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Abstract

The increasing availability of data related to genes, proteins and their modulation by small molecules,
paralleled by the emergence of simulation tools in systems biology, has provided a vast amount of
biological information. However, there is a critical need to develop cheminformatics tools that can
integrate chemical knowledge with these biological databases, with the goal of creating systems
chemical biology.

Hailed as a departure from the “reductionist approach”, where investigators dedicate their
efforts to the study of a single gene or protein, systems biology is generally regarded as the
“comprehensive approach”. Large networks describing the regulation of entire genomes,
metabolic or signal transduction pathways are analyzed in their totality at different levels of
biological organization®. Systems biology, which blends theory, computational modeling, and
high-throughput experimentation?, has already led to advances in the understanding of cell
signaling?, developmental biology?#, cell physiology®, and metabolic networks®. However,
despite these advances in biological insight, what is currently lacking from these approaches
is any holistic understanding of how small molecules affect biological systems. The
introduction of cheminformatics tools that can be seamlessly integrated with currently available
bio- and cheminformatic databases and biological network simulations and software will be
required to move toward a systematic understanding of the way small molecules impact
biological systems — a field which we call “systems chemical biology.”

Although some systems biology approaches have been applied to targets in lead” and drug
discovery®:9 within the pharmaceutical industry, this type of general integration of chemistry
and systems biology has not yet been seen in academics. However, a tremendous opportunity
now exists because academic biomolecular screening efforts, particularly the Molecular
Libraries Screening Centers Network (MLSCN) being funded by the NIH Roadmap via the
Molecular Libraries Initiative (ML1)10 have created a wealth of systematic data describing the
biological effects of small molecules. The new data that is being generated is particularly
valuable because it extends information beyond the relatively limited number of biological and
screening data available from industry to the entire array of macromolecules and
macromolecular networks that are being experimentally evaluated in academic laboratories.
Via the MLI, the effects of hundreds of thousands of small molecules on biological systems
of varied complexity, ranging from screens with purified targets to simultaneous multi-target
(multiplex) screens, phenotypic screens, and even whole organism assays, are being
investigated. Central to the ML is public access, and bioassay data from MLSCN screens are
being deposited in PubChem, a freely accessible database. This unprecedented effort has
created an opportunity to integrate chemical data with the vast biologically relevant data being
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deposited in publicly available databases (see Box 1). However, this plethora of small molecule
data has yet to reach the fields of computational and systems biology.

To make the most of this new data describing the modulation of genes and proteins via diverse
libraries of small molecules, there is a critical unmet need to develop a “chemistry-smart”
systems biology interface. Cheminformatics, a discipline that emerged only a decade agol?,
focuses, in part, on methods for retrieving and analyzing information from chemical databases.
As such, it is advances in cheminformatics that will be needed to develop the tools necessary
to capitalize on the assay data in PubChem. Cheminformatics has already become an integral
part of the drug discovery decision-making process2 and is currently the main resource for
computer-based studies of chemistry-modulated biological systems'3. Cheminformatics is also
increasingly being applied to in silico profiling of small molecule bioactivities for arrays of
targets1 11415 However, the goal of bring chemical cognizance to systems biology will provide
new challenges to the field. While, as Leroy Hood describes, the accumulation of genomics
and proteomics databases can “transform how we think about biology and medicinel6”, new
chemical databases have the potential to transform the thinking of both chemists and biologists
and to pave the way toward the chemical biology vision of rationally modulating all proteins
via small molecules!’. This Commentary pursues two goals: First, we discuss the potential of
systems chemical biology to analyze and integrate large-scale chemical and biological data.
Second, we illustrate the power of a hypothetical systems chemical biology interface, based
on seamless integration of current cheminformatic predictive tools'8:1° with the array of
mathematical and bioinformatics models already available in computational and systems
biology.

Thinking big about small molecule data

For the past two decades, innovative technologies enabling rapid synthesis and high throughput
screening of large chemical libraries have been adopted by the industrial sector. This resulted
in a massive increase of compounds routinely screened against new targets and pathways, and
their associated data. Such technologies, by contrast, were rarely available to the academic
research community and the resulting data was largely proprietary.. Within the past decade,
though, high-throughput screening has become increasingly common in academics and the
resulting data is typically published and often made available in relevant databases. Most
significantly, since the creation of the MLSCN in 2005 through May 25, 2007, 256 different
MLSCN bioassays, encompassing over 140,000 chemicals, have been deposited in PubChem.
Within this data, 29,558 compounds have been categorized as “active” in at least one MLSCN
bioassay, and 65,118 compounds have been annotated as “inactive” in at least 55 bioassays.
In addition to this new public repository of more “traditional” small molecule screening data,,
there are at least twenty databases that characterize different types of biological activities for
small molecules?, with many of them capturing quite complex data. These more complex
datasets include cases where multiple measures of biological endpoints are captured
simultaneously for a compound library (chemical biology), where the endpoint is measured in
the form of gene or protein expression profiles across an array of genes (chemical genomics),
or where diverse compounds are tested against a complex assay where multiple mechanisms
could lead to the measured response (phenotypic or in vivo screens — chemical genetics). This
information can be currently found in many different databases (see Box 2), and although
several initiatives are focused on development and standardization of the reporting of small
molecule biological effects, for instance in PubChem, GPCR binding?!, NCI, FDA, NIEHS,
and EPA. analyzing the complex data contained in even one of these databases remains a
significant challenge.

