLE (Edgar 2004), we
calculated the percent solvent-accessible surface area for
each aligned residue with the DSSP program (Kabsch and
Sander 1983). We normalized these results by the reference
surface areas of an extended Gly-X-Gly peptide (Creighton
1992). We considered residues with less than 25% rela-
tive solvent accessibility as buried. Because we discarded
all but the matching peptide chain, residues involved in
protein–protein interfaces were considered as exposed for
the purpose of our study.

We used the Rosetta ∆∆G module (Kortemme and
Baker 2002; Kortemme et al. 2004) to estimate the change
in the free energy gap, ∆∆G, for all 19 possible single-
point amino acid substitutions at each site. Although
most mutations are destabilizing (∆∆G > 0 kcal/mol)
(Tokuriki et al. 2007), proteins are often quite mutation-
ally robust (Markiewicz et al. 1994; Guo et al. 2004;
Bloom et al. 2005; Bloom, Drummond, et al. 2006) and
only approximately 20% of all mutations are significantly
destabilizing (∆∆G> 2.0 kcal/mol) (Tokuriki et al. 2007).
We considered mutations with ∆∆G > 3.0 kcal/mol as
strongly destabilizing mutations and calculated the “struc-
tural importance” of a site as its fraction of strongly desta-
bilizing mutations.

Because the protein sequences in our data set are not
always 100% identical to the sequences of the structure
homologs in PDB (see fig. S1), we tested the effect of
sequence dissimilarity on our structural data (solvent
accessibility and structural importance). We collected 58
groups of structure homologs from the PDB-REPRDB
database (Noguchi et al. 2001; Noguchi and Akiyama
2003), which is a database of representative protein
chains selected from the PDB. Each group of struc-
ture homologs contained one representative protein and
three homologs with sequence identity to the represen-
tative protein between 80% and 100%, between 60%
and 80%, and between 40% and 60%, respectively. We
used the following criteria to collect groups of struc-
ture homologs: We only included structures for which

we found at least one homolog in each sequence-identity
interval. If there was more than one homolog falling
into one sequence-identity bin, we retained only the ho-
molog with the lowest sequence identity to the rep-
resentative protein. This choice made our test more
conservative. For each group, we calculated the correlation
between the solvent accessibility of the representative pro-
tein and its homologs and the correlation between the
structural importance of the representative protein and its
homologs, respectively. We found that both solvent ac-
cessibility and structural importance tended to correlate
strongly among homologous proteins, but the correlation
coefficient decreased with decreasing sequence identity
(see fig. S2). For solvent accessibility, the median Spear-
man correlation coefficient ranged from 0.964 (80%–100%
identity) to 0.871 (40%–60% identity), and for structural
importance, it ranged from 0.797 (80%–100% identity) to
0.626 (40%–60% identity).

We obtained protein domain boundary information
from the CATH domain structure database (http://www.
cathdb.info/) (Orengo et al. 1997; Greene et al. 2007). We
defined domain linkers to be regions that are centered at
CATH domain boundaries and extend at least 10 residues
in both directions. Loops (continuous peptides composed
of residues with DSSP classes S, T, and “-”), which neigh-
bor on or overlap this region were also considered as parts
of domain linkers. Finally, we considered both termini of
the protein as domain boundaries. These criteria are strict
and yield a conservative analysis of nonlinker regions.

Genomic Data

We obtained genomic sequences from the following
sources: the Comprehensive Microbial Resource (http://
cmr.tigr.org/) for E. coli, the Saccharomyces Genome
Database (ftp://genome-ftp.stanford.edu/) for S. cere-
visiae, the Eisen Lab (http://rana.lbl.gov/drosophila/) for
D. melanogaster, and Ensembl (http://www.ensembl.org/)
for M. musculus.

We designated as evolutionarily conserved all sites at
which the amino acid was unchanged compared with the
orthologous gene in a closely related species. We used the
following orthologs: For E. coli, we obtained orthologs
between E. coli and Salmonella typhimurium from the
Comprehensive Microbial Resource. For yeast, we ob-
tained orthologs between S. cerevisiae and Saccharomyces
bayanus from the Saccharomyces Genome Database. For
fly, we obtained orthologs between D. melanogaster
and Drosophila yakuba from the Drosophila 12-genome
project AAAWiki at http://rana.lbl.gov/drosophila/. For
mouse, we obtained orthologs between M. musculus and
Rattus norvegicus from Biomart through the Ensembl
Homology track. We aligned each pair of orthologs at the
peptide level using MUSCLE (Edgar 2004).

