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Abstract
The current state of the art in applied decomposition techniques is summarized within a comparative
uniform framework. These techniques are classified by the parametric or information theoretic
approaches they adopt. An underlying structural model common to all parametric approaches is
outlined. The nature and premises of a typical information theoretic approach are stressed. Some
possible application patterns for an information theoretic approach are illustrated. Composition is
distinguished from decomposition by pointing out that the former is not a simple reversal of the latter.
From the standpoint of application to complex systems, a general evaluation is provided.

Keywords
Bipartite network; Blind source separation; Complexity; Composition; Entropy; Independent
component analysis; Information; Information transfer; Integration; Mutual information;
Negentropy; Network component analysis; Principal component analysis; Singular value
decomposition

Introduction
Decomposition is a process of breaking up into constituent elements. In mathematical analysis,
it means factorization and/or finding summands of a real number or a matrix. In systems
science, decomposition consists of finding an optimal partition of a system in terms of its
subsystems. Decompositions in real-life applications are motivated by a need to obtain a much
simpler body of constituents that can best represent a given system of unmanageable size and/
or complex structure. Complexity is a lack of information about a system, and unmanageable
size means high dimensionality (Donoho, 2000; Fan and Li, 2006). Optimality of
decomposition is evaluated by means of some adopted criteria, such as a dispersion measure
of observables (for instance, higher eigenvalues or singular values of covariance matrix) or
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their conformity with prior knowledge on network structure or an entropic measure
(information content) involved, etc.

Here we aim to discuss the current state of the art in decomposition within a uniform framework
of approach. We do not intend this to be a full-fledged survey. For illustrations and examples
on some known techniques, readers will be referred elsewhere. Because decomposition has a
vast spectrum of application areas, finding a common framework of interest to all is
challenging. The case is the same with determining the type of audience to be addressed. We
have chosen a general statistical and information theoretic framework without dwelling on
specifics of a certain area, for example, technicalities of statistical inference issues relating to
the models discussed. Apart from taking care to introduce a conceptual framework for
decomposition on the basis of partitions and except for the two illustrations provided on
applications of the last technique and our efforts to find a common framework for exposition,
we do not claim originality:

A close study of the relevant literature has led us to conclude that applications of decomposition
and relevant techniques fit into two categories of approaches: The first category handles the
problem in terms of a structural formal model representing the real-world phenomenon to be
considered. The second category uses information theoretic treatment of systems without
specifying such a structure. The first four well-known techniques to be discussed can be placed
within the first category and are also used for dimension reduction: principal component
analysis (PCA), singular value decomposition (SVD), independent component analysis (ICA),
and network component analysis (NCA). The final technique, which may be called
decomposition with information transfer function (ITF), falls in the second category. Although
it is one of the earliest approaches found in literature, ITF is little known and the least explored.
In the exposition below, both random vectors and matrices are shown in bold uppercase letters
whereas bold italic uppercase letters are used for random vectors only. The superscript t stands
for transposition.

A common framework of structure for the first category of techniques can be set up in terms
of a linear model such as

(1)

In information theory, for instance, this model represents a simple formal communication
channel without encoding and decoding (Ash, 1990, Chapter I). The model (1) will shortly be
expressed as

The column vector X = (X1, X2,…, Xn)t of the model (1) has n observable random variables
X1, X2,…, Xn such as phenotypes in biology. The coordinates of the column vector Z stand for
m non-observable random factors Z1, Z2,…, Zm, with n ≤ m, where m denotes the number of
arrays into which these latent factors (say, genotypes in the case of the given biological
example) can be placed. The (n×1) vector E contains n unobserved residuals E1, E2,…, En,
which are sometimes called noise factors. When E1, E2,…, En are missing in the model, i.e.,
when E=0, (1) becomes a noise-free or noiseless model. Setting Y = AZ and having hence X

Tuncer et al. Page 2

Comput Stat Data Anal. Author manuscript; available in PMC 2009 August 31.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



= Y + E for (1), one easily obtains an initial decomposition {Y, E} of X underlying the model
(1). The assumption behind the decomposition {Y, E} is that these two vectors or factors have
additive (independent or at least orthogonal) effects on X. Y = AZ is a linear approximation to
any differentiable non-linear function (correspondence) Y = Ψ(Z) at a certain point of Z. The
general setup (1) outlined above is different from the classical multivariate regression model.
In the multivariate regression model, the matrix A is observable and the vector Z is
unobservable. Furthermore, under the regression model, the noise vector E cannot obviously
be neglected.

