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Abstract

Background: Human populations are structured by social networks, in which individuals tend to form relationships based
on shared attributes. Certain attributes that are ambiguous, stigmatized or illegal can create a ÔhiddenÕ population, so-
called because its members are difficult to identify. Many hidden populations are also at an elevated risk of exposure to
infectious diseases. Consequently, public health agencies are presently adopting modern survey techniques that traverse
social networks in hidden populations by soliciting individuals to recruit their peers, e.g., respondent-driven sampling (RDS).
The concomitant accumulation of network-based epidemiological data, however, is rapidly outpacing the development of
computational methods for analysis. Moreover, current analytical models rely on unrealistic assumptions, e.g., that the
traversal of social networks can be modeled by a Markov chain rather than a branching process.

Methodology/Principal Findings: Here, we develop a new methodology based on stochastic context-free grammars
(SCFGs), which are well-suited to modeling tree-like structure of the RDS recruitment process. We apply this methodology to
an RDS case study of injection drug users (IDUs) in Tijuana, México, a hidden population at high risk of blood-borne and
sexually-transmitted infections (i.e., HIV, hepatitis C virus, syphilis). Survey data were encoded as text strings that were
parsed using our custom implementation of the inside-outside algorithm in a publicly-available software package (HyPhy),
which uses either expectation maximization or direct optimization methods and permits constraints on model parameters
for hypothesis testing. We identified significant latent variability in the recruitment process that violates assumptions of
Markov chain-based methods for RDS analysis: firstly, IDUs tended to emulate the recruitment behavior of their own
recruiter; and secondly, the recruitment of like peers (homophily) was dependent on the number of recruits.

Conclusions: SCFGs provide a rich probabilistic language that can articulate complex latent structure in survey data derived
from the traversal of social networks. Such structure that has no representation in Markov chain-based models can interfere
with the estimation of the composition of hidden populations if left unaccounted for, raising critical implications for the
prevention and control of infectious disease epidemics.
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Introduction

Hidden populations consist of individuals sharing one or more

common attributes that are masked from public surveillance, either

because they are rare, difficult to measure or define (e.g., jazz

musicians [1]), or stigmatized and/or illegal (e.g., injection drug use

[2]). At the same time, many hidden populations are important foci

for public health surveillance and outreach, e.g., at greater risk of

transmitted diseases. Social sampling techniques can overcome

these obstacles by exploiting the social networks that permeate

hidden populations. For instance, chain-referral sampling tech-

niques such as ‘snowball’ sampling [3] solicit members of the hidden

population to provide contact information on behalf of their peers.

However, conjectures from chain-referral samples are susceptible to

the non-randomness of the initial sample (‘seed’ individuals), which

tends to comprise the most accessible members of the hidden

population (e.g., those enrolled into an institutional setting, such as a

drug treatment program [4,5]). In addition, members of a
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stigmatized or illegal hidden population may be reluctant to submit

contact information without the consent of their peers. Respondent-

driven sampling (RDS) is a recent offshoot of chain-referral

sampling [6] that implements a dual-incentive system: in addition

to an initial incentive for participation, a respondent receives

additional rewards for every peer they recruit into the study.

Respondents are given multiple study referral ‘coupons’ with which

to recruit peers, which allows peers to decide for themselves whether

or not to participate. An efficient and cost-effective sampling

method, RDS is rapidly becoming the de facto standard for sampling

from hidden populations [1,7,8] and is a critical component of the

global effort against the AIDS epidemic [9].

A sample obtained using RDS provides detailed information

about the social network, from which one can derive a less biased

estimate of the composition of the hidden population [10], e.g., what

proportion are HIV-infected. This is possible because the propaga-

tion of referrals through a social network superficially resembles a

first-order Markov chain that visits discrete states corresponding to

various attributes of successive respondents, and converges to a

stationary distribution independent of starting conditions. Conse-

quently, social mixing (i.e., non-random network associations) can be

measured by cross-tabulating attributes of the recruiter against the

recruitee, analyzed using log-linear models [11], and generalized to

the population. However, this approach requires several inappro-

priate or oversimplifying assumptions. Firstly, the common practice

of encouraging respondents to recruit multiple peers in order to

accelerate the sampling process results in a referral ‘tree’ instead of a

chain. Secondly, the recruitment process may be related not only to

attributes of the recruiter, but the recruiter’s recruiter also, and so on,

leading to higher-order recruitment processes. Thirdly, the recruit-

ment process may be influenced by unobserved states of respondents

that might not be directly measurable, e.g., an individual’s disposition

to recruit their peers.