Expression Data

We used previously published expression data for
each species: For E. coli, we obtained gene expression lev-
els measured in messenger RNAs per cell from Covert et al.
(2004); for S. cerevisiae, we used expression data from
Holstege et al. (1998); for D. melanogaster, we used as
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Table 1
Example of a 2×2 Contingency Table for Codon ACT in
One Particular Gene in Escherichia coli
Codon Buried Sites Exposed Sites

ACT 15 5
ACC, ACA, ACG 3 6

NOTE.—Codon ACT encodes amino acid Thr. The other three non-ACT
codons encoding Thr are ACC, ACA, and ACG. The odds ratio of ACT usage
between buried and exposed sites is (15/5)

/
(3/6) = 6 for this contingency table.

Because there is one table of ACT per gene, we applied the Mantel–Haenszel proce-
dure to calculate the joint odds ratio of use frequency between buried and exposed
sites for all genes.

expression level the geometric mean of expression data
from different tissues obtained by Stolc et al. (2004); and
for M. musculus, we measured expression level as the
breadth of expression among different tissues (Su et al.
2004). After combining the expression data with the struc-
tural data, we ended up with 698, 384, 123, and 569
genes for E. coli, S. cerevisiae, D. melanogaster, and
M.musculus, respectively.

Inferring Optimal Codons

To identify which codons are translationally optimal
in each species, we compared the codon usage pattern be-
tween the gene groups showing the lowest 5% and highest
5% expression level in each species. We defined codons as
“optimal” if they showed a statistically significant increase
in frequency in the highly expressed group, as determined
by a chi-square test. We defined codon optimality (Copt) as
the odds ratio of codon usage between highly and lowly
expressed groups, calculated separately for each codon:

Copt =
nhigh/(Nhigh−nhigh)

nlow/(Nlow−nlow)
. (1)

Here, nhigh and nlow are the observed numbers of the codon
in the highly and lowly expressed groups, respectively, and
Nhigh and Nlow are the observed numbers of the correspond-
ing amino acid in the highly and lowly expressed groups,
respectively.

Statistical Tests of Association

We used two different methods to test for association,
one using categorical variables and one using continuous
variables. For pairs of categorical variables (e.g., optimal
vs. nonoptimal codons and buried vs. exposed sites), we
stratified the data by gene and synonymous codon fam-
ily within each gene and constructed a separate 2×2 con-
tingency table for each stratum. We then combined either
the tables for all genes and a given codon family or the
tables for all genes and all codon families into an over-
all analysis using the Mantel–Haenszel procedure (Mantel
and Haenszel 1959; Mantel 1963). The null hypothesis in
this analysis assumes that the status of the site (e.g., buried
or exposed) is independent of the codon type in any given
stratum. Because the Mantel–Haenszel procedure yields
undefined results on contingency tables whose sum of all
four entries is less than 2 (i.e., 0 or 1), we excluded all such
tables from the analyses.

For pairs of continuous variables (e.g., codon op-
timality and solvent accessibility), we also stratified the
data by gene and synonymous codon family within each
gene. Then, for each stratum, we separately calculated the
Pearson correlation coefficient between the two variables.
As test statistic, we used the mean of the correlation coef-
ficients over all strata. We calculated the sampling distri-
bution by randomly reshuffling, separately for each gene,
synonymous codons among sites with identical amino acid,
and recalculating all correlation coefficients. We generated
1,000 resampled sequences for each gene.

We carried out all statistical analyses using the
software R (R Development Core Team 2008). In the
analyses of individual amino acids, we corrected for
multiple testing using the false discovery rate method of
Benjamini and Hochberg (1995), as implemented in the R
function p.adjust().