The vectors Z and X are related to each other though an unknown mixing matrix A, the rows
of which correspond to the coordinates of X, i.e., phenotypes in biology, and the columns
correspond to the elements of Z. In physical terms, matrix A stands for a system or a network
(i.e., gates) through which, for example, genotypes or similar latent factors are connected to
phenotypes or observable outputs. Often, these matrices give some idea about the underlying
structure of a system. Such matrices are sometimes given special names like design structure
matrices, dependency structure matrices, problem solving matrices, or design precedence
matrices (Browning, 2001). In fact, a lower triangular matrix A corresponds to a hierarchical
structure and diagonal or block diagonal matrices indicate independence or block-wise
independence of components. Generally, matrix cells contain real or complex numbers. In a
bipartite network system (e.g., a network between two different groups such as the phenotypes
and genotypes in our biology example), however, they are composed of non-negative integers
only. Irrespective of their numerical nature, estimation of or information on such matrices
becomes of utmost importance for the study of complex systems.

The main statistical problem tackled by the structural approach in (1) is thus to obtain a
statistically significant estimate of the matrix A and hence the vector Z by using the information
contained in the observable X. In the statistical identification and estimation of matrix A, vector
X is assumed generally to have a statistical distribution with non-spherical contours on its
domain (e.g., if the variance-covariance matrix of a multivariate normal distribution has distinct
eigenvalues, the corresponding probability density function traces ellipsoids in its domain
whereas a covariance matrix with identical eigenvalues produces spheroids in its domain). PCA
and SVD are basically designed for distributions with non-spherical contours; ICA works well
with non-normal distributions. Furthermore, normal distributions have maximum entropy
among other distributions with an identical mean and variance and therefore are inappropriate
for entropic analyses that seek minimum entropy.

The first four techniques to be discussed below aim at obtaining matrix A from parameters of
relevant distributions or at estimating it in terms of some observational phenomena. For the
purpose of estimation, some finite number of observations like X1, X2,…, XN, n < N, on X are
obtained. The condition n < N is obviously required for non-singularity. Hence, ignoring the
corresponding residual vectors E1, E2,…, EN for the corresponding vectors Z1, Z2,…, ZN for
the time being, we have the observational phenomenon

(2)

In matrix notation, (2) can be re-expressed as
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(3)

The matrix X corresponds to a set of N observations on n genes, for instance. The objective
for the first four techniques is to obtain an estimate of the unknown structure matrix A by means
of the observable X and hence to obtain information on Z with the model (2).

As mentioned earlier, ITF does not involve such a structure as (1) above. Instead, an input
process like the latent Z of the above discussion is assumed to be transformed to an output
process like the observable Y (or X) above with the understanding that Z and Y (or X) may not
necessarily obey vector space algebra or any other space algebra with certain topological
properties. Both the input and the output of transformation are assumed to be stochastic. We
denote a system with S ={X1, X2,…,Xn}, meaning that X1, X2,…,Xn are just components of the
system; S does not represent a functional notation. As it is the case with a structural model as
in (1), X1, X2,…,Xn usually correspond to output. Because we are interested in the nature of a
system, this output feature of X1, X2,…,Xn is often overlooked. Further discussion on systems
can be found in the treatment of ITF below. The objective of this final technique is thus to find
a partition p{S1, S2, …,Sq}, q ≤ n (e.g., a set of exhaustive disjoint subsets S1, S2, …,Sq), that
provides the same information as S.

Principal Component Analysis
Although the underlying mathematical tool of PCA is not new, its application to statistical
problems and its subsequent independent development are attributed to Pearson (1901) and
Hotelling (1933). This mathematical tool is known as spectral decomposition of nonsingular
(positive- or negative-definite) symmetrical square matrices and is sometimes referred as the
Hoteling or Karhunen-Loève transform. Because a variance-covariance of a random vector
satisfies these square-symmetry and positive-definiteness properties, spectral decomposition
can also apply to the variance-covariance matrix V(X) = Σ = ε(X− ε (X))(X− ε (X))t of the
observable vector X in model (1) or its estimate Σ̂ obtained from observation matrix X in (2)
in the usual way:

where l is an (N×1) sum vector, i.e., l =(1,1,…,1)t, and as pointed out above, we have the
condition n < N for Σ̂ to be positive definite (Seber, 1984, p. 59). We shall henceforth deal with
such positive-definite cases and shall refer to them as standard PCA. The symbol ^ above any
character that denotes a parameter stands (conventionally) for the corresponding estimate.

