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Abstract
Technologies to synthesize and transplant a complete genome into a cell have opened limitless
potential to redesign organisms for complex, specialized tasks. However, large-scale re-engineering
of a biological circuit will require systems-level optimization that will come from a deep
understanding of operational relationships among all the constituent parts of a cell. The integrated
framework necessary for conducting such complex bioengineering requires the convergence of
systems and synthetic biology. Here, we review the status of these rapidly developing
interdisciplinary fields of biology and provide a perspective on plausible venues for their merger.

Multidisciplinary approaches in science have always resulted in new ideas, broader and deeper
levels of understanding, and of course, controversies. The inception of many modern
transformative products and technologies, including drug synthesis1 and recombinant
microbial enzyme factories2 can be attributed to the merging of, until then, distinct disciplines.
With recent advances to deconstruct biological function at a systems scale3,4 and design
biological subcircuits with defined properties5 we can begin to envision spectacular solutions
that combine unique functions that have evolved in organisms from diverse environments. In
other words, the stage is set for yet another revolutionary merger of two powerful
interdisciplinary fields with fundamentally different but complementary outlooks — synthetic
biology and systems biology (FIG. 1).

A systems biologist aims to model and understand an entire organism by characterizing
dynamic environment-dependent functional interrelationships between its constituent parts
(for example, genes, RNAs, proteins and metabolites). A synthetic biologist, however, uses
well characterized parts that are shaped by natural evolution to construct artificial systems that
perform new tasks. These fields are on trajectories that are bound to cross paths and even merge
as they begin to inform one another. We envision that systems biology will provide both the
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parts and wiring diagrams for entire cells to guide complex circuit design for synthetic biology
approaches. In this Opinion article, we focus on recent advances in the design of synthetic
circuits and predictive modelling of prokaryotes, and the convergence of these two disciplines
for rational biological systems re-engineering. Given that both fields are rapidly progressing
on multiple fronts, we acknowledge that despite every attempt to make this article
comprehensive, it is by no means complete.

Why use systems re-engineering?
By rewiring regulatory circuits to couple new enzymes, sensors and transporters, a cell can be
redesigned to execute novel and complex processes. Although carefully designed genomic
reconfiguration and reduction has been shown to be feasible under strictly controlled laboratory
conditions6, such re-engineering can reduce the fitness of an organism, especially in dynamic
and complex environments, by introducing taxes on the limited energy and biochemical
resources of the cell7. A distinguishing aspect of systems re-engineering will be the integration
of compensatory regulatory and metabolic adjustments to optimize resource management and
restore homeostasis in the newly engineered system. Such balanced re-engineering will enable
complex biological circuit designs driven by specific spatio-temporal control that have the
potential to help solve such diverse and pressing problems as environmental pollution, energy
production and complex diseases.

Take bioremediation as an example. Isolated parts of a desired system exist in a diverse
collection of organisms that withstand radioactivity (for example, Deinococcus
radiodurans8), thrive in high salt concentrations (Halobacterium salinarum3) or high
temperatures (Pyrococcus furiosus9), or detoxify metals (species of Geobacter and
Shewanella10). Using these independently evolved parts, a plausible design would be a self-
sustaining integrated system (for example, within single microorganisms or as microbial
consortia11) that is capable of sensing and relocating towards pollutants, producing
detoxification agents and self-destructing on cue to avoid biological contamination. Given the
drawbacks of current technologies, the successful implementation of such a system is
incredibly ambitious. There are numerous challenges to be addressed on a case-by-case basis,
such as the incompatibility of heterologous gene products within a selected host system.
Nonetheless, similar but simplified strategies, such as the use of microorganisms in the
production of biofuels12, bioremediation strategies13 and drug delivery14, have proven
successful. These strategies constitute concept models for re-engineering biological systems
that could be developed and optimized further by a combination of systems and synthetic
biology. Control, robustness, reliability and predictability of such re-engineered systems would
present advantages over natural organisms that may not possess the features necessary to
perform such specific tasks. This exciting journey will lead to new technologies and provide
a deeper understanding of biological systems, but also raises important ethical, legal and
environmental concerns that warrant careful consideration15,16.

