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Variation in gene expression is an important contributor to phenotypic diversity within and between species. Although
this variation often has a genetic component, identification of the genetic variants driving this relationship remains
challenging. In particular, measurements of gene expression usually do not reveal whether the genetic basis for any
observed variation lies in cis or in trans to the gene, a distinction that has direct relevance to the physical location of
the underlying genetic variant, and which may also impact its evolutionary trajectory. Allelic imbalance measurements
identify cis-acting genetic effects by assaying the relative contribution of the two alleles of a cis-regulatory region to
gene expression within individuals. Identification of patterns that predict commonly imbalanced genes could therefore
serve as a useful tool and also shed light on the evolution of cis-regulatory variation itself. Here, we show that
sequence motifs, polymorphism levels, and divergence levels around a gene can be used to predict commonly
imbalanced genes in a human data set. Reduction of this feature set to four factors revealed that only one factor
significantly differentiated between commonly imbalanced and nonimbalanced genes. We demonstrate that these
results are consistent between the original data set and a second published data set in humans obtained using different
technical and statistical methods. Finally, we show that variation in the single allelic imbalance-associated factor is
partially explained by the density of genes in the region of a target gene (allelic imbalance is less probable for genes in
gene-dense regions), and, to a lesser extent, the evenness of expression of the gene across tissues and the magnitude of
negative selection on putative regulatory regions of the gene. These results suggest that the genomic distribution of
functional cis-regulatory variants in the human genome is nonrandom, perhaps due to local differences in evolutionary
constraint.

Introduction

A growing number of studies illustrate that variation in
noncoding regions of the genome has important consequen-
ces for organismal phenotypic variation, including traits of
adaptive importance (Boffelli et al. 2004; Wray 2007). As
first suggested over 30 years ago (King and Wilson 1975),
many of these relationships are mediated by effects on gene
regulation. Hence, many studies now focus on regulatory
DNA and its proximate molecular phenotype, gene expres-
sion, as a strategy for identifying relevant variation in or-
ganism-level morphological, physiological, and behavioral
traits. Variation in gene expression is predictive of pheno-
typic traits both globally, as demonstrated by genomewide
expression profiling studies (Golub et al. 1999; West et al.
2001; Whitfield et al. 2003), and on an individual gene ba-
sis, as shown by studies connecting cis-regulatory genetic
variation in specific genes to variation in adaptively impor-
tant traits (Tournamille et al. 1995; Shapiro et al. 2004; Co-
losimo et al. 2005; Gompel et al. 2005; Prud’homme et al.
2006; Tishkoff et al. 2007; Jeong et al. 2008).

Although identification of either genetic variation or
gene expression variation alone is now straightforward, es-
tablishing a causal relationship between them remains chal-
lenging. For example, genetic effects on a gene’s expression
may be located in cis to the gene (such that they influence
only the linked allele of the gene, in a nearby region of the

same physical chromosome) or in trans to the gene (such that
they influence both alleles of the gene, regardless of linkage),
a distinction that has both practical and biological implica-
tions. From a practical perspective, the distinction between
cis and trans is important for establishing the likely physical
location of the causal variant: cis-acting variants tend to lie
close to the gene of interest, whereas trans-acting effects can
reside almost anywhere in the genome (e.g., Morley et al.
2004; Cheung et al. 2005). From a biological perspective,
the functional and evolutionary significance of cis and trans
effects may differ. For instance, recent work has suggested
that cis-acting effects tend to act more additively than trans-
acting effects (Lemos et al. 2008); that cis-effects tend to be
more pronounced in explaining interspecific differences than
intraspecific differences, whereas the reverse may be true for
trans effects (Wittkopp et al. 2004, 2008); and that cis-effects
may have more restricted consequences than trans effects,
thus mitigating adaptive conflicts arising from pleiotropy
across tissues (Blekhman et al. 2008; Campbell et al.
2008), splice variants (Campbell et al. 2008), and/or environ-
mental contexts (de Meaux et al. 2005; Zhu et al. 2006).

One method of discriminating between cis-acting effects
and trans-acting effects involves measuring gene expression
in an allele-specific manner, generally known as assaying al-
lele-specific gene expression or ‘‘allelic imbalance’’ (Cowles
et al. 2002; Yan et al. 2002; Bray et al. 2003; Lo et al. 2003;
Pastinen et al. 2003; Pastinen and Hudson 2004; Wittkopp
et al. 2004; de Meaux et al. 2005, 2006; Pant et al. 2006;
Milani et al. 2007; Campbell et al. 2008; Cheung et al.
2008; Gruber and Long 2008; Serre et al. 2008; Wittkopp
et al. 2008; Tung et al. forthcoming; Wray GA, unpublished
data). Allelic imbalance describes the relative ability of the
two alleles of a cis-regulatory region to drive expression
of a linked gene within individuals: a gene is ‘‘imbalanced’’
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when one allele drives significantly higher expression than
the alternative allele. Because both alleles experience identi-
cal trans-acting genetic and environmental backgrounds, de-
viations from the null expectation (equal contribution of both
alleles to total expression) unambiguously identify cis-acting
genetic effects (although cis � trans interaction effects can
also be detected: Wittkopp et al. 2004 2008).

Allelic imbalance has been well documented in many
systems, including human, mouse, and Drosophila (Cowles
et al. 2002; Yan et al. 2002; Wittkopp et al. 2004; Campbell
et al. 2008; Gruber and Long 2008). However, studies that
have evaluated allelic imbalance in large, population-based
sets of individuals suggest that ‘‘common’’ allelic imbalance,
as opposed to imbalance that sporadically occurs in one or
only a few individuals, affects only about 10–20% of ex-
pressed genes (Milani et al. 2007; Serre et al. 2008; Verlaan
et al. 2009). In other words, genes that harbor functional cis-
regulatory variation common enough to produce allelic im-
balance in multiple individuals in a population (or that harbor
many distinct functional cis-regulatory variants) are the mi-
nority, at least in humans. Given that surveying allelic im-
balance in a large number of genes de novo is cost- or
sample-prohibitive for many populations, identification of
patterns that predict which genes are likely to be commonly
imbalanced could therefore serve as a useful tool. Such pat-
terns might also shed light on the molecular basis for cis-reg-
ulatory variation by identifying what types of genomic
characteristics cosegregate with common imbalance, and
what evolutionary processes produce these characteristics.