Multitype branching processes (MBPs) provide a more natural

representation of the tree-like structure of RDS recruitment process

as it traverses the social network in a hidden population. Here, we

exploit the close relationship between MBPs and stochastic context-

free grammars (SCFGs) [12,13] to develop a rich probabilistic

language for the analysis of RDS data. A grammar comprises a set

of rules for generating strings (i.e., linear sequences of symbols)

through the successive replacement of symbols until only non-

replaceable (terminal) symbols remain [14]. Any tree-like structure

can be encoded as a bracketed string, in which symbols are grouped

by parentheses [15]; this principle is exemplified by the ubiquitous

Newick format for phylogenetic trees, e.g., ‘‘(( human, chimpanzee),

gorilla)’’ [16]. Context-free grammars can generate strings only by

replacing one non-terminal symbol at a time with one or more other

symbols, and are therefore especially well-suited for modeling the

growth of tree-like structures. In other words, we let the stochastic

replacement of symbols in a string correspond to branching events

in the recruitment process of RDS (Figure 1). Because a grammar

may provide more than one derivation for a given string, we assign

probabilities to different rules of the grammar that together define a

joint probability for each derivation. As a result, stochastic

grammars provide a robust means for inferring unobserved

quantities from the data, e.g., the dependence of recruitment

dynamics on unmeasured latent variables. In sum, the versatile

probabilistic framework of SCFGs enables us to perform rigorous

hypothesis testing on RDS data for a wide range of models of

recruitment dynamics.

To illustrate the application of SCFGs to the analysis of RDS

data, we estimate recruitment dynamics and mixing patterns

between discrete groups of individuals in a hidden population of

injection drug users (IDUs) in Tijuana, México. Injection drug use

is a growing problem in cities located along the U.S.-México

border. México is the primary source of methamphetamine

entering the United States [17] and a major source of cultivated

heroin [18]. Cities and towns positioned on drug trafficking routes

often experience epidemics of injection drug use [18,19]. Tijuana

is home to approximately 10,000 IDUs [18], who are at increased

risk of infection with human immunodeficiency virus type 1 (HIV-

1), hepatitis C virus (HCV), and sexually transmitted infections

(STIs) such as syphilis. Elucidating the patterns of social mixing in

this population is critical for recruitment of IDUs into surveillance

and prevention studies aimed at monitoring and reducing the

burden of these infectious diseases.

Methods

Ethics statement
Study methods were approved by the Institutional Review

Board of the University of California, San Diego and the Ethics

Board of the Tijuana General Hospital. Subjects gave their written

informed consent to participate in the study.

Study population
From February through April 2005, eligible IDUs were enrolled

in a cross-sectional study in Tijuana, México. Eligibility criteria for

the study included: having injected illicit drugs within the past

month, confirmed by inspection of injection stigmata (i.e., ‘track

marks’); aged 18 years or older; willing and able to provide

informed consent; and not having been previously interviewed for

the study. Recruitment was performed by the Centro de

Integración y Recuperación para Enfermos de Alcoholismo y

Drogadicción ‘‘Mario Camacho Espı́ritu’’, A.C. (CIRAD), a non-

governmental organization (NGO) started in 1991 to work with

drug users, who made weekly trips to three geographically diverse

‘colonias’ (i.e., neighborhoods) in the city: Zona Norte, Camino

Verde, and Sepanal, using a modified recreational vehicle that

operated as a mobile clinic (the ‘Prevemovihl’).

Figure 1. Relating a stochastic context-free grammar (SCFG) to
the multitype branching process of RDS. Strings generated by an
SCFG are depicted on the left-hand side. S is the start symbol from
which all strings are derived, corresponding to the initiation of an RDS
study; G and H are non-terminal symbols for different types of
respondents whose recruitment outcomes are unresolved; and A and B
are terminal symbols for respondents whose recruitment outcomes are
resolved. A successful recruitment is indicated by a substring enclosed
in parentheses to the immediate right of the originating terminal
symbol. To represent the termination of an RDS study, the remaining
non-terminal symbols are rewritten as lower-case terminal symbols,
e.g., a.
doi:10.1371/journal.pone.0006777.g001
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Upon enrollment, trained staff administered quantitative

surveys eliciting information on topics such as socioeconomic

and demographic profiles, and drug use practices. Blood samples

were obtained by venipuncture and serum was stored at the

municipal health clinic in Tijuana before being shipped frozen to

the San Diego County public health laboratory. Samples were

tested for syphilis antibody with the rapid plasma reagin test (RPR

Macrovue, Becton Dickinson) and, if reactive, confirmed by a

Treponema pallidum particle agglutination assay (TPPA, Fujirebio

Diagnostics). Each respondent received 10 U.S. dollars (USD) and,

until the end of the study, three unique ‘coupons’ to refer their

peers to the study. Respondents received an additional 5 USD for

every eligible individual they recruited. Monetary incentives were

determined based on the experience of study staff. Further details

of the study are described in Frost et al. [11].

Conversion of RDS data
Respondent data from the RDS study was deposited into a

STATA (StataCorp, College Station, TX) database, including the

unique identifiers of coupons issued to respondents, as well as the

identifier of the coupon with which they were referred. We used

custom scripts in R (R Foundation for Statistical Computing,

Vienna, Austria) and Python to match coupons between recruiter

and recruitee, and to encode the ensuing recruitment trees into

strings (Supporting Text S2). Each string was comprised of the

following terminal symbols: ‘ .’ to encode respondents irrespective

of state; ‘ A’ and ‘ B’ to encode respondents with respect to

observed attributes, i.e., visible states; ‘ (‘ and ’)’ to encode nested

groups within the tree-like structure of RDS (Figure 1). In

addition, we made the replacements ‘ .’ ? ‘ :’, ‘ A’ ? ‘ a’, and

‘ B’ ? ‘ b’ to censor respondents that were not issued coupons

near the end of the study from our model inference procedure. By

censoring respondents without coupons, we avoid biasing our

parameter estimates of recruitment behavior such as the

probability of failing to recruit any peers. To reduce the

complexity of the grammar, all substrings comprised of letters

were pre-sorted in alphabetical order (equivalent to rotating

branches of the recruitment tree), e.g., ‘‘ A(ABA)’’ was probabi-

listically equivalent to ‘‘ A(AAB)’’.