Programming a cell: synthetic biology
At its core, synthetic biology is the practice of applying engineering principles to rationally
redesign biological subsystems with new and useful dynamic properties (BOX 1). This process
typically begins with a mathematical model of interactions with desired dynamic properties.
These models are often based on known circuits from laboratory ‘workhorses’, such as
Escherichia coli and Saccharomyces cerevisiae (budding yeast), and, in most cases, are limited
to a dozen or so interacting elements. The synthetic system is further refined iteratively through
computational simulation and experimental validation to resolve inconsistencies.

The first and most common approach in synthetic biology is the incorporation of exogenous
or synthetic gene constructs into a host system. Synthetic biology differs dramatically from
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biotechnology17,18 in the complexity of re-engineering, especially in the synthetically designed
regulatory network for controlling gene expression. This approach has benefited from the
development of natural or synthetic mobile regulatory circuits (orthogonal systems) that can
function in a context-independent manner without host interference19.

In a second approach, deleting genes to leave behind a skeletal architecture for processing
nutrients, protein production and cellular reproduction simplifies an existing biological
network. This minimal biological system is then used as a basic and easily manipulated
framework on which to build novel regulatory circuitry20. An important limitation of this
approach is the potential instability of such minimal systems to complex environmental
changes21.

A third, and perhaps most ambitious, approach is the complete de novo synthesis of an
organism. Synthetic genomes of increasing complexity can now be generated22,23. The
feasibility of transplanting genomes between organisms, as a means of ‘rebooting’, has been
recently demonstrated24. However, this approach is still in its infancy and functional gene
expression from such entirely synthetic systems is short-lived (~6–8 hours), limiting the use
of this approach to simple regulatory systems25. Moreover, incorporation of all the necessary
components for basic cellular function is an understated challenge.

Although synthetic biology has mainly been applied to the fundamental sciences26, a number
of approaches have potentially useful applications. Examples related to human health include
the efficient production of antimalarial drugs and ‘smart’ bio-agent-based cancer therapies.
Artemisinic acid, a precursor to a potent antimalarial drug, can now be produced in engineered
bacteria27 and yeast28 cultures more efficiently than previous methods that relied on chemical
extraction from rare plants. Notably, this effort was far more complex than the development
of Humulin (human insulin), trastuzumab (Herceptin) and other recombinant therapeutics,
which relied on the overexpression of a single gene2,17. Instead, Martin et al.27 and Ro et al.
28 combined a microbial mevalonate pathway for terpenoid production with an engineered
amorphadiene synthase and a heterologously expressed cytochrome p450 monooxygenase
from the plant Artemisia annua. In another example, controlled invasion of cancer cells was
accomplished by re-engineering E. coli to express invasion proteins and cancerostatic agents
(colicin E3, bacteriocin, RNA-based therapeutics29 or other prodrugs) after encountering
tumour-environment characteristics14. In this case, the synthetic circuit components originated
from diverse organisms, including invasion machinery from Yersinia pseudotuberculosis and
quorum sensors from Vibrio fischeri.

Synthetic biology may also help address the renewed concerns regarding the availability and
environmental impact of fossil fuels. The production of biofuels by engineered microorganisms
is an alternative that is gaining much interest12. production of alcohols that contain higher
energy, such as butanol, is possible by modifying amino acid biosynthetic pathways in E.
coli30.

The fundamental synthetic biology tenet illustrated by these examples is that knowledge of
component dynamics and mechanisms leads to predictable behaviour in artificially constructed
circuits of increasing complexity31. This approach, coupled to complementary experimental
techniques, has enormous potential for understanding fundamental regulatory dynamics of both
uncharacterized and well-known systems32. Importantly, such efforts have produced
regulatory circuits that exhibit precise behaviours, including autoregulatory positive feedback
loops33, toggle switches34 and oscillatory systems35,36. These successes have also brought to
light the importance of noise in biological systems. Expression measurements in single cells
can be noisy, but result in smooth and deterministic behaviour at the population level, affording
adaptability to the overall system37. The desired re-engineered system must therefore be able
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to either attenuate or take advantage of such noise with an objective goal of robust, predictable
circuit behaviour38.