Spectral decomposition of Σ or Σ̂ is then the factoring-out of these matrices such as

where Q is an n× n matrix with orthonormal columns Q1, Q2,…, Qn that are basically the
eigenvectors of Σ, and Λ is a diagonal matrix with positive diagonal elements λ1, λ2,…, λn
consisting of the corresponding eigenvalues. We also have similar matrices Q̂ and Λ̂ for Σ̂. In
view of the orthonormality of Q1, Q2,…, Qn, the following obvious results are obtained:
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(4)

The same results will obviously hold for its sample counterpart Q̂. The spectral decomposition
of Σ can be re-expressed in the better known way as

(5)

The last equality shows that the variance-covariance matrix can also be decomposed as the
sum of n matrices Σk= λk QkQk

t, (k=1,2,…,n), which are orthogonal to each other so that
ΣiΣj= 0 for i ≠ j. Obviously, the matrices Qk = Qk Qt

k are idempotent (orthogonal projection)
matrices because

(6)

The spectral decomposition Σ = QΛQt introduces further computational conveniences for
inversion and squaring the variance-covariance matrix Σ, i.e.,

Parallel statements will be valid for the sample counterpart Σ̂ of Σ as well. (For other aspects
of spectral decomposition of variance-covariance matrices, see Jolliffe, 2002).

Such decomposition has some implications in statistical applications for the case that n = m.
In fact, when Σ or Σ̂ is known, and in consequence when Q or Q̂ can be obtained, we can
replace the structure matrix A in (1) with Q or Q̂ to have X = QZ or X = Q̂ Ẑ, depending on
the availability Q or Q̂, so that, because n = m, the unobserved Z

can be obtained. The variance-covariance matrix of Z is now given by matrix Λ, which contains
eigenvalues of Σ on the diagonal, i.e.,
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with the implication that the new transformed variables

are uncorrelated and have the respective eigenvalues of V(X) = Σ as their variances, i.e.,

Note that sums of the variances of Z1, Z2,…, Zn and X1, X2,…, Xn are identical:

From a geometric point of view, metric properties of both the transformed variables Z1, Z2,…,
Zn and the original variables X1, X2,…, Xn are identical. For instance, |Z| =(XtQtQX)1/2= |
X|, which means the vectors X and Z have identical lengths. Furthermore, inner products in
both spaces are identical: Xi

tXj = (QZi)t(QZj)= Zi
tQtQZj = Zi

tZj. Hence, both Xi
tXj = Zi

tZj and
|Z| = |X| imply that the pairs (Xi, Xj) and (Zi, Zj) have the same positions with respect to each
other in both the original and transformed spaces because Xi

tXj = cos θ × |Xi|×|Xj| and Zi
tZj =

cos ρ×|Zi|×|Zj| result in θ = ρ. Similarly, the corresponding areas and volumes are identical in
both spaces. Because multiplication from the left of the vector X by an orthogonal matrix Qt

or multiplication of Z by the orthogonal Q yields rotations of these vectors, the original X and
the transformed Z are but rotated vectors with all other metric properties being left intact (i.e.,
they are so-called rigid motions of each other). For that reason, PCA is sometimes presented
as a simple rotation. All of the above discussion applies to sample counterparts that result from
replacing A with Q̂ except, of course, for relevant statistical inferential issues.

If these eigenvalues are ranked as λ(n) ≤ λ(n−1) ≤…≤ λ(2) ≤ λ(1) and the corresponding
eigenvectors Q(n), Q(n−1),…, Q(1) are ordered accordingly, then the uncorrelated transformed
variables Z(n)= Qt

(n)X, Z(n−1) = Qt
(n−1)X,…, Z(1) = Qt

(1)X can be ordered in terms of the
magnitude of their variances. The same ordering also holds for the factorized matrices

which can be ordered in a decreasing fashion for k=1,2,…,n

Tuncer et al. Page 6

Comput Stat Data Anal. Author manuscript; available in PMC 2009 August 31.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Practically, this means that some reduction of dimension can be obtained on the basis of the
magnitude of decomposed variances by cutting out small-ordered ones as negligible. For
instance, the number of significant Z(i)’s can be restricted to the first k variables, k < n,

satisfying  for some predetermined δ level of variance. There are some inferential
issues on determination of the number k of significant variables (Anderson, 1984, pp. 468–
479).