Modeling RDS using SCFGs
Alternative models of the recruitment process were represented

by SCFGs, each of which stipulated a different joint probability for

a given string. A context-free grammar is comprised of rules that

replace a single non-terminal symbol with a substring of non-

terminal and terminal symbols. Rules in an SCFG may be

weighted by different probabilities, which become the parameters

of the model. The likelihood of an SCFG for a given set of strings

was calculated by inferring the rule probabilities that were most

likely to derive the corpus. In the absence of hidden states, these

parameter estimates were equivalent to the frequency of each rule,

i.e., recruitment outcome. In order to capitalize on pre-existing

efficient algorithms for inferring the most likely derivation of a

string for a given grammar, all SCFGs were expressed in Chomsky

normal form (CNF) such that a non-terminal symbol could be

replaced only by either a pair of non-terminal symbols or a single

terminal symbol [20]. Although this requirement may seem overly

restrictive, in fact any context free grammar can be expressed in

CNF [21]. For readability, we will present grammars in their non-

CNF form. To analyze strings using SCFGs, we implemented the

inside-outside [13] and Cocke-Kasami-Younger algorithms

[22,23] as a new component of the publicly-available software

package HyPhy [24]. Confidence intervals around the maximum

likelihood estimates of model parameters were obtained by

likelihood profiling (Supporting Table S1).

We used the following notation to distinguish between different

SCFG models in our study: M.
v|h, where v corresponds to the

number of visible states, h to the number of hidden states, and

superscripts were used to label alternative parameterizations (e.g.,

probability distributions) on the rule set defined by v and h. For

example, the simplest SCFG model of the RDS process (M1)

comprised the following rules and probabilities: P S? Gð Þð Þ~1;

P G? :ð Þ~p0; P G? : Gð Þð Þ~p1; P G? : GGð Þð Þ~p2; and

P G? : GGGð Þð Þ~p3. ‘S’ is the start symbol from which all

strings are derived, and ‘G’ is a non-terminal symbol representing

a potential recruitment, i.e., an unredeemed coupon issued to a

respondent. Each recruitment outcome per respondent (enclosed

in parentheses and immediately following ‘ .’) is associated with a

different probability with the constraint that
P3

n~0 pn~1, i.e., the

model has 3 free parameters. We will refer to M1 as a uniform

recruitment model because we make no distinction among

individuals with respect to visible attributes or hidden variation

in recruitment behavior. Assuming the parameters pnf g are

known, the probability of generating the string ‘‘ (.(..))’’ is p2 p0ð Þ2.

Conversely, the likelihood ofM1 given this string is maximized by

setting p̂pn~ 0: _66,0,0: _33,0
� �

such that L M1ð Þ~0:148. Constraining

the pnf g parameters to a binomial distribution such that

pn~
3
n

� �
pn 1{pð Þ 3{nð Þ

reduces the number of free parameters to

1. Because this is an alternative parameterization on the

grammatical rules of M1, we denote this binomial model as

Mb
1. Its likelihood is maximized at p̂p~0: _22 such that

L Mb
1

� �
~0:026, almost six times lower than L M1ð Þ. If we

assume that the null distribution for the ratio of likelihoods is

sufficiently approximated by a x2
k distribution, where k is the

difference in the number of free parameters between models, then

the probability that L Mb
1

� �
ƒ0:026 is approximately P~0:01. In

other words, the removal of two parameters by constraining

recruitment probabilities to a binomial distribution results in

significant loss in model likelihood. This likelihood ratio test

requires that the models are nested, i.e., that one model can be

defined in terms of the second. Relative performance of non-

nested models was quantified by the difference between the i-th
model and the best model in terms of AIC, i.e.,

Di~AICi{ min AICð Þ. By convention, Div2 indicates substan-

tial support for the i-th model, which diminishes rapidly with

increasing Di to a cut-off of 10, beyond which support is

considered to be negligibly small [25].