Box 1 | Synthetic biology approaches to the design of circuits

Parts
Individual components that make up gene expression machinery. These components are
specific DNA sequences that code for gene promoters and upstream regulatory sites,
ribosome binding sites, gene or protein coding regions, and mRNA translation termination
sites. Sequences for RNA-only machinery, such as small interfering RNA and ribozyme
coding sequences, are also used.

Devices
Assemblages of parts (promoters and genes) that carry out specific functions. There are
several basic devices, including reporters, inverters and devices that carry out signalling
and protein generation. Each device includes one or two promoter–ribosome binding site–
gene terminator constructs. Subsequently, these basic devices can be combined into
‘composite devices’ to achieve more complex behaviour.

Systems
Collections of specific devices that enable individual parts to be quantified. Generally, a
subset of the composite devices is used to characterize the strength and efficiency of
promoters under non-repressive conditions.

Chassis
The host cell in which the systems and devices described above are assembled and used.
To date, these cells have been primarily from Escherichia coli strains, although a few
devices and systems have been tested in yeast and mammalian cells. A more exotic chassis
includes cell-free systems that use DNA transcription and mRNA translation chemistry
derived from whole-cell extracts and encapsulated in artificial membranes.

Systems Biology Mark-up Language (SBML)
SBML is an XML (Extensible Markup Language)-like language used to encode reaction
sets that constitute a typical biological model. These include cell signalling, metabolic
pathways, biochemical reactions and gene regulation kinetics. SBML is a computable
format: it incorporates all the information about a model and can be directly used to perform
simulations. Such information includes the definition of mathematical functions, units,
species types and compartmentalization, initial values, constraints, species rules and
reaction rates. There is no ‘one-size-fits-all’ encoding language, owing to the many
modelling approaches that are available to systems and synthetic biologists. SBML is
therefore intended to be a common intermediate format, allowing for the transfer of essential
components of a model between diverse computational analysis and simulation tools. The
list of SBML compatible programmes is comprehensive and continually expanding (see
Further information for a link to the SBML Software Matrix).

See the MIT Registry of Standard Biological Parts for further information.

Box 2 | Experimental approaches used in systems biology

Sequencing technologies
Sequencing efforts were greatly advanced and accelerated by the Human Genome Project.
Randomly generated genomic fragments are analysed by a capillary-based Sanger method
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on sequencing platforms developed by Applied Biosystems91. Massively higher throughput
is achieved by the use of new technologies, such as 454 pyrosequencing, SOLiD
(sequencing by ligation) and Solexa (sequencing by synthesis)66,67,92. Quantitative
transcriptome profiling, metagenomics of complex microbial environments and sequencing
of multiple prokaryotic strains are being driven by such technologies51.

DNA microarrays and high-throughput sequencing
Slides containing spatially organized DNA probes with known sequences are used as a
platform for the identification and quantification of fluorescently labelled nucleic acids
samples. Applications of this technology include, but are not limited to, gene expression
studies (RNA and cDNA hybridizations)93, comparative genomics (comparative genomic
hybridization)94, identification of protein–DNA binding sites (ChIP–chip; chromatin
immunoprecipitation with microarray hybridization)95 and DNA methylation studies96.

High-throughput sequencing is offering alternative solutions to a number of array-based
technologies, including gene expression and protein–DNA interaction measurements. For
example, DNA fragments in enriched transcription complexes can be localized at higher
resolution by this approach (ChIP–Seq; chromatin immunoprecipitation with sequencing)
69.