Toward that end, we applied a machine learning ap-
proach, the support vector machine (SVM) (Cortes and
Vapnik 1995), to fit a predictive model for data generated in
a published study of allelic imbalance in humans (Serre et al.
2008). Serre et al. 2008 validated a novel, high-throughput
method of assaying allelic imbalance that produced measure-
ments for several hundred genes, in one of the most compre-
hensive studies of allelic imbalance to date. Because the
original study, subjects were members of the HapMap
CEU analysis panel (Utah residents with ancestry from
northern and western Europe), we were able to combine
polymorphism data with human genome sequence data
and with divergence data from human–chimpanzee compar-
isons to fit the model. We found that a signal of common
allelic imbalance can be extracted from these data and that
this signal predicts common imbalance with a modest, but
potentially useful, level of accuracy. Further, our results were
consistent when applied to a second data set of imbalanced
genes in humans identified using different methods (Cheung
et al. 2008), suggesting that the model captures aspects of
some broader biological phenomena. Hence, we explored
the biological basis for the predictive ability of our model
by investigating the sources of variance in the main compo-
nent that contributes to the model’s predictive accuracy. We
found a strong explanatory effect of gene density in this anal-
ysis, suggesting that genes that reside in gene-dense regions
are less likely to exhibit allelic imbalance than genes in less
dense regions of the genome. Our results suggest that the
important features we identified are proxies for evolutionary
constraint, such that genes that exhibit common imbalance
are significantly more likely to evolve under relaxed selective
constraint than genes that do not exhibit imbalance.

Materials and Methods
Allelic Imbalance Training Set

We stratified genes into one of two mutually exclusive
classes based on the data set of Serre et al. (2008): genes that
exhibited common allelic imbalance (the ‘‘AI’’ class) and
genes that never exhibited allelic imbalance (the ‘‘non-AI’’
class). We chose to use the data presented in Serre et al.
(2008) rather than other published surveys of imbalance
for three reasons. First, this study surveyed allelic imbalance
in a large number of genes (n 5 643 that exhibited expres-
sion levels above background noise). Second, a relatively
large number of individuals (n 5 83) were included in
the study, meaning that the authors were able to impose
a more stringent cutoff criterion: for any given gene in
the final data set, allelic imbalance measurements were made
on multiple heterozygotes (at least three individuals). Be-
cause this sampling scheme provided an actual distribution
of allelic imbalance for each gene, we were therefore able to
distinguish commonly imbalanced genes from those that ex-
hibit imbalance as a result of a rare mutation. We defined AI
genes following the methods of the authors: these genes were
characterized by high mean allelic imbalance across individ-
uals or higher variance in imbalance measurements than un-
der null expectations. Non-AI genes included those loci for
which the mean imbalance across individuals was exactly
0 (equal expression of both alleles), and for which the var-
iance across individuals was not significantly greater than
expected by chance. Finally, the subjects in the Serre
et al. (2008) study were members of the Centre d’Etude
du Polymorphisme Humain (CEPH) pedigrees included in
the HapMap CEU panel, allowing us to include polymor-
phism-based features in the predictive models we developed.
Our initial focus on the Serre et al. (2008) data set also al-
lowed us to conduct further validation of our model using
data from a different published data set, as described below.

We restricted our analysis to autosomal genes in order
to avoid the confounding effects of X-inactivation. In order
to maintain consistency in our definition of coding regions,
flanking regions, and exon–intron boundaries, we further
restricted the data set to those genes that have a current con-
sensus annotation curated by the Consensus CoDing region
Project (CCDS) for Build 36.3 of the human genome
(http://www.ncbi.nlm.nih.gov/projects/CCDS/). For genes
with multiple entries in the CCDS database, we always
chose the annotation that maximized the size (end base
pair—start base pair) of the gene in question. After filtering
for autosomal CCDS-curated genes, our final training set
included 103 AI genes (16% of the original 643 gene data
set) and 184 non-AI genes. We extracted genome sequence
data for each gene from human genome build 36 (hsap18:
http://genome.ucsc.edu/, Kent et al. 2002), based on the
CCDS annotations for exon–intron boundaries and coding
region start and stop sites.

Feature Extraction

We modeled allelic imbalance using three sets of fea-
tures: genome sequence, polymorphism data for the CEPH
samples, and divergence data based on differences between
the human genome and the chimpanzee genome. All feature
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extraction was handled using publicly available software
appropriate to the different types of features, and/or custom
Ruby code. The full list of features is provided in supple-
mentary table S2, Supplementary Material online.

The sequence features set included data on the pres-
ence, distribution, and abundance of four feature subsets:
1) repeat families; 2) 5-mer sequence motifs; 3) CpG is-
lands; and 4) gene composition (i.e., exon/intron content).
Except where noted below, or where not applicable, fea-
tures were extracted for several different partitions of se-
quence around the gene: the annotated conserved coding
sequence (from start of translation to end of translation),
the 2-kb flanking regions, the 5-kb flanking regions, and
the 10-kb flanking regions (supplementary table S2,
Supplementary Material online). Repeat features were iden-
tified using RepeatMasker v 3.2.0 (Smit et al. 1996–2004).
Five-mer sequence motifs and CpG features were identified
using the compseq and newcpgreport programs, respec-
tively, in the EMBOSS v 5.0.0 software package (Rice
et al. 2000). Due to the large number of possible 5-mers,
we restricted the sequence feature set for the full model
to 5-mers in the flanking regions of the gene (5 kb upstream
and downstream of the coding region) based on preliminary
analyses that suggested that 5-mers in the coding region
contained relatively little information about allelic imbal-
ance (Supplementary Materials online and supplementary
fig. S1, Supplementary Material online). Number and pro-
portion of exon content for gene coding regions were ex-
tracted directly from the genome sequence data and the
CCDS annotations for each gene.

Polymorphism features were identified using publicly
available data on the CEU/CEPH samples for HapMap re-
lease 18 (http://www.hapmap.org). These features included
data on the abundance, distribution, and proportion of dif-
ferent types of polymorphisms (i.e., all six possible muta-
tions, transitions/transversions), and a dn/ds-like calculation
of the relative number of nonsynonymous changes to syn-
onymous changes within each gene.

The divergence features set was generated by aligning
probable homologues for each locus of interest between hu-
man and chimpanzee (panTro2), and calculating the abun-
dance, distribution, and proportion of different types of
divergent sites between the two species (including unalign-
able sites and gaps). Probable homologues were identified
using the LiftOver tool from the UCSC Genome Browser
(http://genome.ucsc.edu/: Kent et al. 2002), and alignments
were conducted using the program TBA v 12 (Blanchette
et al. 2004). For flanking regions, the position of the chim-
panzee homologue (relative to the chimpanzee gene coding
sequence) is not always identical to the position of the orig-
inal sequence in humans (relative to the human gene coding
sequence). For example, the 5-kb upstream sequence for
human for a given gene might not be precisely equivalent
to the 5-kb upstream sequence for the gene homologue in
chimpanzee, even when the extracted sequence itself is the
correct homologue for the original human 5# sequence.