Results
Optimal Codons are Preferred at Buried Sites

We first assessed whether there was any relationship
between a codon’s tendency to be preferentially used in
highly expressed genes and the same codon’s tendency
to be preferentially used at buried sites. We calculated 2
odds ratios each for 59 codons (excluding ATG for Met,
TGG for Trp, and three stop codons). The first odds ratio,
which we refer to as codon optimality (Copt, see Materials
and Methods), measures whether the codon is preferred in
highly expressed genes compared with all other codons en-
coding the same amino acid. The second odds ratio, which
we denote by Oburied, measures whether the codon is pre-
ferred at buried sites compared with all other codons en-
coding the same amino acid. To control for confounding
effects of differing amino acid usage among genes, we
calculated Oburied by first constructing 2×2 contingency
tables of codon usage within each gene (see table 1 for
an example) and then using the Mantel–Haenszel proce-
dure (Mantel and Haenszel 1959; Mantel 1963) to com-
bine the odds ratios for each individual contingency table
into an overall odds ratio Oburied. We list the values of Copt
and Oburied for each codon in table S1. In all species except
fly, we found a significant positive correlation between Copt
and Oburied (Spearman’s ρ = 0.38,P = 0.003 for E. coli;
ρ = 0.54,P< 0.001 for S. cerevisiae; ρ = 0.24,P= 0.069
for D. melanogaster; and ρ = 0.78,P� 0.001 for M. mus-
culus; see also fig. 1).

The correlation between Copt and Oburied reveals that
there is an association between codon usage and protein
structure. To determine whether this correlation is consis-
tent across all amino acids or if different amino acids have
different trends, we carried out a similar statistical test on
each amino acid separately. We inferred a set of optimal
codons for each species (see Materials and Methods and
table S2). For each gene, we then constructed separate
2×2 contingency tables for the 18 amino acids encoded
by at least two codons (see table 2 for an example). For
each of these 18 amino acids, we calculated a joint odds
ratio (Ojoint) of optimal codon usage between buried and
exposed sites using the Mantel–Haenszel procedure. A
value of Ojoint greater than 1 signifies a preference for
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FIG. 1.—Odds ratio Oburied versus codon optimality Copt. With the exception of fly, all organisms show a significant correlation between these two
quantities.

optimal codons at buried sites (and nonoptimal codons at
exposed sites).

We found that 13 of 18 amino acids showed, in at least
one species, a significant preference for optimal codons at
buried residues (table 3). Unexpectedly, in E. coli, 2 of
these 13 amino acids (Ala and Val) showed a significant
preference for optimal codons at exposed residues. The re-
maining codons (Cys, Glu, His, Pro, and Tyr) showed no
significant preference for optimal codons to be buried or
exposed in any of the four species tested. Of a total of 72
association tests, 23 showed a significant preference for
buried optimal codons, whereas only 2 showed a signifi-
cant preference for exposed optimal codons.

Why did some amino acids show a signal and others
did not? We found no clear pattern related to amino acid
biochemistry, such as polarity or volume. Most amino acids
showed a signal in at least one species. Instead, we found
that amino acid frequency was the best predictor of a sig-
nificant association between codon optimality and solvent
exposure. We observed a negative correlation between the
significance level (P value after correction for multiple test-
ing) from the Mantel–Haenszel test and the relative amino
acid frequency (Spearman’s ρ =−0.33,P= 0.007, data of
all four species pooled; see also fig. 2). This finding sug-
gests that the absence of a significant association for some
amino acids is likely caused by lack of statistical power
rather than by a specific biochemical mechanism.

For each species, we also used the Mantel–Haenszel
procedure to combine all 2×2 contingency tables for all
genes and all amino acids into a single overall odds ra-
tio. This analysis corresponds to Drummond and Wilke
(2008)’s analysis but using buried sites instead of evolu-
tionary conserved sites. We found a statistically significant
association between optimal codons and buried sites in all

species (table 3). These results were not strongly depen-
dent on solvent-accessibility cutoff used to identify buried
residues (table S3).

To control for evolutionary conservation, we tested
for an association between optimal codons and buried sites
considering only evolutionarily conserved residues in each
species. The results remained largely unchanged from the
results including all residues (table S4).

Because many ribosomal proteins contain natively un-
structured regions, which assume their structure only upon
binding other parts of the ribosome, we also repeated the
association test on a data set excluding all ribosomal pro-
teins. Our full data set contained 40 ribosomal proteins in
E. coli, 29 in yeast, 22 in fly, and 14 in mouse. The results
remained largely unchanged after excluding these genes
(table S5).