In order to model variation in the recruitment process among

respondents with respect to binary visible attributes, we employed

an SCFG with the following rules and probabilities:

S ? (G)j(H) sj 1{sð Þ
G ? A p0

G ? A(G)jA(H) x0
1jx1

1

� �
p1

G ? A(GG)jA(GH)|A(HH) x0
2jx1

2jx2
2

� �
p2

G ? A(GGG)jA(GGH)jA(GHH)jA(HHH) x0
3jx1

3jx2
3jx3

3

� �
p3

H ? B q0

H ? B(H)jB(G) y0
1jy1

1

� �
q1

H ? B(HH)jB(GH)jB(GG) y0
2jy1

2jy2
2

� �
q2

H ? B(HHH)jB(GHH)jB(GGH)jB(GGG) y0
3jy1

3jy2
3jy3

3

� �
q3

where ‘j’ is used to separate outcomes, and xm
n (or ym

n ) give the

probability that m out of n recruitees had the opposite state to a

recruiter in state G (or H), such that
Pn

m~0 xm
n ~1 andPn

m~0 ym
n ~1 for n [ 1,2,3f g. We also included the deterministic
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rules G ? a and H ? b to allow censored respondents to be

interpreted as unresolved non-terminal symbols. This SCFG

comprised 19 free parameters that could be constrained to express

alternative models of recruitment. For instance, assuming a

constant distribution in the number of recruits across visible

states (pn~qn,Vn) and binomial mixing probabilities

(xm
n ~ m

n

� �
xm 1{xð Þn{m

) reduced the number of free parameters

to 6. This parameterization of the SCFG was used as the baseline

model, M2. The complete set of SCFGs used in this study are

described in Supporting Text S1.

Results

Variation in recruitment ability
The composition and recruitment dynamics of the respondents

in this RDS study are depicted in Figure 2 as a ‘forest’ of 15

referral trees, with each tree rooted at a seed individual. Our use of

SCFGs enabled us to analyze the dynamics of the recruitment

process (e.g., the number of recruits per respondent) by contrasting

the likelihoods of different models of recruitment L Mið Þf g,
articulated by the assignment of probabilities to rules of the

grammar. A conventional first-order Markov model of RDS

implicitly assumes that the number of recruits follows a binomial

distribution, i.e., the outcome of three independent attempts to

recruit with a constant probability of success. However, the

likelihood of the equivalent SCFG with binomial recruitment

numbers (Mb
1) was significantly lower than an SCFG with

multinomial recruitment numbers (M1), in which the only

constraint on the probabilities of recruiting 0, 1, 2, or 3 individuals

is summing to unity (x2
2~110:7, P%0:001). This outcome was due

to the bimodal nature of the distribution of the number of recruits

(Figure 3A), suggesting that the probability of recruitment was

conditional on prior successes and/or that the propensity to recruit

varied among respondents [11]. Because M0 underestimated

variation in the number of recruits per respondent, it also

performed poorly relative to M1 in predicting the distribution of

referral tree sizes (x2
5~17:9, P~0:003; Supporting Figure S1).

We modeled variation in recruitment ability among respondents

by expanding the SCFG to include non-observed or unobservable

(‘hidden’) states of respondents, akin to a hidden Markov model

operating within a branching process. Hidden states can represent

different modes of recruitment, which could be interpreted as either

an individual-level characteristic transmitted from recruiter to

recruitee, or a population-level effect, e.g., the recruitment process

enters an unmeasurable ‘neighborhood’ within the social network in

which recruitment dynamics are skewed. We denote the inclusion of

hidden states into the multinomial uniform recruitment model by

the notationM1|2, where the subscript indicates that respondents

share a single visible state but divided into two hidden states.M1|2

significantly improved likelihood relative to M1 (x2
6 = 17.9,

P = 0.006) due to a positive correlation between the recruitment

abilities of the recruiter and the recruitee (odds ratio,

OR~3:8 : ?). By computing the most likely derivation of the

‘observed’ strings under model M1|2 [22,23], we mapped

transitions between hidden states to specific recruitment events in

the referral trees (Supporting Figure S2). All seed individuals were

inferred to belong to the same ‘boom-or-bust’ hidden state, in which

respondents recruited 1.6 peers on average despite a high attrition

rate (Figure 3A). Recruitment processes subsequently evolved into

an absorbing hidden state at a rate of 0.21 per recruitment,

characterized by a more consistent but unsustainable rate of

recruitment (averaging 0.83 recruits per respondent; Figure 3A). (A

complete listing of parameter estimates for all SCFGs employed in

this study is provided as Supporting Table S1.)

Social mixing between visible states
To evaluate the extent of social mixing, we re-encoded the RDS

data into strings using two different symbols (‘ A’, ‘ B’) to annotate

binary visible states of respondents, viz.: syphilis serostatus; interview

site, a proxy for geographic mixing; status as an active drug dealer or

operator of a ‘shooting gallery’, a shared site for injection drug-use

known as a ‘picadero’; whether the respondent injected drugs

predominantly at home or in a shooting gallery; and reported use of

Figure 2. Referral trees from an RDS study of IDUs in Tijuana, México. Each node represents a respondent who recruits zero to three peers,
indicated by arrows originating from the recruiter to the recruitee. The nodes are sized such that their diameter represents the respondent’s reported
network size on a logarithmic scale (base 10). A cross-mark inscribed within the node indicates that the respondent was not given coupons to recruit
at the end of the study. Node shape indicates the interview site (circle = Sepanal/Zona Norte, square = Camino Verde). A doubled perimeter indicates
that the respondent reported injecting drugs at home. Shaded nodes represent respondents who tested seropositive for syphilis.
doi:10.1371/journal.pone.0006777.g002
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methamphetamine. These strings were analyzed using an expanded

SCFG model (M2) that accommodated binary visible states. In

order to minimize the number of model parameters, we assumed

initially that the probability of recruiting outside of one’s visible

category was independent of the number of recruits. The ‘full’

parameterization ofM2 therefore comprised 9 degrees of freedom:

1 for the binomial distribution of visible states in seed individuals,

2|3 for the multinomial distributions in the number of recruits per

visible state, and 2|1 for the binomial distributions in visible states

of recruitees per visible state of the recruiter. However, we found

that for every visible state in our study, constraining the number of

recruits per recruiter to be independent of the recruiter’s visible state

achieved a similar fit to the data with fewer parameters

(0:96vx2
3v3:06, 0:38vPv0:82). Subsequent extensions of M2

were therefore evaluated against this baseline assumption in the

number of recruits except where noted otherwise.