Missing features (from unalignable regions across spe-
cies or from ‘‘intronic’’ regions of single exon genes) were
imputed by the following procedure: 1) we calculated
the sum of the squared difference for all features between
the gene containing missing data and every other gene in the

data set; 2) we identified the five genes that were most sim-
ilar to the gene containing missing data, based on the sum of
squares metric; and 3) we assigned a value for the missing
feature equal to the mean of the values for the five most
similar genes for the same feature. Any features that re-
sulted in a value of 0 for all genes were removed from
the data set for downstream numerical stability. The final
full feature set consisted of 2,269 features. Values for all
features were scaled on the interval [0,1] based on dividing
the value for each feature by the maximum value for that
feature in the entire data set.

Wilcoxon Summed-Ranks Tests

We applied a nonparametric Wilcoxon summed-ranks
test to each feature in the feature set. This analysis tested
whether the values of the feature for genes in the AI class
tended to be significantly different from values of the same
feature for genes in the non-AI class. Under the null hypoth-
esis of no difference between the two classes for any of the
features we examined, the P values for this series of tests
should be uniformly distributed along the interval [0,1]. We
compared the actual distribution of P values to this expec-
tation using a Kolmogorov–Smirnov test.

SVM Classification and Recursive Feature Selection

All SVM model fitting was conducted using SVMperf

(Joachims 2005, 2006):

minw;b
1

2
wTw þ C

n

Xn

i5 1

max½1 � yiðwTxi þ bÞ; 0�;

where ðxi; yiÞni51 are the n samples and ðyiÞni51 represents the
labels of the samples and ðxiÞni51 represents the feature val-
ues. The parameters of the model are w, a column vector
with each element corresponding to a feature weight,
and b, the offset or intercept. The cost function was set
to minimize overall error rate (the ‘‘�l 2’’ option in
SVMperf). The regularization parameter C, was set to
0.05 for the full feature set, based on exploratory analyses.
In analyses of the smaller feature subsets (i.e., sequence fea-
tures alone, polymorphism features alone, etc.), C 5 1. All
final analyses were conducted using a linear kernel; explor-
atory analyses using a radial basis kernel function did not
improve model performance (Supplementary Materials on-
line). Generalization error was estimated by leave-one-out
cross-validation. Specifically, we sequentially removed one
gene from the data set, fit the model on the remaining n� 1
genes, and then used the resulting model to predict allelic
imbalance class for the gene that was initially removed. We
asked about the concordance between the model prediction
and the true value for each gene over the whole data set,
producing a measure of overall error and recall and preci-
sion for both the AI class and the non-AI class.

Recursive feature selection was also conducted in
a leave-one-out framework. We removed one gene from
the data set and used n � 1 genes to fit sequential SVMs,
where the results of each sequential model were used to cal-
culate the weights for each feature and used to remove 1) first,
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the 300 least informative features until fewer than 1,000 fea-
tures remained in the model; 2) second, the 100 least infor-
mative features until fewer than 100 features remained; and
3) finally, the 20 least informative features until fewer than
20 features remained. At each step, we asked whether the
model accurately predicted the allelic imbalance class of
the gene that was initially removed. We repeated this proce-
dure over all 287 genes in the data set, resulting in a 287� 15
matrix, where the columns represent progressively smaller
model sizes (2,269; 1,969; 1,669; 1,369; 1,069; 769; 669;
569; 469; 369; 269; 169; 69; 49; and 29 features, respec-
tively), and each cell takes the value 0 or 1, where 0 reflects
correct prediction of the imbalance state for that gene, and 1
reflects an incorrect prediction. We used this information to
evaluate the relationship between the number of features in
the model and predictive accuracy.

Nonnegative Matrix Factorization (NMF)

We ranked all features by frequency of occurrence in
the 469-feature model over the 287 different iterations of
recursive feature selection. We identified the 500 features
that occurred most often in the 469-feature model. We then
factored this set of 500 features into k factors using NMF
(Brunet et al. 2004). The reason for using NMF rather than
spectral based methods (e.g., singular value decomposition)
is that factors computed via NMF tend to be sparser and
more localized (i.e., fewer nonzero features are contained
in each factor) than those computed via spectral methods.
The input to NMF was the data matrix G with element Gij

corresponding to the jth feature in the ith sample (gene).
The algorithm factors G into two matrices F and M with
the property that

G � FM andFij; Mij � 0;

where F is a matrix of n rows and k columns and M is a ma-
trix of k rows and p columns, where n equals the number of
genes, p equals the number of features, and k equals the
number of factors. Methods for choosing the number of fac-
tors k and for the least squares implementation to solve for F
and M followed Brunet et al. (2004). For our data, we ob-
tained k5 4 factors (supplementary fig. S2, Supplementary
Material online).

We then tested whether each of the four factors
that resulted from the NMF analysis individually associated
with imbalance status by conducting a Wilcoxon summed-
ranks test comparing the distribution of factor values be-
tween the AI class and the non-AI class. Only one factor
significantly explained variation in allelic imbalance class:
We termed this factor the ‘‘AI factor.’’

Validation Using an External Data Set

If the overall model and the AI factor identified within
the model reflect general biological characteristics associated
with allelic imbalance, then the results obtained on the Serre
et al. (2008) data set should also generalize well to unseen
data (i.e., data that was not involved in the original model fit).
Cheung et al. (2008) used genotyping microarrays to mea-

sure allelic imbalance in 21 sets of monozygotic twins and 10
members of the HapMap CEU panel. They identified 163
single nucleotide polymorphisms (SNPs) that revealed sig-
nificant allelic imbalance in genes in their sample, after re-
stricting this set to those SNPs assayed in at least five
individuals (counting members of a monozygotic twin set
only once). This data set is therefore similar to that of Serre
et al. (2008) in that it captures common imbalance in Cau-
casian populations. However, Cheung et al. (2008) used a dif-
ferent technology to measure gene expression (microarrays
instead of the Illumina genotyping platform), and different
statistical thresholds to call imbalance. Hence, cross-valida-
tion of our model on the Cheung et al. (2008) data represents
a conservative test of the generalizability of our results.

From the Cheung et al. (2008) data set, we were able to
obtain data for 122 commonly imbalanced genes that were
not included in the gene sets derived from Serre et al. (2008)
(the list of genes that did not exhibit allelic imbalance were
not provided in the Supplementary Materials online for
their paper). We then tested two hypotheses. First, we rea-
soned that the probability of observing allelic imbalance es-
timated by our model should be significantly greater for
genes in the Cheung et al. (2008) data set than genes in
the original non-AI gene set, but should be no different
from genes in the original AI gene set (where predictions
for the AI and non-AI genes were obtained from leave-one-
out cross-validation, as described above). We therefore
compared the predictions for the Cheung data set with pre-
dictions from the non-AI set and predictions from the AI set
using Wilcoxon summed-ranks tests. Second, if the rela-
tionship between the AI factor and allelic imbalance gen-
eralizes well, we hypothesized that the values of the AI
factor for the Cheung data set would be enriched for high
values compared with those for a set of genes for which AI
status is unknown. We tested this hypothesis by comparing
the Cheung data set with the 3,908 genes used in the AI
factor annotation analyses described below, again using
Wilcoxon summed-ranks tests.

