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Abstract

The sequential RCM to construct a challenging medium-sized ring followed by a transannular
cyclization across a medium-sized ring delivers previously unattainable twisted amides from simple
acyclic precursors.

Many lactams incorporating nitrogen at a bridgehead position contain non-planar or “twisted”
amides. 1 Due to limited overlap of the nitrogen lone pair of electrons with the π-system of the
carbonyl group, such compounds are extremely sensitive to hydrolysis and display other kinds
of reactivity that are sharply divergent from that of standard lactams.2 Moreover, since a fully
twisted amide represents the transition state of the cis–trans amide bond isomerization essential
in protein folding,3 it has been suggested that compounds that contain nonplanar amides could
be useful as inhibitors of proline isomerases.4 However, due to inherent strain and the enhanced
lability to water, twisted amides have not fulfilled their promise as biological tools.

The vast majority of bridged amides place the carbonyl group on a bridge containing two or
more carbons (Figure 1a). Although less common, we have recently shown that one-carbon
bridged twisted amides 1 (Figure 1b) are substantially more persistent in aqueous solutions.5

This arises from the relatively relaxed ring sizes present in 1 and the fact that the ring-opened
amino acid corresponding to this structure is destabilized by transannular interactions.
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However, the amide bond in 1 is substantially distorted from planarity and the lactam displays
reactivity that belie this nature.6

In general, existing synthetic approaches to one-carbon bridged twisted amides are limited to
particular structural types9 and do not allow for synthesis of larger number of diverse analogues.
10 There is no general method of synthesis of one-carbon bridged twisted amides. The
observation that lactams 1 can reform in water once hydrolyzed, plus the rich history of
transannular cyclizations in synthesis,11 (including limited precedent from the twisted amide
chemistry),12 suggested that such ring systems might be accessible using a direct cyclization
approach. Although only limited precedent supported the synthesis of medium-ring nitrogen
containing heterocycles with appropriately placed amine and carboxylic acid derivative
functionalities,13 we believed that, if successful, RCM would allow for rapid construction of
diverse precursors to the key cyclization.14 Herein, we report the realization of these ideas to
provide a highly general solution to the problem of one-carbon bridged twisted amide synthesis
(Scheme 1).

Our initial investigations focused on the preparation of the [4.3.1] bicyclic ring system
previously studied in this laboratory.5,6,8b Thus, malonate 2a was prepared and subjected to
range of RCM conditions. After extensive experimentation it was found that Hoveyda–Grubbs
2 catalyst15 most effectively led to the 9-membered heterocycle 3a (Table 1). Use of these
conditions allowed synthesis of a series of analogues containing various amine substitutions,
including readily removable carbamate groups (Table 1, entries 12 and 13).16

We now wished to determine whether the desired lactams could be obtained via direct
cyclization of the substrates. Previously, we had determined that some bicyclic amino acids
analogous to 3 were in equilibrium with their closed forms (even in water), but that the
hydrolysis reactions were irreversible if the medium-sized ring adopted a conformation with
the carboxylic acid in an exo position. In the present cases, we controlled for this through the
use of gem-diester substitution. In the event, deprotection and cyclization of the Ns precursor
could be carried out in a single operation to deliver 4b under very mild conditions (Scheme 2).
Although this material showed modest sensitivity to flash chromatography, it could be isolated
in ca. 50% yield after PTLC.

We have also determined that the Boc precursor 3c could be utilized for preparation of twisted
amides (Scheme 3, top). In contrast, the use of Cbz derivatives could be problematic.
Deprotection and cyclization of 3d (Scheme 3, bottom) proceeded smoothly, but the twisted
amide proved to be unstable to the hydrogenation conditions, giving piperidone 4d by C-N
ring cleavage.6

The sequential RCM/transannular cyclization strategy was extended to a series of dienes, thus
providing a systematic series of twisted lactam ring systems (Table 2). In general, the RCM
reactions proceeded in very good yields. All of the medium-sized rings save one (entry 3) were
obtained as exclusive cis double bond isomers. This study provides very rare examples of the
successful use of catalytic RCM in the formation of 9- and 10-membered nitrogen containing
ring systems with minimal conformational constraints.17 Furthermore, the cyclization of the
medium ring amino diesters to bridged lactams proved gratifyingly general. Although the
cyclization of compound 3g proved sluggish under our initially identified conditions, the
[5.3.1] twisted amide could be generated by treatment with DBU after deprotection (entry 3).
While malonate could not be applied for preparation of the [4.4.1] system (entry 5) due to
competing decarboxylation, use of the phenyl acetate (entry 6) allowed for preparation of the
desired compound, albeit in conservative yield. The experiment in entry 7 was performed to
explore the effect of leaving group on cyclization reaction. Replacing methoxide with
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phenoxide dramatically improved the yield of the transannular cyclization, delivering lactam
4j in 86% yield.