The degree of assortative mixing, or homophily, with respect to a

visible state was evaluated by computing the likelihood of an

alternative model (MC
2 ) where the probability of recruiting peers

with a given visible state was constrained to be independent of the

recruiter’s visible state. Due to the high rate of transit of IDUs along

the Tijuana River canal between the Sepanal and Zona Norte

interview sites, we merged respondents that were interviewed in these

neighborhoods into a single location, SZN, leaving Camino Verde

(CV) as the second location. We detected significant assortative mixing

with respect to location (x2
1~137:2, P%0:001). Recruitees tended to

be interviewed at the recruiter’s interview site more often, with

probability 0.96 (95% CI: 0.92, 0.98) at SVM and 0.95 (95% CI: 0.85,

0.99) at CV. We also detected significant assortative mixing by syphilis

serostatus (x2
1~4:7, P~0:03). 31 out of 221 respondents (14%) tested

seropositive for syphilis. However, a seropositive individual recruited

seropositive peers with a probability of 0.28 (95% CI: 0.14, 0.45). In

contrast, seronegative individuals recruited seropositive individuals

with a probability of 0.11 (95% CI: 0.07, 0.16). Although syphilis

serostatus is visible in statistical terms, it is likely to be invisible with

respect to social mixing; consequently, assortative mixing between

seropositive individuals is probably due to mixing with respect to other

attributes related to the risk of STI acquisition.

Figure 3. Contrasting model predictions of variation in recruitment dynamics. ( A) Histograms depict the inferred probability distribution
for the number of recruits per respondent under the corresponding model. The dotted line histogram indicates the distribution in recruitment ability
for respondents in the same hidden state as seed individuals. The mean number of recruits per respondent is indicated for each distribution by an
inverted triangle along the x-axis. Plots are separated by P-values obtained from likelihood ratio tests between adjacent models (always favoring the
right-hand side). ( B) Contrasting projected composition of samples based on Markov chain and multitype branching process (tree) models of RDS, in
which the latter included hidden states to model variation among respondents not explained by the corresponding visible attribute (viz., reporting
prior use of methamphetamine, syphilis serostatus, and reporting injection drug use at home in the past six months). Frequencies correspond to the
proportion of respondents in the ‘positive’ visible state (i.e., using methamphetamines, syphilis seropositive, or using drugs at home).
doi:10.1371/journal.pone.0006777.g003
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Twenty-five respondents (11%) were categorized as ‘dealers’ if

they had either sold drugs to IDUs within the past six months, or

operated a shooting gallery. Our a priori expectation was that

dealers would tend to recruit outside of their group, because

forming ties with non-dealers may be essential to assuming this

role in the hidden population, and that they would also be more

effective recruiters. However, we found no evidence of either

disassortative or assortative mixing (x2
1~0:37, P~0:54); dealer or

non-dealer respondents recruited dealer peers in roughly equal

proportions. Additionally, 77 out of 221 respondents (35%)

reported injection drug use at home within the past six months.

We found significant assortative mixing among respondents with

respect to reporting injection drug use at home (x2
1~7:5,

P~0:006). A disproportionate number of the female respondents

(12 of 19) were injecting drugs at home relative to males (65 of 202;

x2
1~6:0, P = 0.01) and may have frequently recruited their

partners. Finally, 177 respondents (80%) reported use of

methamphetamine, of whom 106 reported use within the six

months prior to the interview date. We detected significant

disassortative mixing with respect to methamphetamine use

(x2
1~2:1, P~0:04). Non-user respondents recruited methamphet-

amine-using peers significantly more often than methamphet-

amine users, with respective probabilities 0.91 (95% CI: 0.79, 0.98)

and 0.77 (95% CI: 0.70, 0.83).

Because the preceding analyses assume that mixing rates were

independent of the number of recruits per respondent, similar

results may be obtained using contingency table-based analyses

that are often employed in the standard Markov chain treatment

of RDS data. To evaluate the validity of this assumption, we

modified the baseline M2 model so that the probability of a

respondent recruiting outside of his/her visible group was

dependent on the number of peers being recruited (MD
2 ). We

found a significant improvement in likelihood for MD
2 relative to

M2 with respect to mixing by interview site (x2
1~4:2, P~0:04).

For instance, peers recruited by respondents interviewed at SZN

were 3.7 (95% CI: 2.4, 5.2) times more likely to be interviewed at

the CV site for every additional peer recruited. This provides our

second example of recruitment dynamics that cannot be expressed

by a first-order Markov chain.