Annotation of the AI Factor

In order to annotate the AI factor, we cross-referenced
it to publicly available data sets on gene expression, neg-
ative and positive selection on gene regulatory regions, and
gene density.

To measure evenness of gene expression around the ge-
nome, we summarized data available from 73 noncancerous
human tissues in the Novartis Gene Expression Atlas (Su
et al. 2004) following the method of Haygood et al. (Supple-
mentary Materials online and Haygood R, Babbitt CC,
Fédrigo O, Wray GA, unpublished data). In brief, this metric
represents the distribution of a gene’s expression across tis-
sues on a scale from 1/73 to 1. A value of 1 represents equal
magnitude of expression in every tissue, whereas a value of
1/73 represents extremely uneven expression, where the gene
was expressed exclusively in a single tissue.

To measure negative selection and positive selection,
we used the product of the estimate of the fraction of sites
under selection in putative regulatory regions of a gene (f1
in the case of negative selection and f3 in the case of positive
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selection) and the estimate of the strength of selection on the
same region (1 � f1 for negative selection, f3 for positive
selection). Estimates of f and f were available for three dis-
crete regulatory regions around each gene: the 5 kb up-
stream of the gene (Haygood et al. 2007), the 5#
untranslated region (UTR), and the 3# UTR (Fédrigo O,
Haygood R, Wray GA, unpublished data); we used the av-
erage over these three estimates in the analysis, excluding
missing data for 5# or 3# UTR regions when no UTR scores
were available). In this analysis, f is analogous to x in
a branch-specific dn/ds test, so that f 5 1 is indicative of
neutral evolution, very small values of f are indicative of
strong negative selection, and f � 1 is indicative of strong
positive selection. Because f1 is evaluated between 0 and 1,
in our analysis the product of (1 � f1) and f also ranges
between 0 and 1, where 0 corresponds to the least evolu-
tionary constrained and 1 to the most evolutionary
constrained.

To measure gene density in the region around a focal
gene, we used the entries in the CCDS database to count the
number of genes within 100 kb upstream and 100 kb down-
stream of the coding region of the focal gene. If the length
of a gene spanned the 100-kb cutoff, we included it in this
count.

We were able to extract the value of the AI factor and
values for evenness, negative and positive selection, and
gene density for 3,908 genes in the human genome. We
then modeled variation in the AI factor according to the fol-
lowing linear model:

y5 b0 þ e þ s1 þ s3 þ g þ e;

where y represents the value of the AI factor; b0 represents
the model intercept; e represents the evenness score; s1 rep-
resents the product of f1 and 1 � f1 (i.e., the magnitude of
negative selection); s3 represents the product of f3 and f3

(i.e., the magnitude of positive selection); g represents gene
density; and e represents model error.

Model fitting was conducted using the lm function in R
(R Core Development Team 2007). P values for each effect
are taken directly from the model fit based on the estimated
effect size and standard error around the estimate. R2 values
for single effects were calculated as the percentage of var-
iation explained in the residuals of y regressed on all other
model effects by the given single effect.

Results
Prediction of Commonly Imbalanced Genes

Using the full set of sequence, polymorphism, and di-
vergence based features (2,269 features; supplementary ta-
ble S2, Supplementary Material online), we were able to fit
a predictive model for allelic imbalance that accurately clas-
sified 68.3% of the 287 genes in the data set (103 of which
exhibit common allelic imbalance in the Serre et al. 2008,
data set). This level of classification accuracy corresponds
to an area under the curve (AUC) value of 0.66. In agree-
ment with this result, when we conducted Wilcoxon
summed-ranks tests comparing the distribution of values
for commonly imbalanced genes versus nonimbalanced
genes for each feature, the resulting distribution of P values
was strongly skewed toward low P values, in contrast to the
null expectation of a uniform distribution of P values (as
would be observed if no signal of imbalance was contained
within our feature set: P � 10�16; fig. 1).

The estimated generalization error of this model,
31.7%, was obtained using cross-validation, a method that
controls for model overfitting. Specifically, we removed
one gene from the data set, fit the model on the remaining
data, and asked whether the prediction from the resulting
model for the missing gene matched the actual class for that
gene (either common allelic imbalance, hereafter referred to
as ‘‘AI,’’ or nonimbalanced, hereafter non-AI). Our results
indicated that accurate classification of genes in the AI class
was much more difficult than classification of genes in the
non-AI class. Recall for the non-AI class (proportion of true
members of the class that were correctly identified by the
model) was 88.0%, compared with only 33.0% for the AI
class. Similarly, precision for the non-AI class (proportion
of those genes identified by the model as members of a class
that are truly members of the class) was also higher than
precision for the AI class (non-AI: 70.1%; AI: 60.7%).
We could obtain more equivalent results for the two classes
if we allowed the generalization error to increase slightly
(corresponding to decreasing the value of the regularization
term): For example, as overall error increased to 35.5%,
non-AI recall and AI recall values were 75.5% and
44.7%, respectively. In either case, model prediction
worked reasonably well—we were able to correctly predict
the status of over 2/3 of genes in the data set—but together
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FIG. 1.—The distribution of P values from Wilcoxon summed-ranks
test on each feature. Each test compared the value of the feature for genes
in the AI class and genes in the non-AI class; a low P value indicates that
the AI class and the non-AI class were significantly differentiated by
values of the feature. The dashed line gives the expected uniform
distribution of P values for a case in which no such signal could be
detected in the feature set. The distribution is strongly skewed toward the
left (low P-values), demonstrating that a signal of allelic imbalance status
is embedded within the original 2,269 feature set (comparison between
the observed and the expected distribution: P � 1 � 10�16 from
a Kolmogorov–Smirnov test). The inset shows a Q–Q plot of the same
results (with P-values depicted as –log(P)), with the cumulative
distribution function for a uniform distribution on the x-axis and the
cumulative distribution function of the P values for all features on the
y-axis.
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these results suggest that the AI class is fundamentally more
heterogeneous with respect to our feature set than the non-
AI class (table 1).

One possible source of this heterogeneity is inclusion
of genes that exhibit AI due to imprinting instead of due to
cis-regulatory genetic variation. However, only 4 of the
genes included in the 287 genes used to fit the model
are known, provisionally known, or computationally pre-
dicted to be imprinted in humans (based on the curated
set available at www.geneimprint.com). One of these genes
never exhibited detectable allelic imbalance in the Serre
et al. (2008) data set, suggesting that imprinting for at least
this gene is specific to other tissues. Removal of those genes
from the analysis produced model predictions that were
highly correlated with the full data set (P , 2.2 � 10�16,
Spearman’s rho 5 0.993), and did not appreciably alter
the model’s predictive accuracy (generalization error was
31.1% when the four genes were moved). Hence, we re-
tained all 287 genes for the downstream analyses.