To determine if the association between optimal
codons and buried sites was affected by expression level,
we calculated the overall odds ratio separately for the high-
est (top 25%) and lowest (bottom 25%) expressed genes
(see fig. 3). In all species except mouse, the overall odds

Table 2
Example of a 2×2 Contingency Table for Amino Acid Thr in
One Particular Gene in Escherichia coli

Codon Buried Sites Exposed Sites

Optimal ACT, ACC 16 6
Nonoptimal ACA, ACG 2 5

NOTE.—Codons ACT and ACC are optimal codons for amino acid Thr in
E. coli (see table S2). The odds ratio of optimal codon usage between buried and
exposed sites is (16/6)

/
(2/5) = 6.67 for this contingency table. Because there is

one table of Thr per one gene, we applied the Mantel–Haenszel procedure to calcu-
late the joint odds ratio for all tables of Thr across all genes.
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FIG. 2.—Mantel–Haenszel P value as a function of relative use fre-
quency of each amino acid. The P value is adjusted for multiple testing
(Benjamini and Hochberg 1995). Triangles indicate three data points that
fall below the bottom of the graph.

ratio for the highest expressed genes tended to be higher
than the one for the lowest expressed genes. However, with
the exception of fly, which had the smallest sample size, the
overall odds ratio was significantly larger than 1.0 even for
genes with low expression level. Thus, highly expressed
genes seem to show a stronger association between opti-
mal codons and buried sites than genes with low expres-
sion level, but even the latter genes do show a significant
association. This result mirrors the general observation that
evolutionary constraints appear to increase with gene ex-
pression level (Duret and Mouchiroud 2000; Pal et al.
2001; Lemos et al. 2005; Drummond et al. 2006; Wolf et al.
2006; Eames and Kortemme 2007; Drummond and Wilke
2008).

Codon Optimality Correlates Negatively with Solvent
Accessibility

The Mantel–Haenszel procedure properly controls for
potentially confounding effects of differing codon or amino
acid usage frequencies among genes. Its main drawback is
that it requires categorical data, such as a classification of
all residues into buried or exposed, or of all codons into
optimal or nonoptimal. Solvent accessibility and codon
optimality are continuous quantities, and by forcing them
into dichotomous categories, we may be losing statistical
power.

We devised a new statistical test in the spirit of the
Mantel–Haenszel procedure but that made use of the spe-
cific values of codon optimality and solvent accessibil-
ity for each residue. For each amino acid in each gene,
we separately calculated the Pearson correlation coeffi-
cient between the codon optimality of all codons encod-
ing this amino acid and the solvent accessibility of the
amino acid in the 3D protein structure. As test statistic, we
used the mean of all these correlation coefficients. We cal-
culated the sampling distribution of this statistic by ran-
domly permuting synonymous codons within each gene
(see Materials and Methods). We then carried out one-
tailed tests. Our alternative hypothesis was that the mean

FIG. 3.—The overall joint odds ratio Ojoint and the corresponding P
value for the 25% highest and lowest expressed genes in all organisms.
The dashed line denotes the significance level of α = 0.05.

correlation coefficient should be more negative than ex-
pected by chance if optimal codons associate with low sol-
vent accessibility.

When we combined the correlation coefficients for all
amino acids, we found that, for all organisms, we could
reject the null hypothesis of no significant association be-
tween codon optimality and solvent accessibility. We found
P < 0.001 for E. coli, P < 0.001 for yeast, P = 0.005 for
fly, and P< 0.001 for mouse (fig. 4). The analysis for indi-
vidual amino acids largely mirrored our Mantel–Haenszel
results (fig. S3). However, the statistical power of the as-
sociation test on continuous variables seemed to be gener-
ally lower than that of the Mantel–Haenszel procedure. In
general, if we found a significant result with the associa-
tion test on continuous variables, we also found it in the
Mantel–Haenszel procedure, but the reverse was not true
in all cases.

The advantage of the association test on continuous
variables is that we could employ it also for amino acids
for which we could not clearly identify optimal codons.
These amino acids include Lys for E. coli and Cys, Ala,
and Tyr for mouse. Of these four, Cys in E. coli showed
a marginally significant result and Ala in mouse showed a
strongly significant result (fig. S3).