Proteomics technologies
The study of all the proteins in a cell, including their dynamics, modifications, interactions
and structure. High-throughput analysis of proteins has been driven by the development of
mass spectrometry (MS)-based approaches for the identification, quantitation and analysis
of modifications with increasing sensitivity97. The development of array-based platforms,
such as protein or antibody microarrays, in addition to two-hybrid approaches, are allowing
higher throughput of biochemical assays to assess protein functions98. Tagging green
fluorescent protein and fluorescence resonance energy transfer analysis allow in vivo study
by systematic analysis of protein localization in the cell98. Structural proteomics is also
being developed using X-ray crystallography and nuclear magnetic resonance, electron
microscopy and electron tomography of protein complexes99.

Metabolomics technologies
The study of metabolites, the pathways they affect (or are affected by) and their interplay
with cellular regulation at the gene level. Powerful and accurately predictive approaches
have been successfully applied to assess the phenotypic behaviours of Escherichia coli,
yeast and red blood cells79. Collecting the data required for these models can be common
bench-scale assays to high-throughput methods, such as automated high-performance liquid
chromatography and MS-based approaches100.

However, despite these impressive achievements, classic engineering design principles, such
as abstraction, modularization and standardization, have yet to be consistently and robustly
implemented for sophisticated synthetic biology re-engineering. The circuits discussed above
were not based on standardized (for example, easily interchangeable) parts, and therefore
require specific modifications to achieve the desired dynamic behaviours. In other words, this
laborious ad hoc process does not scale well — the leap from creating discrete modules of
defined function to re-engineering an entire cell or organism and incorporating highly
interconnected systems with homeostasis is not straightforward.

Standard parts list and vocabulary
An important requirement for the construction of complex circuits is a standardized language
and lists of parts with detailed specifications. There are two notable examples of such resources:
the freely accessible MIT Registry of Standard Biological parts (sensors, genetic circuits and
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actuators)39 and the standardized open source Systems Biology Markup language (SBML)40

for representing biological circuit models (see Further information) (BOX 1). Mathematical
design rules emerging from these efforts will eventually unite the well established engineering
framework of standardization, decoupling and abstraction with biological regulatory
circuits39. This union will produce a library of reusable parts and devices with defined data
sheets41, easing the production of more complex systems. However, a key specification, the
systems-level operational relationships of various parts and subcircuits, is missing; this cannot
be ignored if the eventual goal is to restore homeostasis in the engineered system. We posit
that systems biology approaches will help pave the way to the production of more complex
systems by defining the global rules that govern complex cellular circuit behaviours.

Systems biology: modelling a cell
By iteratively driving developments in biology, computation and technology, systems biology
tackles the reverse engineering problem of deconstructing integrated biological circuits into
holistic and predictive models42. These circuits have assembled over 3.5 billion years of
evolution to sense environmental signals, turn genes on and off, control enzyme activities and
transporters, and coordinate these processes with structural changes in the cell, DNA
replication, segregation and reproduction.

There are two complementary approaches to deconstruct a biological circuit43: ‘bottom-up’
and ‘top-down’ approaches. In the traditional approach, information gathered through detailed
characterization of individual parts and their interactions is used to assemble circuits bottom-
up44. However, unlike the architectures of electronic circuits, which are constant in time and
space, biological circuits assemble dynamically through environment-dependent synthesis,
reuse and sharing of parts. A circuit assembled purely from a bottom-up approach is therefore
unable to capture the global dynamics of a system.

A top-down approach takes advantage of high-throughput technologies (BOX 2) to investigate
the dynamic operational interrelationships of all constituent parts of a system simultaneously.
Although this has sacrificed the resolution at which biological properties are characterized,
new high-throughput sequencing and high-density array technologies, as well as mathematical
techniques that extract quantitative kinetic parameters from sparse time-course data, are
minimizing the loss of detailed information45.