The decomposition in (5) is sometimes referred to as eigen decomposition to distinguish it
from other decompositions such as Cholesky decomposition, etc. (Anderson, 1984, p. 586;
Press et. al., 1992). When matrices are defined over complex numbers, orthogonal matrices
become unitary matrices and their transposes naturally are conjugate transposes of these
matrices. Because the matrix Σ is symmetric, resulting eigenvalues will always be real.

The formal setup of the PCA analysis is based on a structural model such as the model (1)
above. Therefore, its validity depends on the validity of the model as compared with the real
phenomenon that it models. For instance, data that do not involve a location parameter and/or
a scale factor are hardly suitable for a framework like (1). Also, as an alternative to a complex
unmanageable system based on X1, X2,…, Xn, the analysis aims at obtaining some system
based on variables Z1, Z2,…, Zk that are smaller in number (k < n), simpler in nature, and bear
the same information (eigenvalues). However, this is achieved at the expense of orthogonality
and/or un-correlatedness restrictions imposed on Z1, Z2,…, Zk. These impositions may not be
realistic for some applications areas such as biological systems. Application of the technique
is restricted to phenomena with distributions tracing non-spherical contours in their domains
because little will be gained in the spherical case. Finally, the mathematical tool on which
standard PCA is based applies to nonsingular decompositions, which requires that n = m in the
model (1). Most real-life phenomena, however, seem to present a singular structure. The last
restriction is alleviated by the next technique in the sequel: SVD. PCA does not seem to have
lost its attractiveness despite prevailing high-dimensionality problems observed recently
(Hastie et al., 2000). It is interesting further to note that PCA can be used for such a theoretical
issue as construction of bivariate distributions (Gurrera, 2005). The use of Q̂ for A invites
further inferential issues such as sampling distributions of eigenvalues and eigenvectors of Σ̂
(Anderson, 1984, pp.465–468, pp. 473–477, Chapter 13; Seber, 1984, pp. 35–38; Joliffe,
2002;Kendall, 1975, Chapter 2; Johnson and Wichern, 2002, Chapter 8).

Singular Value Decomposition
SVD is based on a matrix factorization technique that dates from the 19th century and was
developed by several mathematicians in linear algebra and differential geometry (Stewart,
1993; Eckart. and Young, 1936). The technique warrants factorization of any real matrix in a
way similar to spectral decomposition of square matrices. As such, given an (n×m) rectangular
matrix C, SVD is actually a spectral decomposition of symmetric square positive semi-definite
matrices CtC and CCt. For any (n×m) rectangular matrix C, the products CtC and CCt are
known to be symmetric and positive semi-definite (Scheffe, 1959, p. 399) with real non-
negative eigenvalues, and these products are thus suitable for spectral decomposition explained
above in connection with PCA. Assume hence that an (n×m) matrix C is factored out the way
that the matrix Σ is decomposed as in (5) above with Q now being represented by U when it
is positioned on the left of the diagonal matrix and Qt by V when it is on the right:

Tuncer et al. Page 7

Comput Stat Data Anal. Author manuscript; available in PMC 2009 August 31.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(7)

where Ui ’s and Vi ’s are orthonormal columns of U and V, respectively, and D is diagonal
with real nonnegative entries λi’s. The factorization (7) is sometimes interpreted as C being
orthogonally (unitarily) equivalent or similar to the diagonal matrix D. There are various modes
of SVD for the dimensions of the matrices involved. For instance, (i) the matrix U can be
(n×n) with n orthonormal (unitary) columns Ui, called left singular (eigen array) vectors, and
V is an (m×m) matrix with m orthonormal columns Vi, called right singular vectors (eigen
genes in the biological example considered above) such that

D is an (n×r), r = min{n,m}, diagonal matrix with positive diagonal entries called singular
values (eigen expressions) of C. (ii) A second mode corresponds to the case where the
dimensions of the matrix U are (n×m) with n orthonormal left singular vectors and the
(m×m) matrix V itself is orthogonal with m right singular vectors, such that

Hence, D becomes a (m×m) diagonal matrix with non-negative real singular values of C on its
diagonal. The thin, compact, and truncated types of SVD are not discussed here because of
space considerations.