Several methods to prepare saturated lactams were also investigated (Table 3). This normally
straightforward process was complicated by the tendency of some twisted amides to undergo
unusual C-N cleavage reaction under mild hydrogenolysis conditions.6 Thus, when twisted
amides prepared in the current study were treated with standard hydrogenolysis conditions,
[4.3.1] and [4.4.1] scaffolds showed the highest reactivity, participating in C-N cleavage to the
corresponding monocyclic amides (Table 3; entries 1 and 2), while [4.2.1], [5.2.1], [5.3.1] and
[6.2.1] twisted amides were less reactive, undergoing only traditional reduction to the saturated
analogues (entry 3; only products shown). As expected, allylic olefins are more susceptible to
hydrogenolysis than isolated bonds. Interestingly, when hydrogenation of [4.4.1] scaffold was
carried out in the presence of Willkinson’s catalyst, the amide bond remained intact and the
saturated amide was obtained in high yield (entry 4).

One goal of the present project is to obtain a series of varied ring systems to allow systematic
exploration of the effect of amide twist on chemical and spectroscopic properties. For example,
non-planar amides often display spectral features consistent with less “amide-like” and greater
“ketone-like” nature of the carbonyl group.18 Although the medium-bridged lactams prepared
herein do not contain perfectly orthogonal Nlone pair–carbonyl groupings, most of the ring
systems prepared here show substantially higher 13C chemical shifts for the carbonyl carbon
and higher carbonyl stretches in the infrared spectra, consistent with a substantial degree of
twist (Table 4). As expected, several of the ring systems containing larger rings are able to
relax into values closer to those of analogous fused lactams (entries 3 and 5). We note that the
infrared stretching frequences cover a range that begins at that for a “normal” amide (entry 6)
and go all the way to a value that would be expected for a saturated, “normal” ketone (entry
1). This bodes well for the use of this suite of compounds for the systematic evaluation of the
effect of amide bond geometry on reactivity. Interestingly, there is not a perfect correlation
between IR stretching frequencies and 13C NMR carbonyl chemical shifts (also noted by
Yamada18), suggesting that subtle electronic effects beyond bond angle likely effect these
parameters.

In summary, a sequential RCM/transannular cyclization strategy has been developed that
provides access to an expanded family of one-carbon bridged lactams. This route highlights
the rapid assembly of previously inaccessible, functionalized ring systems from readily
available starting materials. The mild conditions for the transannular cyclization allow for
isolation of strained amides by a route similar to classical amide bond formation but facilitated
by close proximity of the reactive functionalities. Work is currently underway on further
development of this methodology and its application to the synthesis of a whole gamut of
twisted amides. As already exemplified by hydrogenolysis reactions, this in turn will allow for
the systematic study of strain influence on chemical and biological properties of amide bonds.
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Figure 1.
Some twisted amides (a) with the C=O bond placed on a 2- or 3-carbon7 or (b) on a 1-carbon
bridge.8
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Scheme 1.
RCM/cyclization strategy.

Szostak and Aubé Page 7

Org Lett. Author manuscript; available in PMC 2010 September 3.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Scheme 2.
Synthesis of [4.3.1] lactam.
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Scheme 3.
Synthesis from orthogonally protected systems.
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Table 3
Hydrogenation/Hydrogenolysis of bicyclic lactams.

a
Only products of hydrogenation of corresponding unsaturated lactams 4e–h shown.
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Table 4
Spectroscopic properties of saturated lactams.

entry lactam ring
system

lactam C=O 13C
[ppm]

lactam IR
νC=O
[cm−1]

1 5e [4.2.1] 183.4 1716

2 5f [5.2.1] 180.1 1693

3 5h [6.2.1] 173.4 1685

4 4c [4.3.1] 181.0 1679

5 5g [5.3.1] 176.6 1647

6 5j [4.4.1] 186.3 1643
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