A systems approach begins with the systematic perturbation of a complex process, a single
cell, a multicellular organism or a community of organisms. Although this step is not always
hypothesis driven in the first iteration, subsequent iterations tend to be, as they build on prior
knowledge and data. Molecular and phenotypic responses are observed globally, documented
and integrated with prior information, including data from bottom-up approaches, to produce
a quantitative model that recapitulates prior observations and predicts behaviours in new
environments (BOX 3). Given the context-dependent dynamics of biological responses, careful
and controlled experiments are needed to provide accurate data to model the system46.
experimental and in silico testing of systems-generated hypotheses resolves inconsistencies
and feeds new information into model revisions. Although this is similar to the synthetic
biology approach, the global measurements and modelling approaches used in the iterative
cycle of systems biology (especially the top-down approach) can delineate principles governing
assembly of complex biological circuits, including most of the cellular components3,4.

In general, the top-down approach is regarded as the paradigm for systems biology. This
methodology has roots in whole genome sequencing, microarray technology, proteomics and
other high-throughput methods that can be used to observe numerous system elements
simultaneously (BOX 2). Although the varying limitations of these technologies yield data
with different levels of uncertainty, these often tend to be systematic and specific to a given
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approach. By integrating the various global data using a cross-validation procedure (for
example, by using a gold standard data set, such as membership in gene ontology function
categories or an objective function that evaluates a metric of relatedness, such as co-
expression), it is possible to find meaningful information that is supported by multiple sources
of evidence. This is illustrated by the integration of expression data, comparative genomics
and physical interactions to discover conditionally co-regulated genes that are co-expressed,
share promoter motif signatures, are functionally associated and/or physically interact47.
Therefore, although the richness and depth of the data are initially overwhelming, the top-down
approach is equally useful and can be integrated with the bottom-up approach. Even well
studied model organisms and macromolecular processes benefit from the merger of holistic
and reductionist scientific approaches. Notable examples include the study of cell cycle
regulation in Caulobacter crescentus44, bacterial chemotaxis48 and subcellular organization
of proteins and DNA in bacterial cells49. To date, the study of transcriptional regulatory
networks (TRNs) are examples of the best-characterized systems with genome-scale predictive
models. Even the most studied prokaryotic model organism, E. coli, has benefited from systems
analysis of these networks. Curated resources, such as RegulondB50 (see Further information),
house many experimental and in silico data that are common entry points for further biological
exploration of this organism. This has enabled rapid development and verification of predictive
global models that integrate known and novel regulatory interactions to broaden our view of
transcriptional regulation of diverse biological processes4.

Systems-level inquiries empower rapid characterization of poorly studied organisms,
especially owing to the current wealth of newly sequenced, but poorly annotated, microbial
genomes51. In our own work, using a top-down approach of biclustering, coupled with
statistical network inference, it was possible to integrate diverse, system-wide data for the
halophilic archaeon H. salinarum NRC-1 to construct an environmental and gene regulatory
influence network model that reliably predicted transcriptional changes in 80% of all its genes
to new environmental and genetic perturbations3. Comparable systems-level models of
environmentally important organisms, such as the metabolically versatile Shewanella
oneidensis MR-1 (REF. 52), and pathogenic bacterial systems53 are also well underway.

Box 3 | network models for systems biology

Network models101 that integrate a myriad of information have been developed to describe
and predict properties of complex biological systems. The balance between data availability
and the complexity of the model is an important factor to be considered102: the choice of
model must fit with the parameters and generating predictions. Once the validation step is
performed, the model can be improved iteratively and interactively. All these steps can be
a combination of approaches; for example, simultaneously using gene expression levels
(continuous) and discretized protein–protein interaction information. Three examples of
successful modelling approaches are provided in the figure and the table. Other diverse
models have been used in eukaryotic organisms58 and can be adapted for the system of
interest.
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Substantial advances have also been made in the mathematical reconstruction of metabolism
in different prokaryotic organisms54,55; the metabolic model for E. coli, for example, now
contains 48% of all genes with experimentally determined functions. These models have been
used to design strains for metabolite production, identify putative genes for orphan reactions,
and for physiological and evolutionary studies56. Importantly, approaches for reconstructing
metabolic networks can be extended to complex eukaryotic systems, such as yeast, Aspergillus
nidulans57, Caenorhabditis elegans58 and cell lines that model human physiology59–61. Such
bottom-up reconstruction, integrated with high-throughput global analysis (especially
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metabolome and fluxome data), is moving the field forwards towards systems-scale kinetic
models62.