Although classification in this analysis is binary, model
predictions are made as continuous real numbers, where pos-
itive predictions correspond to an assignment to the AI class
and negative predictions correspond to an assignment in the
non-AI class. The more extreme a predicted value, the
greater the certainty behind that prediction, given the fit
model. This certainty can be directly expressed as a probabil-
ity by passing the predicted value through a logit link func-
tion. Genes that received a more extreme predicted value,
corresponding to a higher probability of common imbalance
on the positive end and a lower probability of common im-
balance on the negative end, tended to be classified more ac-
curately than genes with a value closer to 0 (fig. 2).

Characteristics of the full feature set were generally
recapitulated when using only one feature subset or only
two feature subsets (of the three classes of features: se-
quence, polymorphism, and divergence; see table 1). Inter-
estingly, predictions generated from the polymorphism data
set alone and the divergence data set alone were signifi-
cantly correlated with each other (Spearman’s q 5
0.248, P 5 2.18 � 10�5), suggesting that the information
about imbalance contained within these two data sets was
somewhat redundant; in contrast, neither of these sets of
predictions were correlated with predictions from the se-
quence data set alone (supplementary fig. S3, Supplemen-
tary Material online). All three single subset models
performed approximately as well, and, as was the case
for the full data set, more extreme predicted values tended
to reflect more accurate classification of the gene (supple-
mentary fig. S4, Supplementary Material online).

Dimension Reduction in the Feature Set

In order to reduce the dimensionality of the full model,
we recursively eliminated features that provided the least
predictive power from the model. The predictive accuracy
of the model remained stable as the number of features in
the model decreased from the full feature set (n5 2,269) to
approximately 500 features but dropped rapidly as the num-
ber of features grew smaller than 500 (fig. 3, supplementary
table S3, Supplementary Material online). This result sug-
gested that the signal of allelic imbalance in our feature set
is diffuse, making interpretation of the effect of individual
features in the model difficult. In order to analyze these fea-
tures, we used NMF (Brunet et al. 2004, reviewed in De-
varajan 2008), a method that is analogous to principle
components analysis but typically produces much sparser
factors. We extracted four factors that summarize the
500 top features in the model (supplementary table S1; sup-
plementary fig. S2, Supplementary Material online). Each
factor represents a weighted linear combination of the in-
dividual features. Most of the features in our model contrib-
uted to several or all of the resulting factors, indicating that
the four factors were not completely orthogonal to each
other, and none of them could be readily interpreted as,
for example, a ‘‘polymorphism’’ factor or a ‘‘repeat’’ factor.
However, we found that only one of these factors, which we
refer to as the AI factor, significantly differentiates between
the AI class and non-AI class of genes (Wilcoxon summed-
ranks test: P5 3.87 � 10�5). Specifically, a higher value of
the AI factor corresponds to an increased probability that
the associated gene will be subject to common imbalance.

Validation Using an External Data Set

Model predictions for genes that exhibited significant
allelic imbalance in Cheung et al. (2008) were significantly
different from the non-AI genes extracted from the Serre
et al. (2008) data set (one-tailed Wilcoxon summed-ranks
test, P 5 4.70 � 10�6) but were not significantly different
from the AI genes from the Serre et al. (2008) data set (P5
0.506). In other words, commonly imbalanced genes iden-
tified through two different methods were indistinguishable
through our model, but both of these gene sets were pre-
dicted as more likely to be imbalanced than a third set
of genes known to exhibit no common imbalance (supple-
mentary fig. S5, Supplementary Material online).

Additionally, genes from the external Cheung et al.
data set were significantly enriched for high values of
the AI factor (which correspond to a higher likelihood of

Table 1
Classification Accuracy and Precision and Recall by Class for the Full Feature Set and the Six Possible Feature Subsets

Full (c 5 0.05a) Full (c 5 1) Seq Poly Div Seq þ Poly Seq þ Div Poly þ Div

Overall accuracy 68.3% 64.5% 62.7% 62.0% 65.8% 64.1% 62.7% 58.9%
AI precision 60.7% 50.5% 47.8% 45.6% 54.1% 50% 47.8% 41.0%
AI recall 33.0% 44.7% 42.7% 30.1% 32.0% 46.6% 42.7% 33.0%
Non-AI precision 70.1% 70.9% 69.7% 67.1% 69.0% 71.2% 69.7% 66.2%
Non-AI recall 88.0% 75.5% 73.9% 79.9% 84.8% 73.9% 73.9% 73.4%

a The regularization parameter c (used to control overfitting) was set to 1 in all cases except for the full feature set, where c 5 0.05. Results for the full feature set with

c 5 1 are also shown for comparison.
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common allelic imbalance) compared with a background
distribution of the AI factor derived from 3,908 genes of
unknown status (P5 6.23 � 10�11; fig. 4). This result sug-
gests that the AI factor, and hence annotations of the AI
factor, retains explanatory power for genes not included
in the original data set derived from Serre et al. (2008).

Annotating the AI Factor

Our results made it difficult to explain the predictive
ability of our model through direct assessment of the fea-
tures within the model: too many features were required for
the model to perform well, and these features do not neatly
reduce into orthogonal factors. In order to better understand
why the feature set we identified contains information about
allelic imbalance, we attempted to annotate the ‘‘AI factor’’
using external data sets. Specifically, we incorporated esti-
mates of natural selection on gene regulatory regions from
the work of Haygood et al. (2007); a metric of tissue spec-
ificity in gene expression derived from the Novartis Gene
Expression Atlas (Su et al. 2004), which we refer to as ex-
pression ‘‘evenness’’ (Supplementary Materials online and
Haygood R, Babbitt CC, Fédrigo O, Wray GA, unpublished
data); and a metric of gene density around the focal genes
based on annotations from the CCDS (http://www.ncbi.
nlm.nih.gov/projects/CCDS/). This approach allowed us
to investigate the possible biological significance underly-
ing the model using a much larger data set, because the AI
factor can be extracted for genes that lack allelic imbalance
measurements in the original data set. Our aim was to un-
derstand why the AI factor, which is derived entirely from
sequence, polymorphism, and divergence data, had explan-
atory power with regards to allelic imbalance at all.

We hypothesized that the regulatory regions of genes
that exhibit common allelic imbalance evolve under less
selective constraint than the regulatory regions of genes
that do not exhibit common imbalance, and that this rela-
tionship could be captured by analyzing sources of vari-
ance in the AI factor. If so, an increased estimate of
negative selection on a gene’s likely regulatory region
might be correlated with a decrease in the value of the
AI factor. As a corollary to this hypothesis, we did not ex-
pect to observe a relationship between the AI factor and
estimates of positive selection, which were available for
the same genes.