Codon Optimality Correlates with Structural Importance

So far, we tested for an association between opti-
mal codons and buried sites. Our reasoning was that mu-
tations at buried sites are more disruptive than mutations
at exposed sites and that therefore buried sites should be
more sensitive to translation errors. An alternative, and
more direct, way of assessing whether a site is sensitive
to mutation is to determine the distribution of free energy
changes (∆∆G values) that substitutions at this site effect.
Mutations with negative ∆∆G stabilize the protein fold
and should typically not have deleterious effects. Muta-
tions with a small positive ∆∆G are mildly destabilizing.
Whether such mutations will be disruptive or not is hard to
predict. But once ∆∆G exceeds 2–3 kcal/mol, the mutation
is almost certainly disruptive. Thus, as a measure of a site’s
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Table 3
Odds Ratio of Optimal Codon Usage between Buried and Exposed Sites

Escherichia coli Saccharomyces cerevisiae Drosophila melanogaster Mus musculus

Amino Acid Whole Nonlinker Whole Nonlinker Whole Nonlinker Whole Nonlinker

Ala 0.92∗ 0.93 1.06 1.06 1.13∗∗∗ 1.15∗∗(∗) — —
Arg 1.01 0.97 1.19(∗) 1.05 0.96 0.96 1.15∗∗∗ 1.17∗∗∗
Asn 1.29∗∗∗ 1.25∗∗∗ 1.07 1.16(∗) 1.10(∗) 1.12(∗) 1.14∗∗∗ 1.22∗∗∗
Asp 1.06 1.08 0.89(∗) 0.86(∗) 0.93(∗) 0.89∗(∗) 1.09∗∗ 1.14∗∗∗
Cys 0.99 0.99 1.19 1.30 0.96 0.91 — —
Gln 1.17∗∗(∗) 1.26∗∗∗ 1.04 0.99 1.04 0.93 1.21∗∗∗ 1.34∗∗∗
Glu 1.08 1.10 1.05 1.09 1.02 1.07 1.05 1.03
Gly 1.06 1.08 1.42∗∗∗ 1.29∗∗∗ 0.98 0.92(∗) 1.09∗∗∗ 1.09∗∗
His 1.03 1.07 0.97 1.08 0.94 0.88 1.07 1.06
Ile 1.03 1.03 1.17(∗) 1.27(∗) 1.14∗∗(∗) 1.19∗∗(∗) 1.07∗ 1.12∗

Leu 1.11∗∗(∗) 1.08 1.10 1.18(∗∗) 1.15∗∗∗ 1.15∗∗(∗) 1.07∗∗ 1.11∗∗(∗)
Lys — — 1.07 1.07 0.92(∗) 0.91 1.08∗ 1.15∗∗(∗)
Phe 1.01 0.98 1.07 1.06 1.16∗∗ 1.10 1.05 1.08
Pro 1.03 1.06 1.09 1.08 1.08(∗) 1.09 0.98 1.00
Ser 1.36∗∗∗ 1.41∗∗∗ 1.25∗∗∗ 1.27∗∗∗ 1.01 1.04 1.22∗∗∗ 1.32∗∗∗
Thr 1.17∗∗∗ 1.15∗(∗) 1.00 1.02 1.06 1.03 1.13∗∗∗ 1.12∗∗
Tyr 0.92 0.86 1.09 1.08 0.94 0.89 — —
Val 0.88∗∗∗ 0.89∗ 1.10 1.20(∗) 1.16∗∗∗ 1.14∗(∗) 1.09∗∗(∗) 1.14∗∗∗

Overall 1.06∗∗∗ 1.07∗∗∗ 1.10∗∗∗ 1.11∗∗∗ 1.04∗∗∗ 1.03∗∗ 1.10∗∗∗ 1.13∗∗∗

NOTE.—Significance levels in parentheses disappear after correction for multiple testing.Whole, odds ratio for whole protein sequences; nonlinker, odds ratio for
sequences without domain boundary region; —, no optimal codon.

