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Key findings

SLC2A9 was recently cloned and identified as a member of
the SLC2A gene family of hexose facilitative transporters,
where its main physiological role was assumed to be in
the transport of glucose and fructose. However, new find-
ings have unearthed a novel role for SLC2A9 (also known
as GLUT9) as a modulator of uric acid levels. Specifi-
cally, after conducting genome-wide scans, Doring et al.
and Vitart et al. have identified several noncoding ge-
netic variants of SLC2A9 that were strongly associated
with a decrease in serum uric acid concentrations and
an increase in fractional excretion of uric acid. Accord-
ingly, the variants were also associated with a decreased
risk of gout, suggesting a protective role for the minor al-
leles. Interestingly, in both of the studies, gender-specific
effects were more pronounced in women than in men. Dor-
ing et al. estimated the additive effect to be −0.45 mg/
dl per copy of the minor allele in women and −0.25 mg/
dl in men. Overall, genetic variants of SLC2A9 are poten-
tially responsible for 1.2–6.0% of the variance in serum
uric acid concentrations. Of importance is the functional
determination that SLC2A9 is a strong urate transporter,
implicating it as a key player in the renal excretion of uric
acid that could greatly impact clinical practices.
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Brief review

Unlike most mammals, humans cannot regulate uric acid
levels very effectively, largely because of the mutational
loss of uricase (urate oxidase) that degrades uric acid to
allantoin. A major consequence of the lack of this hepatic
enzyme is a relatively unique susceptibility of humans to
develop hyperuricemia in response to diet, such as from
purine-rich meats, seafood and beer. In addition, fructose,
which is present in table sugar or sucrose, the sweetener high
fructose corn syrup and fruits, can raise uric acid levels due
to the unique ability of this sugar to cause intracellular ATP
depletion and adenine nucleotide turnover.

While diet is likely a key factor in modulating uric
acid levels in the population, genetic mechanisms are also
known to be important regulators of uric acid concentra-
tions which is considered to be strongly heritable, ranging
from 25 to 73% [1,2]. Some rare genetic causes of hyper-
uricemia include those associated with the de novo purine
synthesis pathway, such as complete or partial deficiency in
hypoxanthine–guanine phosphoribosyltransferase and in-
creased phosphoribosylpyrophosphate synthetase (PRPP).
More recently, the disease, familial juvenile hyperuricemic
nephropathy (FJHN), was found to be due to mutation in
uromodulin (Tamm Horsfall protein). Although elevated
uric acid can be caused by the increased breakdown of
endogenous and exogenous purines, impairments of the re-
nal excretion of uric acid is the main cause of ∼90% of
all hyperuricemia incidents; thus, it is more clinically sig-
nificant [3,4]. Renal transport of uric acid is governed by
a complex system of transporters in the proximal tubule
(Figure 1) [4,5]. Several genetic polymorphisms in the api-
cal transporter, URAT1, have already been linked with hy-
peruricemia [6,7]. In addition, mutational loss of URAT1
can cause the rare syndrome of hypouricemia with exercise-
induced acute renal failure [8].

Recently, genome-wide studies have been conducted to
identify new genes involved in uric acid homeostasis. Sev-
eral loci associated with hyperuricemia have been identi-
fied, including in chromosome 4q25 observed in Taiwanese
aborigines [4], in chromosomes 2, 8 and 15 in the Fram-
ingham Heart Study [2] and in chromosome 6q22–23 in
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Fig. 1. Urate transport in the proximal tubule. Several transporters have recently been identified as potential molecular components in the renal
transport of urate [4,5]. URAT1, a urate-anion exchanger, and OAT4, an organic anion-dicarboxylate exchanger, are mediators of urate reabsorption.
URAT1 is considered to be a key player in uric acid homeostasis and has been estimated to be responsible for 50% of urate reabsorption. Its activity,
however, is driven by sodium-anion transporters, potentially by SLC5A8 and SLC5A12, which provide the main source of anions needed for URAT1
function. For urate secretion into the lumen, a urate transporter/channel (UAT), a voltage-driven organic anion transporter (OATv1 or NPT1) and an
ATP-binding cassette transporter (MRP4) are potential efflux candidates. Although very little is known about the basolateral transport of urate, two
anion-dicarboxylate transporters, OAT1 and OAT3, have been shown to have the ability to transport urate, but the direction of the urate transport still
needs to be characterized. Furthermore, their activity may be coupled with SLC13A3 that drives the intake of Na+ and dicarboxylates. In addition to all
these transporters, SLC2A9 has been discovered to be a candidate protein in the excretion of urate and may play a dominant role in urate reabsorption
[12]. The short isoform, SLC2A9v2, localizes exclusively to the apical membrane and has been shown to transport urate. The role of the long isoform,
SLC2A9v1, on the uric acid transport remains to be elucidated.

Mexican Americans [1]. However, one of the most strik-
ing associations was localized to SLC2A9 on chromosome
4p15.3–16. After conducting genome-wide scans by uti-
lizing chips consisting of 300K–500K single nucleotide
polymorphisms (SNPs), genetic variants of SLC2A9 were
strongly associated with reduced levels of serum uric acid
in Caucasian cohorts from Italy [9,10], the UK [11], Croatia
[12], the United States [10], Germany and Austria [13]. The
strongest associations were mapped to noncoding SNPs lo-
cated near the 5′ of the gene and within introns 3–7, but
further studies are needed to elucidate their impact on the
protein’s function. Interestingly, SLC2A9 polymorphisms
(rs6855911, rs7442295, rs6449213, rs12510549, rs737267
and rs1014290) were shown to have gender-specific effects
on uric acid concentrations, resulting in a greater reduction
in women (−0.352 to −0.880 mg/dl) than in men (−0.128

to −0.428 mg/dl) (Table 1). Consequently, genetic variants
of SLC2A9 are potentially responsible for 5.3–6.0% of the
variance in serum uric acid concentrations in women and
1.2–1.7% in men.