Although construction of systems-scale integrated models of TRNs and metabolism is
admittedly challenging, recent successes in simultaneous high-throughput analyses of
biological processes at different levels offer promising solutions to help decipher some of these
interrelationships63,64.

Examples of poorly represented information in systems-scale models include translation
efficiencies, interference by non-coding RNAs, protein modifications, structural information
and experimentally unexplored regions of metabolic maps65. In other words, there is still work
to be done to incorporate such missing information to make systems-scale models
mechanistically accurate and quantitatively predictive — a fundamental basis for re-
engineering circuits. There is evidence of some progress on this front through deep sequencing
of transcripts66,67, precise localization of genomic binding sites for transcription factors68 and
chromatin remodelling proteins69, transcription start site mapping for accurate promoter
discovery70 and ultra-high-accuracy mass spectrometry for metabolome mapping65.

In the future, in addition to comparisons based on genes, genome organization and protein
sequences, organisms will be compared based on the network architecture of interacting genes,
proteins, metabolites and RNAs71,72. The comparison of network topologies in the context of
phylogeny will lead to a broader and deeper understanding of the evolution of complex
biological systems.

Convergence: global network rewiring
Biological systems have evolved in a constrained environmental framework of reproducible
physicochemical relationships73. Consequently, they have learned these relationships to
modulate various cellular processes appropriately in response to immediate challenges and in
anticipation of future environmental changes74. This ability to reallocate biochemical and
energy stores dynamically to various cellular processes lends a fitness and competitive
advantage to a cell in a resource-limited environment. By ignoring such relationships while
redesigning a biological circuit, we risk decoupling cellular processes from the environmental
network, and as such, rendering them less fit or unstable. Fortunately, biological systems are
resilient and have some capability to accommodate small changes both in the external
environmental network74 and their own networks75. However, they are not equipped to deal
with large changes to their circuitry, including the introduction of entirely new processes, which
could shift the internal balance of energy and resources. It will therefore become necessary to
understand the coupling of various cellular processes, so that additional compensatory changes
can be introduced to push the redesigned biological circuit towards the desired optimal state.
Knowledge of biological noise in single cells and populations and its role in providing
robustness to cellular responses will also be crucial in this re-engineering effort. To this end,
directed laboratory evolution will be indispensable for completely optimizing a rationally
redesigned circuit76.

Unsurprisingly, current models in both synthetic and systems biology highlight the interwoven
relationship between environmental influences and the responses of biological networks.
However, these models operate at different scales, and to realize the new paradigm of rational
systems re-engineering, synthetic and systems biology fields must collaborate closely and
eventually merge. Notably, the strengths and weaknesses of both fields are highly
complementary.

Synthetic biology and bottom-up systems biology methods extract discrete, accurate,
quantitative, kinetic and mechanistic details of regulatory subcircuits. The models generated
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from these approaches provide an explicit mathematical foundation that can ultimately be used
in systems redesign and re-engineering. However, these approaches are confounded by high
dimensionality, non-linearity and poor prior knowledge of key dynamic parameters77 when
scaled to large systems of hundreds to thousands of unique interacting components. As a result,
modular subnetwork characterization is performed under the unrealistic assumption that the
network is isolated from the rest of the host system.

The top-down systems biology approach leverages data-rich high-throughput experimental
analyses that catalogue the entire set of components within a system. Although these measures
retain high statistical confidence, they are usually qualitative or semi-quantitative; for example,
gene expression profiles are quantized categorically as up, down or not changed relative to
other genes of interest or a specific reference condition. Models of global systems are similarly
qualitative, tending toward algorithmic descriptions of component interactions78. Such models
are amenable to the experimental data used to develop them, but usually sacrifice the finer
kinetic and mechanistic details of the molecular components involved79. Thus, accurate
quantitative and mechanistic prediction of how the entire system would operate in new
environments is currently beyond the means of such analyses.