∗P< 0.05; ∗∗P< 0.01; ∗∗∗P< 0.001.

sensitivity to substitutions, we calculated ∆∆G values for
all 19 possible amino acid substitutions at that site and
then determined the fraction of these substitutions with
∆∆G> 3.0 kcal/mol. We refer to this fraction as the “struc-
tural importance” of the site because it assesses the likeli-
hood that a mutation at this site is structurally disruptive.

Our hypothesis was that if selection for translational
accuracy acts to minimize mistranslation-induced protein
misfolding then sites with higher structural importance
should associate with more optimal codons and vice versa.
By classifying sites at which at least two mutations had
∆∆G> 3.0 kcal/mol as important sites and all other sites as
unimportant sites, we could employ the Mantel–Haenszel
procedure to determine whether optimal codons associated
with structurally important sites. Our results were simi-
lar to our previous results considering buried and exposed
sites. In all organisms, the overall joint odds ratio was sig-
nificantly larger than 1.0 (table S6). Our results for indi-
vidual amino acids were also largely consistent with those
obtained for buried/exposed sites, but there were some
differences. For example, Glu in E. coli and Cys in yeast
showed a significant association between optimal codons
and structurally important sites but not between optimal
codons and buried sites. By contrast, in fly and mouse, we
mostly found the opposite result that several amino acids
showed a significant association between optimal codons
and buried sites but not between optimal codons and struc-
turally important sites.

We also carried out the test of association between
continuous variables. Because we expected codon optimal-
ity to increase with structural importance, we calculated
one-tailed P values for the right tail of the sampling dis-
tribution of the mean correlation coefficient. We found a
significant association between optimal codons and struc-
turally important sites in yeast (P < 0.001) and mouse

(P< 0.001) but not in E. coli (P= 0.230) or fly (P= 0.230)
(fig. S4). When considering the results for individual amino
acids (fig. S5), we found again that they largely agreed with
those of the Mantel–Haenszel procedure on the same data
(table S6) but that the association test on continuous vari-
ables seemed to be overall less powerful. However, there
were a few notable exceptions. Gln in mouse showed a
highly significant association when considering continuous
variables but no association under the Mantel–Haenszel
procedure. For Ser in fly, optimal codons seemed to asso-
ciate with structurally unimportant sites when considering
continuous variables (a right-tailed P value of 1 corre-
sponds to a left-tailed P value of < 0.001), but we found
no such signal under the Mantel–Haenszel procedure.

Nonrandom Pattern in Nonlinker Regions

Thanaraj and Argos (1996b) reported that nonoptimal
codons are overrepresented in linker regions between do-
mains. Because linker regions are generally solvent ex-
posed and less sensitive to amino acid substitutions, an
excess of nonoptimal codons in these regions could lead
to an apparent excess of optimal codons at buried or struc-
turally important sites. To exclude the possibility that our
results are caused by abundant nonoptimal codons in inter-
domain linkers, we repeated all our analyses but excluded
linker regions (see Materials and Methods). The new re-
sults were largely unchanged from the previous ones.
Tables 3 and S6 and figures 4 and S4 show a side-by-side
comparisons of the same results for entire proteins and pro-
teins with interdomain linkers excluded. Figures S6 and S7
show the same analyses as figures S3 and S5, respectively,
but with interdomain linkers excluded. There were some
cases in which results disappeared, for example, in table 3
for Leu and Ala in E. coli and for Phe in fly. Yet by and
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FIG. 4.—Test for association between codon optimality and solvent accessibility. The black arrows indicate the mean correlation coefficient
between these two quantities over all amino acids and all genes. The gray histograms show the sampling distribution of the same quantity under the
null hypothesis of no association. The main figure of each panel shows the results for complete genes, and the inset shows the results when interdomain
linker regions are excluded.

large, we could confirm that even when we excluded inter-
domain linker regions, we found a significant association
between optimal codons and either buried sites or struc-
turally important sites.

Discussion

We examined the relationship between codon usage
bias and protein structure in the genomes of four model
organisms. We found that optimal codons tend to be asso-
ciated with buried sites. In E. coli, yeast, and fly, the associ-
ation was stronger in highly expressed genes than in genes
with low expression level. The effect was present in most
codon families in at least one organism. We found no clear
relationship between the biophysical properties of the en-
coded amino acids and the presence or absence of an asso-
ciation between optimal codons and buried sites. Instead,
the best predictor for a significant association was amino
acid frequency. We also found that optimal codons tend to
be associated with sites for which computational modeling
predicts that substitutions are destabilizing.