FIG. 2.—Genes with more extreme predicted values are more likely
to be predicted correctly. Predictions from the full model were passed
through a logit link function to produce a predicted probability of
common imbalance at each gene. All 287 probability values are plotted,
ranked from lowest probability of common imbalance to highest
probability of common imbalance. True imbalance class is reflected by
the color bar: yellow represents non-AI genes and blue represents AI
genes. The color for each dot represents the degree to which model
predictions were correct for a window size of eight genes around a given
gene, in the list ordered by probability. Non-AI genes are predicted as
commonly imbalanced with lower probability (lower left of the figure);
AI genes are predicted as commonly imbalanced with higher probability
(upper right of the figure). For comparison, perfect prediction would
produce yellow dots below probability 5 0.5 and blue dots above
probability 5 0.5, with a small region of green dots at the transition point
around probability 5 0.5.
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FIG. 3.—Results of recursive feature elimination. Predictive accuracy of the SVM decreases as the number of features in the model drops below
about 500. A rapid drop in AI recall, such that true AI genes are consistently predicted as non-AI genes, predominantly drives this effect (the
corresponding rise in AI precision is due to the very small number of genes still predicted as AI at small model sizes).
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Given that statistical tests of natural selection have
somewhat low power, we also attempted to model variation
in the AI factor using two other variables that have been
connected with gene regulation in the literature. We asked
whether the number of neighboring genes in the region sur-
rounding a focal gene or the degree of tissue specificity in
the expression of a focal gene explain variation in the AI
factor. Neighboring genes tend to exhibit more correlated
patterns of expression than sets of randomly distributed
genes (Kruglyak and Tang 2000; Lercher et al. 2002;
Gierman et al. 2007). Thus, if cis-regulatory mutations po-
tentially disrupt a neighborhood of genes instead of one or
a few genes, genes in gene-dense regions may exhibit sig-
nificantly lower AI factors due to stronger negative selec-
tion in these regions of the genome. Similarly, when genes
are broadly expressed, regulatory genetic changes may be
subjected to increased evolutionary constraint due to dele-
terious effects introduced by pleiotropy. If so, genes that are
broadly and evenly expressed in human tissues may also be
associated with lower levels of the AI factor.

We modeled variation in the AI factor for 3,908 genes
in the human genome for which estimates of negative and
positive selection, tissue specificity (expression ‘‘even-
ness’’), and positional information on nearby gene density
were available. The overall model was highly significant
and explained an appreciable amount of variation in the
AI factor (P, 2.2 � 10�16; R2 5 0.178 for the full model).
Within the full model, we identified significant effects of
the average strength of negative selection, the density of
neighboring genes, and the evenness of gene expression

across tissues, but not the strength of positive selection
on the upstream region.

Specifically, genes subject to greater evolutionary con-
straint (i.e., a higher magnitude of negative selection in their
putative regulatory regions) were also characterized by
smaller AI factors, although this effect was very small
(P 5 2.72 � 10�9, R2 5 0.009). Similarly, we also ob-
served a very small but significant effect of tissue specificity
on the AI factor (P5 9.08 � 10�8, R2 5 0.007): Genes that
are more evenly expressed across tissues exhibit on average
smaller AI factors, corresponding to a lower likelihood of
common allelic imbalance, than genes that are expressed
much more strongly in one or a few tissues than in others.
By contrast, the magnitude of positive selection did not ex-
plain a significant amount of variation in the value of the AI
factor (P 5 0.062).

We found that the density of neighboring genes had by
far the strongest explanatory effect (P � 1 � 10�16; R2 5
0.159), accounting for more than an order of magnitude
more of the overall variance in the AI factor than estimated
for the direct effect of negative selection. Thus, as the num-
ber of neighbors within a 100-kb flanking region on either
side of the gene (200 kb of total sequence) increased, the AI
factor decreased (fig. 5). The interpretation of this result in
the light of allelic imbalance is that genes in gene-rich re-
gions of the genome are somewhat less likely to exhibit
common imbalance than genes with fewer neighbors.

Discussion
Prediction of Common Allelic Imbalance

Our results indicate that the signature of allelic imbal-
ance is detectable in the human genome and that this signa-
ture can, at least diffusely, be captured using SVM models of

genes of unknown status

known AI genes (Cheung dataset)

FIG. 4.—Smoothed distributions of genes that exhibit common allelic
imbalance included in a second validation data set (Cheung et al. 2008)
and 3,908 genes from the AI factor annotation analyses chosen without
respect to allelic imbalance. The genes known to be imbalanced are
enriched for higher values of the AI factor (P 5 6.23 � 10�11).
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FIG. 5.—Genes that reside in more gene-dense neighborhoods
exhibit lower values of the AI factor (P � 1 � 10�16; R2 5 0.159). The
line running through the graph shows the estimated slope for the number
of genes within 100-kb flanking when this effect is estimated by itself
(i.e., not within the full linear model).
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features extracted from sequence, polymorphism, and diver-
gence data. Although the classification accuracy of our
model exhibits a detectable improvement over random as-
signment to the AI or non-AI class (the set of genes that com-
monly exhibit allelic imbalance and the set of genes that do
not exhibit allelic imbalance, respectively), the level of over-
all accuracy we were able to achieve is modest relative to that
observed for other biological phenomena. For example,
Wang et al. (2006) were able to differentiate between X-in-
activated genes and genes that escape from X-inactivation in
humans with over 80% accuracy (Wang et al. 2006), and
Luedi et al. (2005) were able to distinguish between im-
printed and nonimprinted genes in mice with about 94% ac-
curacy (Luedi et al. 2005). Both of these studies used
approaches similar to those we applied here, including some
overlap in feature types (although neither included data on
polymorphism or divergence). However, although short in-
terspersed nuclear elements and long interspersed nuclear el-
ements repeat elements were important features in both
Luedi et al. (2005) and Wang et al. (2006), they were not
strongly highlighted in our analysis: although repetitive el-
ements did appear in the 500 features identified through re-
cursive feature elimination, none of them were weighted very
heavily in the AI factor (supplementary table S1, Supplemen-
tary Material online). These comparisons suggest that allelic
imbalance is a more difficult phenotype to classify, at least
using readily available genomic features.

The likely reason for this comparative difficulty is that
allelic imbalance is a complex quantitative trait (e.g., Tao
et al. 2006), although we dichotomized it for the purposes of
this study. Gene expression has a multifactorial basis, in-
cluding both genetic and environmental effects, and also
can vary temporally and spatially across different tissues.
Indeed, our results are comparable with those from the
handful of studies that have attempted to analyze other
complex traits in a predictive framework (Khoury et al.
2008; Lango et al. 2008; van Hoek et al. 2008; Jakobsdottir
et al. 2009; Liu et al. 2009; but see Lee et al. 2008). For
example, recent whole genome association studies have
identified multiple susceptibility loci for type 2 diabetes,
and the replicability and strong statistical support for these
loci have made type 2 diabetes one of the relative success
stories of the genomewide approach (Prokopenko et al.
2008). However, when assessed in a predictive context,
these loci exhibit only modest predictive ability for the dis-
ease: AUC, a metric that summarizes the trade-off between
true positive and false positive rates (random prediction is
0.50; perfect prediction is 1.0; values below 0.50 reflect pre-
diction that is worse than random), was estimated at 0.60 in
two different studies (Lango et al. 2008; van Hoek et al.
2008). By way of comparison, AUC for our data set was
0.66, even though, unlike the diabetes studies, we did
not have prior information about specific variants that were
highly associated with the trait.