How we can bridge the divide between the synthetic and systems views is being actively
discussed, and several potential solutions have been suggested80,81. A common suggestion is
the use of multi-scale approaches: those that translate the dynamics quantified at the component
level into the inferred, logical interactions at the global network level. Such approaches would
represent an ideal interface for the union of synthetic biology and systems biology, but would
require a detailed description of the global network and environmental influences on its
operation and modular interconnections, as well as careful characterization of several (if not
all) of its component subcircuits. It is therefore inevitable that we will have to leverage strengths
of both fields. The time is ripe to do so, as new technologies, such as deep sequencing,
multiplexed tiling arrays and high-resolution mass spectrometers (BOX 2), are capturing both
kinetic and mechanistic details of genetic information processing and metabolic processes at
a genome scale, albeit with limited spatio-temporal resolution.

Furthermore, new approaches, such as those based on microfluidic technologies for cell
culturing and multiplexed high-resolution measurement of biological responses, are enabling
unprecedented detailed characterization of subcircuits82,83. Together, these new technological
advances will provide a much needed impedance match for interweaving global systems
models with detailed subcircuit models.

We propose two dovetailed tandem cycles of systems biology and synthetic biology that will
drive the re-engineering process through simultaneous global modelling and subsequent
detailed characterization of subcircuit dynamics (FIG. 2). Weaknesses of both fields are
immediately resolved: subsystem connections are provided by the global analysis to the
synthetic biology approach, whereas quantitative parameters and mechanistic details are
introduced to the systems approach.

The systems biology cycle starts with a specific hypothesis regarding properties of a particular
system, and this hypothesis is then tested through systematic perturbations. Large and diverse
data sets are analysed and integrated to infer predictive models, which are tested using classical
genetics, biochemistry and molecular biology approaches. This helps define subcircuits and
feeds subsequent iterations of the systems and the synthetic biology cycles. In the synthetic
biology cycle, the systems-scale model provides a hypothesis regarding a specific network
topology of a regulatory subcircuit. Quantitative and kinetic representative models are
formulated, key parameters are estimated and the subcircuit is iteratively refined through
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simulation and experimental testing. This refined mechanistic detail is eventually fed into the
systems biology cycle.

Continued iterations of these tandem cycles will lead to the development of a framework that
accurately predicts dynamic cellular behaviour through multiple scales. In addition to the
production of well defined system behaviour, this will also enable the abstraction and
standardization of principles for re-engineering biology84. It is clear that this will bring us
closer to rationally redesigning a cell, but given the enormous complexity of biological systems,
we anticipate that some aspects of system behaviour will not be fully understood for some time.
However, it should be possible to account for these poorly understood mechanisms through
the application of evolutionary processes (random mutagenesis coupled to appropriate
selective pressures) to select for robust re-engineered circuits76,85 in which homeostasis is
completely restored.

This framework will enable the re-engineering of cross-scale systems with desired and robust
behaviours, from nanoscale engineered systems to interspecies communities86, bringing our
theoretical closed-loop microbial system for bioremediation closer to reality. The merging of
systems and synthetic biology will also contribute to a new generation of in vitro
applications87, including nanoscale constructions that will eventually lead to entirely artificial
cells, in which every component is synthesized bottom-up88.