This study is not the first to provide evidence that
codon usage bias is affected by protein structure; previ-
ous studies include Thanaraj and Argos (1996a), Orešič
and Shalloway (1998), Xie and Ding (1998), Orešič et al.
(2003), and Gu et al. (2004). However, many of the pre-
vious studies suffer from statistical limitations such as not
correcting for multiple testing or not controling for con-

founding effects of amino acid usage frequencies. Most
previous studies suggest that the relationship between pro-
tein structure and codon usage bias is rather limited. For
example, in a study of E. coli and human, Orešič and
Shalloway (1998) found only a single codon each that as-
sociated with structural features of the encoded proteins. In
human, this codon is GAU, and it is preferred at the N ter-
mini of α-helices. Most previous studies focused on pro-
tein secondary structure, whereas the structural features we
considered here were solvent accessibility and structural
importance (i.e., ∆∆G values). We believe that we found a
comparatively strong and pervasive signal in part because
of this choice. The extent to which mutations tend to dis-
rupt protein folding and function depends only weakly on
secondary structure and much more strongly on solvent ac-
cessibility (Goldman et al. 1998; Bustamante et al. 2000;
Dean et al. 2002; Bloom, Labthavikul, et al. 2006).

What is the biophysical mechanism that links codon
usage bias to protein structure? Experimental work has
focused on the hypothesis that ribosome kinetics may af-
fect protein folding (Komar et al. 1999; Cortazzo et al.
2002; Goymer 2007; Komar 2007; Kimchi-Sarfaty et al.
2007). A cluster of suboptimal codons might stall the ribo-
some and as a consequence either facilitate or disrupt co-
translational folding. Thanaraj and Argos (1996b) argued
that rare codons associate with interdomain linkers be-
cause the slowdown of the ribosome when translating these
linker regions would allow the individual domains to fold
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independently. Yet more recently, Widmann et al. (2008)
showed that evolutionarily conserved (and thus presumably
important) rare codons are not restricted to interdomain
linker regions. To verify that our results were not caused
by an excess of rare codons in solvent-exposed linker re-
gions, we redid our analysis on a restricted data set that ex-
cluded all interdomain linker regions. We again found an
association between optimal codons and structurally sensi-
tive sites. Thus, although nonoptimal codons may or may
not be preferred in interdomain linker regions, our results
are not caused by the codon usage in these linkers.

Most previous work has focused on the interplay
between translation and folding kinetics, but translation
fidelity may be as important or more so in shaping syn-
onymous codon usage. According to the mistranslation-
induced misfolding hypothesis (Drummond and Wilke
2008), selection for translational accuracy should lead to
an excess of high-fidelity codons at sites at which transla-
tion errors would be particularly destabilizing. Our results
are broadly consistent with this hypothesis, even though
our evidence is only indirect. Few studies have attempted
the direct measurement of codon fidelity under translation
or of the propensity of mutations at different sites to cause
misfolding. Thus, we had no comprehensive data set for
either of these quantities and had to use proxies for both.

We equated high-fidelity codons with optimal codons
and identified as optimal those codons that were signif-
icantly more frequent in highly expressed genes than in
genes with low expression level. Because the sets of op-
timal codons we determined in this way were largely con-
sistent with sets of optimal codons determined by counts of
tRNA genes (Ikemura 1985; Moriyama and Powell 1997;
Man and Pilpel 2007; Drummond and Wilke 2008), we be-
lieve that our optimal codons are by and large the high-
fidelity codons of the respective organism. However, we
cannot be certain that we correctly identified high-fidelity
codons in all cases. In fact, for the two amino acids for
which optimal codons were associated with exposed sites
in our analysis (Ala and Val in E. coli), the codons we
determined to be optimal may be of low fidelity. One is-
sue that may arise in this context is that of speed-accuracy
tradeoffs. The most rapidly translated codon may not be the
most accurately translated one or vice versa because speed
should be determined primarily by the absolute number of
tRNA copies in a cell, whereas accuracy should depend
on the relative abundance of the cognate tRNA compared
with competing tRNAs. If an organism experiences both
selection for translation speed and translational accuracy
then it is possible that the most rapidly translated codon is
the most abundant one in highly expressed genes but that
the most accurately translated codon is preferred at sites at
which translation errors need to be avoided.