Additionally, our results suggest that there is hetero-
geneity within classes: for example, genes in the AI class
include genes for which allelic imbalance is substantial as
well as genes for which allelic imbalance is modest (but
detectable and replicable in multiple individuals). In con-
trast, prediction for non-AI genes appears to be easier.
These findings are also in agreement with other attempts

to predict complex traits. For example, Liu et al. (2009) at-
tempted to predict eye color using up to 24 SNPs previously
implicated in eye color differences. Although they were
able to achieve prediction of brown eyes and blue eyes
at AUC levels of 0.88–0.93, prediction of ‘‘intermediate’’
colored eyes ranged from 0.63–0.73, suggesting that this
phenotypic class is more difficult to accurately predict than
the other two classes. We were not able to detect a robust
effect of magnitude of imbalance on classification accuracy
(Supplementary Materials online). However, magnitude of
imbalance is difficult to take into account because all allelic
imbalance data sets thus far focus on a relatively small set of
individuals (n 5 83 in Serre et al. 2008), and, even within
these data sets, appreciable variation is observed among in-
dividuals that exhibit imbalance, suggesting that imbalance
magnitude may be context dependent on trans genetic var-
iation or environmental factors.

Finally, the genetic variation that produces allelic im-
balance arises and is maintained by a complex combination
of mutation, recombination, selection, and demographic
history. For example, because allelic imbalance is only
detectable within individuals that are heterozygous at a tran-
scribed site, the allele frequency spectrum for the causal cis-
regulatory polymorphism, along with population structure,
is a critical component of the frequency with which allelic
imbalance will be detected. Unlike for phenomena like
X-inactivation or imprinting, then, no gene will always exhibit
allelic imbalance, even if these polymorphisms are very
common. Further, the rate at which allelic imbalance arises
may vary due to differences in the underlying mutation rate,
and the frequency with which it is expressed may differ
across tissues (Campbell et al. 2008) and across environ-
ments (de Meaux et al. 2005; Zhu et al. 2006). Across
populations, variation in the extent of cis-regulatory poly-
morphism between genes may be due to differences in the
occurrence and strength of balancing selection (e.g., at
major histocompatibility complex [MHC] loci: Tan et al.
2005; Loisel et al. 2006) or, as suggested by our results,
could reflect variation in selective constraint on gene ex-
pression profiles. Additional genomewide measurements
of allelic imbalance in more of these contexts would in-
crease the accuracy of the labels we used here and likely
improve the classification ability of the resulting models.

For the preceding reasons, it is perhaps surprising that
the features used here are predictive of common allelic im-
balance at all, especially given that, unlike other predictive
studies (Lango et al. 2008; van Hoek et al. 2008; Liu et al.
2009), we could not filter our feature set for features that
were a priori known to be involved in producing allelic im-
balance for these genes. Predictive models derived from
machine learning have been frequently used in molecular
and cancer genetics (Mukherjee et al. 1999; Brown et al.
2000; Guyon et al. 2002; Zhang et al. 2003), and have been
applied to a handful of problems in ecology (Guo et al.
2005; Drake et al. 2006). To our knowledge, however, they
have rarely been used to interrogate differences in the de-
gree of variation in specific molecular phenotypes, as we
have done here. Our results suggest that this general ap-
proach may have some applicability to these kinds of prob-
lems, and may therefore be useful as an additional tool for
investigating problems in biological fields specifically
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interested in variation, including genetic epidemiology and
evolution (e.g., Roettger et al. 2009). Given that the features
used in these models are becoming available for more and
more systems, including nontraditional, nonmodel systems,
they could be of particular use when informed prediction is
an important step to take prior to conducting empirical
measurements.

Selective Constraints on Gene Expression

The initial SVM model fitting for allelic imbalance did
not rely on careful hypothesis generation or modeling of the
process by which imbalance arises. However, understand-
ing the biological meaning behind its predictive ability de-
mands that such methods be applied. We attempted to do so
here by annotating a factor that contains many of the fea-
tures responsible for our model’s predictive ability, and that
is itself significantly correlated with allelic imbalance class,
using additional publicly available data and the results of
prior work incorporating a formal modeling perspective.

These analyses allowed us to test hypotheses to account
for the apparent nonrandom distribution of allelic imbalance
around the genome. We reasoned that, if gene expression is
frequently under negative selection in the primate lineage, as
has been suggested by others (Khaitovich et al. 2005; Gilad,
Oshlack, and Rifkin 2006; Gilad, Oshlack, Smyth, et al.
2006), genes that exhibit common imbalance may be those
that are evolving under less evolutionary constraint than
genes that do not exhibit common imbalance. This possibil-
ity has also been suggested by Campbell et al. (2008) to ex-
plain the observation that genes that are imbalanced in
humans also tend to be imbalanced in mice, despite the sub-
stantial evolutionary time separating these two species
(Campbell et al. 2008). Alternatively, if natural selection
has little to do with imbalance, then the distribution of com-
monly imbalanced genes around the genome may have more
to do with variation in local mutation rates. Currently, ge-
nomewide data sets that estimate the strength of selection
and evolutionary constraint on gene regulatory regions are
available at the resolution of single genes; in contrast,
fine-scale estimates of mutation rate variation across the ge-
nome are not yet available. Hence, we focused largely on the
currently more tractable hypothesis that variation in allelic
imbalance across the genome is related to evolutionary con-
straint. Specifically, we examined the relationship between
the ‘‘AI factor,’’ a linear combination of variables that pre-
dicts allelic imbalance, and three other effects that are di-
rectly or indirectly related to evolutionary constraint. We
found that the value of the AI factor increases (corresponding
to a higher probability of common imbalance in the gene)
with decreased negative selection on the upstream regulatory
region of a gene, decreased evenness of expression across
human tissues, and decreased density of genes in the region
surrounding the focal gene.