How do alterations in SLC2A9 alter serum uric acid lev-
els? Recent studies suggest that one mechanism may be
by modulating renal excretion of uric acid. There are two
common variants of SLC2A9 (GLUT9): a long isoform
(SL2A9v1) and a short isoform (SLC2A9v2) [14]. From in
vitro studies, it was shown that the long isoform trafficked
predominantly to the basolateral membrane of proximal
tubule epithelial cells while the short isoform was exclu-
sively localized to the apical membrane. Utilizing Xeno-
pus laevis oocytes, SLC2A9v2 was shown to have a high
capacity for the urate transport [12]. Polymorphisms of
SLC2A9 were also shown to be associated with the increased
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Table 1. SLC2A9 SNPs showing gender-specific effects on serum uric
acid concentrations

SNP Region Minor allele
(% in
Caucasians)

Reduction of serum uric
acid per copy of minor
allele (mg/dl)

Men Women

rs12510549 5′ C (27) −0.428 [10] −0.352 [10]
−0.229 [13] −0.416 [13]

rs1014290 Intron 3 C (31) −0.36 [12] −0.76 [12]

−0.384 [10] −0.492 [10]
rs6449213 Intron 4 C (24) −0.165 [13] −0.481 [13]

−0.36 [12] −0.88 [12]

−0.366 [10] −0.503 [10]
rs7442295 Intron 6 G (25) −0.202 [13] −0.503 [13]

−0.297 [9] −0.383 [9]
−0.411 [10] −0.479 [10]

rs6855911 Intron 7 G (31) −0.128 [13] −0.472 [13]
−0.289 [9] −0.359 [9]

rs737267 Intron 7 T (31) −0.38 [12] −0.88 [12]

Six single nucleotide polymorphisms (SNPs) of SLC2A9 have been re-
ported from various genome-wide association studies to cause gender-
specific differences in serum uric acid levels. All six mutations were
located in noncoding regions of the gene: five polymorphisms were in in-
tronic regions and one polymorphism was located 5′ of the SLC2A9 gene
sequence. Mutations in the gene caused a greater additive effect in women
than in men. For women with one copy of the minor allele, the effect size
ranged from −0.359 to −0.88 mg/dl. For men, the effect size ranged from
−0.128 to −0.428 mg/dl. If an individual has two copies of the minor
allele, the reduction in serum uric acid levels would generally double. The
frequencies of these mutations are relatively common, affecting ∼24–31%
of the Caucasian population.

fractional excretion of uric acid, suggesting that these poly-
morphisms may effectively modulate uric acid excretion.

Discussion

There is a growing interest in understanding the genetic
determinants of urate homeostasis due to the concern that
elevated serum uric acid concentrations may be a risk factor
for several common disorders, including gout, hypertension
[15], metabolic syndrome [16,17], cardiovascular disease
[18], type 2 diabetes mellitus [19], diabetic nephropathy
[20] and kidney disease [21,22]. The discovery of SLC2A9,
along with other proteins involved in the urate transport,
may greatly impact our understanding of uric acid home-
ostasis. Clinically, new insights in this field can enhance the
utilization of current medications and can generate novel
genetic therapeutic targets for the control of uric acid con-
centrations. For instance, with the discovery of URAT1, the
assumed action of pyrazine carboxylic acid (PZA) as an in-
hibitor of urate secretion has been debunked. Instead, PZA
has been shown increase urate reabsorption by stimulat-
ing URAT1 activity, thus invalidating the four-component
model of the renal urate transport [4].

Since fructose itself results in uric acid generation, the
observation that SLC2A9, a fructose transporter, can also
function as a urate transporter raises the interesting possi-
bility that this transporter may ‘fine tune’ the movement
of uric acid in and out of the cell in response to fructose.
For example, a polymorphism of SLCA29 could lead to a

relatively higher concentration of uric acid within the cell
in response to fructose. The importance of this potential
function could be significant given recent studies suggest-
ing that fructose-induced hyperuricemia may have a critical
role in mediating the metabolic syndrome [23] and by stud-
ies suggesting that intracellular uric acid levels may largely
mediate many of the pro-inflammatory effects of uric acid
in various cell types [24]. Besides being expressed in a va-
riety of other sites, such as the liver, placenta, brain, lung
and leukocytes, SLC2A9 is also expressed in chrondrocytes
[12,14,25]. Can SLC2A9 be responsible for the buildup of
urate in gouty arthritis?

Combined with its strong activity as a urate transporter
and the strong associations between genetic variants of
SLC2A9 and serum uric acid concentrations, SLC2A9 is
an important modulator of uric acid levels. Interestingly,
it was the minor alleles of the genetic variants of SLC2A9
that was associated with reduced levels of serum uric acid
levels. Assuming that the mutations impair the function
of the protein, SLC2A9 is then implicated as an essential
player in inducing hyperuricemia in humans. Thus, indi-
viduals with the mutations are protected and less likely to
develop gout and potentially other disorders. Furthermore,
SLC2A9 may be important to the underlining differences in
uric acid concentrations reported between women and men.

Take home message

Serum uric acid levels and renal uric acid excretion have
been found to be modulated by genetic polymorphisms in
SLC2A9, a fructose transporter, which can influence the
risk for gout by affecting renal urate reabsorption.
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