Our analysis also assumes that all genes in an organ-
ism have the same optimal codons. This assumption may
be violated if tRNA pools vary substantially over time or
among tissues in multicellular organisms. Such differences
have indeed been reported (Dong et al. 1996; Dittmar et al.
2006), but they do not appear to be large enough to in-
validate our approach. Nevertheless, a future study could
try to obtain more accurate, gene-specific codon optimality
values.

As a measure of the extent to which translation errors
at a site may lead to misfolding, we used two quantities, the
solvent-accessible surface area and the site’s structural im-
portance as measured by the computationally predicted sta-
bility effects (∆∆G values) of mutations at that site. Both
of these quantities can be calculated only if an accurate 3D
crystal structure is available. Because the number of crys-
tal structures for proteins of a specific organism remains
limited, we augmented our data sets with crystal structures
from homologous proteins. Consequently, for many genes
in our data sets, solvent accessible surface areas and ∆∆G
values are only estimates. To assess how reliable these es-
timates are, we carried out a controlled analysis of how
these quantities change with decreasing sequence identity
among homologs. We found that both remain highly pre-
dictive even if the homologs have diverged substantially
(fig. S2). We also found that solvent-accessible surface area
is generally more conserved among homologs than ∆∆G
values are.

We predicted ∆∆G values using the default energy
function of the Rosetta ∆∆G module. This energy function
was not necessarily optimized for the wide range of dif-
ferent protein structures to which we applied it. However,
because we were using the ∆∆G predictions only to find
sites at which substitutions have large disruptive effects,
such as would be caused by steric clashes of the side
chains, the ∆∆G predictions should be reasonably accurate
nevertheless.

Previous works (Akashi 1994; Stoletzki and Eyre-
Walker 2007; Drummond and Wilke 2008) studied se-
lection for translational accuracy using the categorical
Mantel–Haenszel procedure and we followed the same
strategy here. But because the quantities we studied are
not inherently categorical, we also devised an association
test on continuous variables based on stratified correlation
coefficients. The two statistical procedures yielded overall
similar results, but the test on continuous variables seemed
to be less powerful. Yet, this test has several advantages
that make it worthy to pursue. First, the results of the cate-
gorical test depend on the arbitrary choice by which contin-
uous variables are classified into categories. For example,
we designated sites as buried if their relative solvent ac-
cessibility fell below a 25% cutoff. A different choice of
cutoff led to somewhat (if only slightly) different results
(table S3). The test on continuous variables does not suffer
from this problem. Second, according to the criterion we
chose to identify optimal codons, we could not select op-
timal codons for a few amino acids in some species. Thus,
we had to exclude these amino acids from the categorical
analysis but could include them in the continuous analysis.

The overall odds ratios we obtained from the Mantel–
Haenszel procedure are of comparable magnitude, but gen-
erally somewhat smaller, than the odds ratios measuring
the association between optimal codons and evolutionarily
conserved sites (table 1 in Drummond and Wilke 2008).
The biggest deviation arises in fly where we found an odds
ratio of 1.04, whereas Drummond and Wilke (2008) found
1.36. Some of these differences are likely caused by the
limitations on quality and quantity of structural data. Fly
in particular had the lowest fraction of closely matching
crystal structures (fig. S1). An alternative explanation for
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the smaller odds ratios in our study could be that a signif-
icant proportion of sites under translational accuracy se-
lection are functionally important rather than structurally
important and that the criterion of evolutionary conserva-
tion accurately identifies these sites. Future work could try
to disentangle structural and functional constraints by as-
sembling a data set of proteins for which structurally im-
portant sites are known and then testing whether optimal
codons associate more strongly with structurally important
sites, functionally important sites, or possibly the joint set
of both structurally and functionally important sites.

Supplementary Material

Supplementary tables S1–S6 and figures S1–S7 are
available online as supplementary material at Molecular
Biology and Evolution (http://www.mbe.oxfordjournals.
org/).
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