Modeling both traditional high-throughput screening data and more complex datasets,
especially in chemical genomics, is likely to require advances in data mining, clustering, and
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visualization 22 techniques, that are suited for large multi-dimensional datasets. The availability
of this new data presents an important challenge to computer scientists, because through the
development of new cheminformatic tools, there will be the possibility of understanding the
complex relationship between chemical structures and their effects in living systems and the
hope of being able not only to model, but accurately predict the effects of chemicals in
biological assays.

Box 1: Resources for Systems Chemical Biology (*)

Genes
Entrez Gene: http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene

Proteins
SwissProt: http://expasy.org/sprot/

Structures of biological macromolecules
PDB: http://www.rcsh.org/pdb/home/home.do

Structral Genomics Consortium: http://www.sgc.utoronto.ca/

Pathways
KEGG: http://www.genome.jp/kegg/

MetaCyc: http://metacyc.org/
BioCarta: http://www.biocarta.com/genes/index.asp
Reactome: http://www.reactome.org/

Receptors
GPCRdb: http://www.gpcr.org/7tm/

NHRs: http://www.nursa.org/
lon Channels: http://www.iuphar-db.org/iuphar-ic/index.html

Biochemical pathway reaction kinetic: SABIORK:
http://sabio.villa-bosch.de/SABIORK/

BRENDA: http://www.brenda.uni-koeln.de/

Small Molecules: PubChem: http://pubchem.ncbi.nlm.nih.gov/

Network Simulators: Xyce: http://www.cs.sandia.gov/Xyce/

BioNetGen: http://cellsignaling.lanl.gov/bionetgen/index.shtml
Annotated Biological Model: http://www.ebi.ac.uk/biomodels/
Uncertainty analysis: DAKOTA: http://www.cs.sandia.gov/DAKOTA/

Cheminformatics Tools: Open Eye software: http://www.eyesopen.com/

(*) This non-exhaustive list illustrates sources of data used in this commentary

Integrating currently available bioinformatic tools

Relative to cheminformatic tools, bioinformatic tools are readily available and have been
widely adopted by the biological community. For instance, KEGG, the Kyoto Encyclopedia
of Genes and Genomes, aims to provide a “complete computer representation of the cell, the
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organism and the biosphere which will enable computational prediction of higher-level
complexity of cellular processes and organism behaviors from genomic and molecular
information” (http://www.genome.jp/kegg/). KEGG offers an effective summary of a vast
array of metabolic and signal transduction data (Fig. 1).. In these databases, all objects are
clickable, and lead to additional information related to reactions and pathways (all objects),
and to gene and protein data, including links to other on-line databases like SwissProt and
PubChem.

However, there are also a lot of computational biology tools and biochemical data that are not
currently integretated with KEGG, but would be useful for gaining an increased understanding
of biological pathways. For instance, BioXyce is a biological network modeling tool 23 that
can simulate the behavior of enzymes within pathways based on reasonable kinetic and
microenvironment parameters 24, I tools like BioXyce could be integrated with KEGG, it
would become possible to simulate metabolic pathways such as the one illustrated in Fig. 1.
Such simulations could gain further accuracy by an interface that could incorporate reaction
kinetics data such as Ky, the Michaelis-Menten constant, and K¢, the turnover rate, which are
both available from BRENDAZ®, and by optimizing the input parameters with DAKOTA, an
uncertainty analysis tool (Box 1). However, even if all the state of the art computational biology
and bioinformatic tools were fully integrated, the analysis would not take chemical knowledge
into account. Currently, the introduction of a perturbing ligand on any systems biology network
is simulated by a break in the electrical circuit, and does not take into account any specifics
related to the small molecule per se, resulting in the loss of valuable information. This lack of
chemistry awareness can only be addressed by developing new cheminformatics tools.

Cheminformatics meets bioinformatics

Why are cheminformatic tools for data mining not available to the same extent as bioinformatic
tools? On the one hand, it is a surprising given all the commonalities between bioinformatics
and cheminformatics. Cheminformatics and bioinformatics share common goals: In
cheminformatics, one searches for similar compounds, while in bioinformatics one seeks
homologous sequences; in cheminformatics one predicts activities and properties of small
molecules, whereas in bioinformatics one predicts functions and properties of macromolecules;
in cheminformatics one computes binding affinities between chemicals and proteins, and in
bioinformatics one predicts the possibility of two biomolecules to interact. Bioinformatics
techniques use Enzyme Commission (EC) numbers to predict the metabolites a given sequence
can catalyze26—28  and structure- and sequence-based methods to locate homologous ligand
binding sites?®. Cheminformatics techniques such as virtual screening seek to identify novel
compounds for a given target!9 30 | can classify metabolic 31 and organic 32 reactions, and
predict the EC number given a metabolic reaction 33. Beyond common goals, cheminformatics
and bioinformatics also share common computational techniques: clustering and machine
learning based on regression, support vector machine (SVM), neural network, Bayesian
networks, hidden Markov models, and decision trees, for example.