By far, the strongest effect we identified was that of
density of genes around the focal gene: genes in gene-dense
regions are associated with lower values of the AI factor, cor-
responding to a lower likelihood of common allelic imbal-
ance. At least two mechanisms can account for this
observation. First, the presence of nearby genes evolving un-

der negative selection could reduce the proportion of nearby
sites that are likely to harbor common segregating genetic
variation. Under this scenario, negative selection on neigh-
boring genes (even if only in the coding regions) means that
fewer variants with potential cis-regulatory effects on the fo-
cal gene will reach frequencies high enough to produce com-
mon allelic imbalance. Second, functional cis-regulatory
variants that arise in gene-dense regions could be more likely
to produce deleterious pleiotropic effects on gene expression.
Genes that cluster together in the same physical location tend
to exhibit correlated patterns of gene expression (Kruglyak
and Tang 2000; Lercher et al. 2002; Gierman et al. 2007). If
these effects are due to shared cis-regulatory sequence or to
shared patterns of chromatin condensation, changes in the
expression of one gene may ramify outwards to also affect
neighboring loci. Consequently, functional cis-regulatory
variation that arises in gene-dense regions might alter the ex-
pression of not one, but several (or many) linked genes, and
therefore be subject to greater constraint than cis-regulatory
variants near physically isolated genes. Although both of
these mechanisms invoke patterns of evolutionary constraint,
only the second requires negative selection on the gene ex-
pression profile itself. Given that they are not mutually ex-
clusive, however, it is possible that the combination of both
mechanisms acting together accounts for the strong signal of
gene density on the AI factor.

Pleiotropy may also influence the observed relation-
ship between allelic imbalance and evenness of expression.
Genes that are more evenly expressed across tissues in the
human body have, on average, lower values of the AI fac-
tor, although this effect is very small. One of the main argu-
ments in favor of the importance of cis-regulatory variants
in complex trait evolution is that changes in cis-acting gene
regulation can evade pleiotropic constraints by altering
gene expression in a tissue- or condition-dependent manner
(Wray 2007; Blekhman et al. 2008; Smith and Kruglyak
2008). Recent evidence strongly suggests that tissue-spe-
cific changes in expression have been important during hu-
man evolution (Blekhman et al. 2008; Kosiol et al. 2008);
for example, a selectively advantageous change in the
DARC cis-regulatory region abolishes expression of the
gene on red blood cells, conferring strong protection against
infection by malarial parasites, but does not interfere with
DARC expression elsewhere in the body (Tournamille et al.
1995). However, tissue-specificity may be more difficult to
achieve when a gene is truly evenly expressed across many
tissues. Hence, mutations influencing these genes may be
subject to a slightly increased level of constraint, in this case
due to pleiotropy across tissues as opposed to pleiotropy
across genes.

As in the case of evenness of expression, the relation-
ship between negative selection and the AI factor was weak
but in the direction predicted by our hypothesis. Genes sub-
ject to greater negative selection, as measured by the com-
parison between the rate of evolution in putative regulatory
regions of the gene and the rate of evolution in introns
(Haygood et al. 2007), tend to have lower values for the
AI factor, suggesting that these genes are less likely to exhibit
common allelic imbalance. Perhaps surprisingly, if gene den-
sity is a proxy for evolutionary constraint, the relationship
between imbalance and this direct measure of negative
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selection was much weaker than the relationship between
allelic imbalance and gene density. This discrepancy may
be due to the limited scope of the measure of negative selec-
tion (functional cis-regulatory elements can reside further
upstream, downstream, or within a gene, so we therefore av-
eraged over the three regions for which data were available;
however, it is possible that these regions accumulate func-
tional cis-regulatory differences at different rates and with
different downstream effects), the inherent lack of power
in estimating the strength of selection, and/or differences
between patterns of selection on the gene expression pheno-
type itself and patterns of selection on the associated cis-
regulatory sequence.

Overall, our results suggest that evolutionary constraint
plays an important role in determining whether a gene is
likely to accumulate functional cis-regulatory variation at
moderate to high frequencies within human populations.
The role of mutational biases in this process remains an im-
portant outstanding question, however. Our results do not
preclude the possibility that genes that are more likely to ex-
hibit common imbalance might also fall, with some greater
probability, in mutational ‘‘warmspots.’’ What then are the
relative contributions of mutation and selection to allelic im-
balance within human populations? Measures of GC content
(except in the coding sequence itself) were not included in
the set of 500 features that were most predictive of common
allelic imbalance in our analyses. Given that the mutation rate
at CpG dinucleotides is estimated to be over an order of mag-
nitude higher than background (Nachman and Crowell 2000),
this result circumstantially suggests thatmutationalbiasmight
not play as important of a role as selective constraint in deter-
mining the distributionofallelic imbalance. In the next several
years, we anticipate that next-generation sequencing technol-
ogies will produce much more fine-scaled estimates of muta-
tion rate across the genome than are currently available. At
that point, it will be worth revisiting the relative role of selec-
tion and mutation in determining segregating functional cis-
regulatory variation in human populations.

Taken together, our analyses support the hypothesis
that the nonrandom distribution of common allelic imbal-
ance in the human genome, as demonstrated by the ability
to classify and predict which genes are subject to common
imbalance, is the product of weak negative selection. Spe-
cifically, commonly imbalanced genes tend to be subjected
to less evolutionary constraint than genes that are never (or
rarely) imbalanced. We were able to detect this effect only
by analyzing a large number of genes, most of which were
not actually included in the initial data set on allelic imbal-
ance. This result suggests that the machine learning-based
approach we applied here might be useful not only for ex-
ploratory analyses but also for producing a proxy for a phe-
notype of interest (here, the AI factor) that can be used to
expand the size of the data set to be analyzed. It also sug-
gests that negative selection on gene expression, as has
been documented in both primates (Gilad, Oshlack, and
Rifkin 2006; Gilad, Oshlack, Smyth, et al. 2006) and model
systems (Rifkin et al. 2003; Denver et al. 2005), may trans-
late into negative selection on functional cis-regulatory var-
iants. As in the case of other molecular characteristics with
evolutionary implications, such as codon usage bias
(Akashi 1995; dos Reis and Wernisch 2009) or mutation

to spurious transcription factor binding sites (Hahn et al.
2003), the effect of negative selection on allelic imbalance
appears to be weak.

Further work needs to be done in order to understand
whether the results we describe are typical of functional ge-
netic changes in gene expression in general or are specific to
cis-regulatory genetic effects, and whether the predictive
models developed here extend to other taxa. Additionally,
the greater difficulty we encountered in classifying genes in
the AI class than genes in the non-AI class suggests that the
category of genes subject to common allelic imbalance is
somewhat heterogeneous. Further exploration may reveal
possible sources of this heterogeneity. It would be interest-
ing if genes that exhibit imbalance in a context-dependent
manner (those sensitive to developmental timing or tissue-
dependent effects, or those influenced by epistasis and/or
gene–environment interactions) behave quantitatively or
qualitatively differently from genes for which the architec-
ture of allelic imbalance is more simple. Functional regu-
latory effects make important contributions to organism-
level phenotypic variation of both medical and evolutionary
import. Understanding how these effects are distributed
across the genome, and in particular when and in what
genes they may persist, is therefore critical to developing
a better understanding of how trait variation arises within
populations.

Supplementary Material

Supplementary figures S1–S5 and supplementary ta-
bles S1–S3 are available at Molecular Biology and Evolu-
tion online (http://www.mbe.oxfordjournals.org/).
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