The emergence of systems re-engineering will undoubtedly bring a dramatic shift in the way
we understand and responsibly use biology, be it studies of individual cells89,
communities11, ecologies90 or infectious diseases53. In just a few years, we will see a dramatic
increase in the complexity of engineered biosystems. Although this will raise new challenges
in bioethics, it will also provide greater control and predictability over biological
processes77,85. Gone will be the days of simple recombinant overexpression of a few molecules
and the painstaking task of optimizing the process. Instead, in its place, will be a foundation
of mathematics and engineering principles for constructing biological circuits, which will solve
many complex problems that affect humankind.
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Figure 1. Timeline of events that resulted in the development of systems biology and synthetic
biology
Key milestones within the fields of systems biology and synthetic biology are highlighted. For
brevity and clarity, we have only included key advances in molecular systems biology and
have not included important events related to other macroscale systems biology efforts; for
example, human physiological systems and ecological systems. Although it is difficult to
differentiate the specific impact some events have had on either of the two fields, we have
attempted to do so for consistency. Particularly noteworthy are the events in which complete
organism sequences were made available to the public and paired with gene regulatory and
metabolic reconstruction models. Next generation sequencing refers to pyrosequencing on
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beads, polony sequencing and sequencing by synthesis. Pivotal technologies that produced
new paradigms for systems and synthetic research are also important; for example, the use of
mass spectrometry (MS) for proteomic analysis gave rise to quantitative proteomics and
eventually metabolomics, multilayer soft lithography and microfluidic devices, and next-
generation sequencing technologies enabled deep metagenomics studies. ChIP–chip,
chromatin immunoprecipitation with microarray hybridization; ChIP–Seq, chromatin
immunoprecipitation with sequencing; COBRA, constraints-based reconstruction and
analysis; EGRIN, environment and gene regulatory influence network; ESI, electrospray
ionization; FDA, Food and Drug Administration; GFP, green fluorescent protein; GRN, gene
regulatory network; GMO, genetically modified organism; GSMR, genome-scale metabolic
reconstruction; HGP, Human Genome Project; ICAT, isotopic coded affinity tag; iTRAQ,
isobaric tags for relative and absolute quantitation; MALDI, matrix-assisted laser desorption
ionization; MLS, multi-layer soft lithography; qPCR, quantitative PCR; SILAC, stable isotope
labelling with amino acid in cell culture; TOF, time of flight; YAC, yeast artificial
chromosome.
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Figure 2. convergence of systems and synthetic biology
The systems biology cycle begins with a specific hypothesis that is tested by systematic
perturbations through targeted environmental and genetic changes. Molecular changes are
measured globally at multiple levels (for example, transcription, translation and physical
interactions) using high-throughput technologies. This produces large and diverse data sets
that drive the development of algorithms to process raw signal and integrate all available
information to infer predictive models of how the inputs (environmental and genetic
perturbations) were converted to outputs (for example, phenotypes, transcriptional changes
and interactions)102. Owing to the complexity of these models, their exploration requires a
framework that enables the integration and interoperation of diverse databases and applications
for visualizing and analysing the data used to construct the models103. The exploration of
systems models enables a biologist to design experiments to test model predictions using
classical genetics, biochemistry and molecular biology approaches. This helps define
subcircuits and feeds the next iterations of the systems and synthetic biology cycles. In the
synthetic biology cycle, the hypothesis begins as a specific network topology, regulatory
subcircuit or set of molecular interactions. The system is mathematically formulated as systems
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of ordinary differential equations (ODEs), stochastic differential equations (SDEs) or a
stochastic reaction network to produce a quantitative and kinetic representative model that is
fit for computational simulation and testing. Key parameters of the system (synthesis and
degradation rates, binding cooperativities and association or dissociation constants) are derived
based on estimates from other models of well known systems. The system is analysed by
focusing on exploring the parameter space and testing the kinetic properties of the system (for
example, through frequency response analysis) to locate the regimes of desired dynamic
behaviour and define their limits. Simulations elucidate revisions in the topology of the system
to produce the desired output or enhance unexpected, but desirable, dynamic characteristics.
Once these characteristics are well defined computationally, they are verified experimentally
through system construction and implementation. Experimental exploration of the parameter
space is performed using flow cytometry and microfluidics83-based assays, which provide
high-throughput measurements at population and single cell scales simultaneously. Finally,
the experimental implementation incorporates revisions, leading to another iteration of
computational modelling to validate the dynamics of the system. New challenges to construct
hybrid models that link detailed ODE or SDE models of subcircuits to the statistically learned
systems models will emerge. We suggest that such a tandem ‘top-down’ and ‘bottom-up’
approach will be essential to precisely manipulate a biological circuit and accurately predict
its system-level outcomes. E represents an effector (either global regulatory influences or
environmental factors), r represents a regulator gene, a represents gene A and b represents gene
B.
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