Yet, despite these common goals and techniques, a separation between the two cultures exists,
as knowledge exchange and know-how transfers between these two fields have been quite
limited. The reasons may relate to different scientific cultures (e.g., background in molecular
biology vs. chemistry), different applications and funding sources, and different objects being
studied, namely chemical compounds and biological sequences. Last but not least, high quality
bioinformatics databases and resources have been developed and made available at no cost to
the scientific community, whereas cheminformatics databases and resources have typically
been made available for fee.
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Towards systems chemical biology

Moving towards systems chemical biology, it will be essential to interface network simulators
such as BioXyce, a “traditional” systems biology approach, with an interface that enables the
scientist to apply bioinformatics and cheminformatics tools. Particularly important will be the
development of cheminformatic approaches to take maximum advantage of the large-scale
small molecule data that is now available. Ideally, these tools would permit chemical structures
to be specifically described, visualized and modeled within system biology networks, would
allow comparisons of the bioactivity properties of chemicals across all the available databases,
and would enable relevant predictions of the effects of small molecules on biologic processes.
Such chemical tools should be able to recognize structures from sketches, from linear notations
such as SMILES34, and from common name input. Cheminformatics tools could then become
the engine for predicting the influence of putative perturbing ligands on systems biology
networks.

An example of a potential systems chemical biology approach based on the glyoxylate pathway
isillustrated in Fig. 2. In an integrated interface, biochemical networks, target function and the
effects of small molecules could all be simulated. In this scenario, one could begin by
developing a BioXyce network that captures appropriate reaction and metabolite data to
simulate the glyoxylate pathway, in both the forward and reverse direction. Using BRENDA,
this generic pathway can be further adapted to compare the flux of the pathway in specific
organisms, e.g., Mycobacterium tuberculosis vs. human. These pathways could then be
optimized with DAKOTA under uncertainty conditions. After generating a realistic model of
the network, the interactions of small molecules could be predicted using a combination of
bioinformatic and cheminformatic tools.. As an example, in cases where a protein structures
were not known, bioinformatic tools could be used to generate homology models in preparation
for virtual screening.. To query the impact of any novel small molecule on the enzyme cycle,
a switch to cheminformatics would permit ligand-based or structure-based virtual screening.
By feeding predicted Ki values back into BioXyce at user-defined concentrations, it becomes
possible to simulate the influence of small molecules across biological pathways.

The development of an integrated systems chemical biology interface could dramatically alter
our way of thinking about complex biological networks, and unlock the true potential of in
silico chemical biology studies of cellular and organism functions. By gaining access to the
“known” as well as the “predictive” aspects of small molecule-biological nework interactions,
scientists could be guided to understand, for example, the potential therapeutic impact of a
small-molecule blockade of a critical step in a pathway. This may, ultimately, allow an
understanding of why some, but not all, proteins within a pathway make good drug targets,
and encourage an early focus on those targets that are the most likely to be clinically useful.
We are concerned about the recent move by NIH to cancel its only funding opportunity for
cheminformatics (http://grants.nih.gov/grants/guide/notice-filessfNOT-RM-07-010.html), an
X02 that was designed to foster cheminformatic tool developments to analyze PubChem and
related public data (http://grants.nih.gov/grants/guide/pa-files/PAR-07-353.html). Funding
centers that create small molecules and generate bioassay data on a massively unprecedented
scale is commendable and within the MLI vision. Not funding the development of tools to
analyze and mine the associated data defeats its purpose.

Box 2: Standard Biological Endpoint Data Sources (*)

Small Molecules
PubChem: http://pubchem.ncbi.nlm.nih.gov/

NCI : http://dtp.nci.nih.gov/docs/dtp_search.html

Nat Chem Biol. Author manuscript; available in PMC 2009 August 28.


http://grants.nih.gov/grants/guide/notice-files/NOT-RM-07-010.html
http://grants.nih.gov/grants/guide/pa-files/PAR-07-353.html
http://pubchem.ncbi.nlm.nih.gov/
http://dtp.nci.nih.gov/docs/dtp_search.html

1duasnuey Joyiny vVd-HIN 1duasnue Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Oprea et al.

M

http://www.hmdb.ca/

Drugs and Clinical Candidates
NLM’s Dailymed: http://dailymed.nlm.nih.gov/

DrugBank: http://redpoll.pharmacy.ualberta.ca/drugbank/
FDA: http://www.accessdata.fda.gov/scripts/cder/drugsatfda/

Toxicology Data
NIEHS: http://ntp.niehs.nih.gov/ntpweb/

EPA DSS-Tox: http://www.epa.gov/ncct/dsstox/index.html

(*) Non-exhaustive list
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Figure 1.

A simplified representation of the glyoxylate pathway, extracted from KEGG. Object
information, such as chemical structures, is one click away in KEGG, but have been added
here for clarity.
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Figure 2.

Conceptual representation of the systems chemical biology approach, applied to the glyoxylate

pathway. Input boxes illustrate various levels of simulation.
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