Combining hidden and visible states
So far we have assumed that social mixing was entirely dependent

on visible states of respondents. However, it is impossible to measure

exhaustively the characteristics of respondents, especially in the

context of hidden populations where potential respondents are less

likely to participate in an over-thorough interview process, and

other characteristics may be immeasurable (i.e., latent variables). For

example, apparent social mixing on a visible state may be

confounded by real social mixing on a latent variable (e.g.,

extroversion) when the two are correlated in the population. One

of the advantages of SCFGs over conventional methods (e.g.,

contingency tables) in the context of RDS data analysis is that one

can extrapolate the influence of unmeasured or latent variation on

the recruitment process. Here we explore this aspect of SCFG-based

inference, firstly by evaluating whether mixing on visible states in

our data set is confounded by mixing in latent space; and secondly

by permitting mixing to be dependent on both visible and hidden

states, such that mixing becomes a dynamic component of the

recruitment process.

To determine whether our detection of mixing on visible states

might be confounded by mixing on one or more latent variables,

we evaluated an SCFG model (ML
2|2) in which recruitment of like

peers was independent of the recruiter’s visible state, but

dependent on a hidden state of the recruiter (see Supporting Text

S1). This ‘latent-mixing’ model was analogous to populating two

‘islands’ in latent space with divergent frequencies of a visible state

and restricting migration between islands. We employed the delta-

AIC (Di) statistic [25] to compare non-nested models ML
2|2 and

M2|2. In the case of interview site as visible state, we found that

ML
2|2 performed extremely poorly (Di~144:7). Moreover, the

likelihood of ML
2|2 for interview site was very close to that of

model in which mixing was entirely independent of any state of the

recruiter. These results indicated that apparent mixing with

respect to interview site was very unlikely to be explained by

mixing on latent variables, i.e., interview site was an effective proxy

for one or more ‘socially visible’ characteristics.

In contrast, theML
2|2 model performed nearly as well or better

than M2 for the remaining visible states. With respect to syphilis

serostatus, a value of Di~3:3 indicated that mixing on latent

variables could provide a reasonable approximation to genuine

mixing on this visible state. Put another way, it is unreasonable to

assume that respondents were aware of their peers’ syphilis

serostatus, whereas incidental mixing on this state could have

occurred due to mixing on latent variables such as sexual

transmission risk behavior or geographic clustering. Mixing with

respect to drug-dealing status was less satisfactorily explained by

the ML
2|2 model (Di~7:4), implying that respondents were

relatively more aware of whether their peers engaged in drug

dealing or operating a ‘shooting gallery’. On the other hand,

apparent mixing with respect to the use of drugs at home may

have been confounded entirely with mixing on one or more latent

variables (Di~1:6), suggesting that this behavior was not socially

visible. Methamphetamine use was unique amongst all visible

states in that theML
2|2 model attained a lower AIC value than the

baseline M2 model. Parameter estimates in the ML
2|2 model

indicated that seed individuals were more likely to recruit peers

that did not use methamphetamine, regardless of whether the

recruiters used this drug. Methamphetamine users tended to

appear in later recruitment waves, manifested in theML
2|2 model

by transitions in latent space.

Results from our analysis of RDS data using the ML
2|2 model

implied a general lack of evidence supporting the assumption that

apparent mixing on visible states was entirely independent of the

visible state of the recruiter. To relax this assumption while

retaining hidden variation in mixing probabilities, we investigated

a more complex model, denoted asMH
2|2. On the basis of results

from the M1|2 model, we assigned independent multinomial

distributions to each hidden state, i.e., to permit transitions over

time in the distribution of the number of recruits per respondent.

In addition, we assumed that the probabilities of recruiting peers

with respect to visible and hidden states was dependent on both

visible and hidden states of the recruiter. Under this set of

assumptions, the M2 model could be defined as a special case of

the MH
2|2 model, i.e., the models were nested. We found a

significant improvement in likelihood for this extension of the

model with respect to methamphetamine use (x2
7~21:6,

P~0:003), syphilis serostatus (x2
7~14:9, P~0:04), and reporting

injection drug use at home (x2~15:2, P~0:03; Supporting Table

S1). As expected, we observed the same ‘boom-or-bust’ dynamics

characteristic of early recruitment events in the study, but we also

detected hidden variation in mixing. As noted in our analysis of

the latent-mixing model (ML
2|2), early respondents reporting use

of methamphetamine displayed stronger associative mixing

(recruiting ‘like’ with probability ~0:955, 95% CI: 0:939,0:957)

than did similar respondents at a later stage of the study (0:731,

95% CI: 0:709,0:748). Moreover, the MH
2|2 model obtained a

lower AIC value when analyzing methamphetamine use than did

ML
2|2 (Di~5:3).
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Hidden variation in the recruitment process can confound

estimates of the numbers of seeds and numbers of waves required

to obtain a given sample size, or the projected composition of the

sample over successive recruitment ‘waves’. To illustrate, we

compared the predictions of the standard first-order Markov chain

approach to the best-fitting SCFG with respect to methamphet-

amine use. The 2|2 contingency table for 206 recruitment events

was:

Recruiter

Recruitee

user non-user

user 132 40

non-user 31 3

from which transition probabilities of the Markov chain were

obtained by normalizing cell counts by the row totals [6]. As

expected, the resulting matrix was identical to the mixing

probabilities estimated from an SCFG modeling two visible states

without hidden variation. From the more likely SCFG including

both visible and hidden states, we obtained a matrix of first

moments [26] for the MBP represented by this grammar:

0:078 0 1:453 0

0:425 0:085 2:075 0:415

0 0 1:028 0:378

0 0 1:063 0:056

0
BBB@

1
CCCA

which acts on the probability vector of states A,B,a,bð Þ, in which

A and a represent the initial and derived hidden states within the

methamphetamine-user subpopulation, respectively; and B and b
represent the corresponding hidden states for non-users.

The transient dynamics of the recruitment processes under both

models are illustrated in Figure 3B for all three visible attributes. In

the case of mixing with respect to methamphetamine use, there is a

sharp discrepancy between model predictions after one recruit-

ment wave, due to the idiosyncratic recruitment behavior in seed

individuals that was captured by the addition of hidden states.

Failing to account for hidden variation in the recruitment process

skews the estimates of mixing probabilities, which is illustrated by

divergent equilibrium frequencies after multiple recruitment

waves. For instance, syphilis seropositive respondents initially

recruited with complete homophily, which then regressed to a

more random recruitment behavior (Supporting Table S1).

Discussion

RDS is rapidly becoming the de facto standard to recruit hidden

populations, e.g., jazz musicians [1] and drug users in New York

[7–9]; artists in Philadelphia [27]; MDMA (3,4-methylenedioxy-

N-methylamphetamine) users in Ohio [28]; Latino gay and

bisexual men, and transgender (male-to-female) persons in

Chicago and San Francisco [29]; sex workers in Eastern Europe

[30]; and injection drug users in Mexico [11], Russia, and Estonia

[31]. The Centers for Disease Control and Prevention (CDC) is

employing RDS for its National HIV Behavioral Surveillance

(NHBS) to recruit injection drug users (IDUs), men who have sex

with men (MSM), and high risk heterosexuals in 25 U.S. cities

[32]; IDUs in Bangkok; and IDUs and commercial sex workers in

Vietnam [33], as part of its Global AIDS Program [9]. In addition,

Family Health International (FHI) is using RDS to study MSM,

IDUs, and commercial sex workers in over a dozen countries,

including Bangladesh, Myanmar, Cambodia, Egypt, Honduras,

India, Indonesia, Mexico, Nepal, Vietnam, Pakistan, Papua New

Guinea [34], Albania, and Russia [35,36]. Thus, there will soon be

a tremendous number of data sets based on this sampling method

requiring accurate and informative methods of analysis.

SCFGs provide a versatile framework for hypothesis testing on

RDS data using likelihood-based methods of model selection, e.g.,

likelihood ratio test or Akaike’s information criterion (AIC). Our

custom software implementation of SCFGs enables the user to: (i)

evaluate the likelihood of any MBP model of recruitment that can

be expressed in grammatical form; (ii) infer unobserved quantities

using hidden states; (iii) employ any combination of constraints on

model parameters; (iv) obtain maximum likelihood parameter

estimates with confidence intervals derived from likelihood

profiles, and; (v) censor late respondents who were not issued

referral coupons. This software is freely available (http://www.

hyphy.org) and represents an important resource for RDS and

other applications of natural language processing.

Hidden variability in recruitment ability may explain the

‘boom-or-bust’ nature of RDS. For example, in a survey of RDS

feasibility studies to recruit from sex worker populations in Eastern

Europe, Simic et al. [30] found that no more than half of seed

individuals recruited any peers, despite indicating a willingness to

participate in the RDS study and a substantial network size (5–20

peers). None of these studies reached their target sample size and

nearly all respondents were recruited in productive chains

descended from one or two seeds. Hence, the expected number

of recruits per respondent is a poor predictor of the sample size or

number of recruitment waves produced from a given number of

seed individuals. In our case study, the overall mean number of

recruits was &1.4 per respondent. Based on this information

alone, i.e., assuming a binomial recruitment model, our simula-

tions predict that 71% of RDS studies initiated from a single seed

individual would successfully obtain a target sample size of 500

respondents. Under the multinomial model of recruitment, this

success rate declines to 45% using parameter estimates from our

case study, and even further yet with the addition of hidden states

(30%). In sum, our best-fitting uniform recruitment model

indicates that an RDS study would require at least three times

as many seed individuals to obtain the same yield predicted by the

Markov chain model of RDS. More importantly, this target yield

is accomplished in less than half as many recruitment waves. In

other words, the ‘boom-or-bust’ dynamics of RDS as revealed by

SCFGs may prevent RDS from penetrating a hidden population.

Although the MBP-based models of RDS that we espouse here

allay unrealistic assumptions of first-order Markov chain models,

both conventional and MBP-based models of RDS make

independence assumptions about recruitment dynamics. Firstly,

we assume that the social network provides a constant supply of

potential recruits, independent of the recruitment process. This

assumption is breached when a social network exhibits strong

transitivity (‘the friend of my friend is also my friend’) such that

respondents may attempt to recruit peers sampled in previous

recruitment waves. Secondly, if seed individuals occupy similar

positions in the network, then a greater chance exists that their

recruitment trees will collide, i.e., that multiple respondents will

attempt to recruit the same peer. The similarity of RDS to the

classic susceptible-infected-recovered (SIR) epidemiological model,

in which individuals become ‘infectious’ upon recruitment and can

infect only a diminishing number of peers, may offer some

recourse for addressing this effect. However, current techniques

for estimating parameters of stochastic SIR models assume either

panmixis (a fully-connected social network) or simple population

structures, such as households.

Something of interest is the possibility that respondents recruit

non-randomly from their personal networks. However, this does

not breach any assumption of our model; rather, non-random

Parsing Social Networks

PLoS ONE | www.plosone.org 7 September 2009 | Volume 4 | Issue 9 | e6777



recruitment affects the interpretation of RDS data on the whole,

i.e., estimating frequencies of attributes in a hidden population.

The extent of non-random recruitment may be determined by

interviewing respondents on the composition of their personal

networks and comparing their estimates to recruitment outcomes.

Indeed, by using this assessment previous investigators have found

that respondents in their respective RDS studies were evidently

recruiting at random from their personal networks [28,37].

Respondent estimates of their personal networks could also be

used to weight discrepant RDS outcomes (but see below).

We have focused on the ability of SCFGs, as an implementation

of MBPs, to reveal important information about mixing patterns in

hidden populations from RDS data. RDS is also used to estimate

the composition of hidden populations by the application of weights,

similar to other adaptive sampling designs [38]; likewise, SCFGs (in

which rules for generating strings are weighted by probabilities) can

accommodate additional weights. However, survey weighting is

exceedingly difficult [39] and the generation of appropriate

weighting schemes (particularly in the presence of hidden variables)

is a challenging area for further research in RDS. The network sizes

collected in order to generate these weights also provide information

on mixing of different populations [40]. In addition, despite being

restricted to modeling tree-like structures, one can gather

information about transitivity through questions such as ‘‘Do your

recruits know your recruiter?’’, which can be considered as an additional

state. With the generation of many large and complex RDS data

sets, the further development of analytical methods will require

collaborative work spanning several disciplines, before we can fully

appreciate the social determinants of susceptibility to infectious

disease epidemics in human populations.

Supporting Information

Figure S1 Model predictions of RDS network component size

distribution. The observed RDS network components, or referral

trees, were ranked according to size (number of respondents; solid

circles). Predicted distributions of ranked component sizes were

obtained using maximum likelihood estimates of model parame-

ters for the binomial (crosses), multinomial (open triangles), and

multinomial + hidden (plus signs) recruitment models, displayed

on the same plot for comparison. We find that the binomial model

severely underestimated the size of the largest-ranked components,

due to its inflexibility in modeling variation in recruitment among

respondents.

Found at: doi:10.1371/journal.pone.0006777.s001 (0.21 MB TIF)

Figure S2 Cocke-Kasami-Younger reconstruction of hidden

states in recruitment dynamics. All seed individuals in the RDS

study were grouped into a shared hidden state with respect to

recruitment dynamics (open circles), characterized by ‘boom-or-

bust’ recruitment with a relatively high mean number of recruits.

Hidden states were ‘transmitted’ from recruiter to recruitee in an

autocorrelated fashion until a switch occurred into a second

hidden state (filled circles), characterized by more consistent

recruitment of fewer peers.

Found at: doi:10.1371/journal.pone.0006777.s002 (0.51 MB TIF)

Text S1

Found at: doi:10.1371/journal.pone.0006777.s003 (0.07 MB

PDF)

Text S2

Found at: doi:10.1371/journal.pone.0006777.s004 (0.04 MB

PDF)

Table S1 Model parameter estimates are grouped by ‘visible’

attributes of respondents (location, syphilis serostatus, drug-

dealing, drug-use at home, and use of methamphetamine). Each

model of recruitment was evaluated using a custom SCFG,

comprising the rules listed with each hypothesis: 2-visible, full

recruitment model with binary visible states; constrain mix,

constrained mixing rates between visible states to be equal;

constrain N (M2 baseline model), constrained distribution in the

number of recruits per respondent to be equal; constrain both (M2
C),

constrained both mixing rates and distributions in the number of

recruits; (5) dependent mixing (M2
D), permitted mixing rates to be

dependent on the number of recruits; (6) latent-mixing (M262
L ),

mixing on latent variables, independent of the visible state of the

recruiter; and (7) add hidden (M262
H ), addition of hidden states

representing variation in mixing rates and number of recruits over

time. Production rules for each grammar are presented in non-

reduced form to conserve space. Column header abbreviations are

defined as follows: MLE = maximum likelihood estimate of model

parameter; lower, upper 95% = lower and upper limits of the 95%

confidence interval, estimated using likelihood profiling; log L, log-

transformed likelihood of the model; df = degrees of freedom, i.e.,

number of free parameters in the model; AIC = Akaike’s

Information Criterion.

Found at: doi:10.1371/journal.pone.0006777.s005 (0.09 MB

PDF)
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