To explain technicalities in SVD, we denote the real non-negative eigenvalues of the matrices
CtC and CCt with κ1, κ2, …,κr with r being min{n,m}. Given the decomposition C = UDVt

as in (7) with dimensions given for instance as in (i) above, we obtain

from which, by multiplication with V on the right, we have

(8)

Setting G= CtC and noting that V= [V1, V2, …, Vm] and D2 = diag (κ1, κ2, …, κr), (8) yields

which suggests that eigenvectors Vi of the matrix G = CtC are the right singular vectors of the
matrix G, and the singular values of C are given by absolute square roots of the corresponding
eigenvalues of G = CtC. When these non-negative singular values are ranked in terms of their
descending magnitudes, i.e., , then corresponding singular
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vectors can also be ordered in descending degree of importance such as ,…,U(1),…, U(r−1),
U(r) and V(1),…,V(r−1), V(r). For clarity, matrix D can be rearranged, i.e., for n < m and m<n,
giving respectively

Note also that (7) can also be re-expressed as

(9)

with C(i) Ct
(j) = 0 for i ≠ j, i.e., the matrices C(i) and C(j) are orthogonal and hence matrix C

can be decomposed in an additive way as well. The matrices C(i) in (9) are uncorrelated
“modes” of the original matrix C. Because of the ordering of singular values, the modes
(C(i)’s) in (9) are also ordered, so that C(i)’s corresponding to negligible (small) singular values
are sometimes loosely defined as noise and can thus be ignored in the analysis.

Simple arithmetic reveals, on the other hand, that the eigenvalues and eigenvectors of the matrix
F= CCt will now be κ1, κ2,…, κm and U1,U2, ,Um, respectively. Accordingly, by definition of
these values and vectors, we will have

The decomposition will then be

(9)

Note that the matrices Y(i) of the decomposition (9) are orthogonal in the sense that for all i ≠
j, we have

Furthermore, as it is the case with spectral decomposition in PCA, it is possible to obtain a
pseudo (Monroe-Penrose) inverse C− of C as
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where D− is the corresponding pseudoinverse of D. Because D is a diagonal matrix, its
pseudoinverse will be also diagonal and will correspond thus to its transposition. So that, for
the matrix D given earlier, i.e.,

the generalized inverse looks like

where , i = 1,2,…,n.

This much SVD algebra is suffient for this brief review. There are various applications of SVD
in different areas of statistical analysis, but its main use is in general regression analyses yielded
by

where the noiseless version of the model (3) above is considered and the norm is the Frobenius
(Euclidean) matrix norm defined for any rectangular matrix M as

This particular use shows how SVD was first used (Lawson and Hanson, 1995).

Another use of SVD in the sense of three-matrix factorization as in (7) relates to decomposition
of the observation matrix X and is usually observed in biology, where the matrix U is used for
bioassay, elements of the matrix D are called singular values, and elements of the matrix V are
interpreted as eigen genes. Matrix X is broken thus down to orthogonal summands, i.e.,
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Matrix U is thus functionally identical to matrix A of the structural models in (1) and (2).

One of the main uses of SVD in the current context is for decomposition of covariance matrices.
Because the covariance matrix of two differing vectors of distinct dimensions is rectangular,
it is decomposable in the sence of SVD. Let a pair of vectors such as the (n×1) vector X and
the (m×1) vector Y be given. Their covariance

is an (n×m) rectangular matrix and is therefore decomposable singularly as

Consequently, as in PCA, the variance-covariance matrix of any transformed vector Z = UtX
will then be

where

with r = min {n,m}. We then use the spectral decomposition QΛQt for V(X), and in the last
equality, we utilize the fact that multiplication of two orthogonal matrices such as Ut and Q
yields again an (m×n) matrix Φ with orthonormal columns:

so that a typical element of ΦΛΦt becomes
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The latter conclusion is obviously identical to the result that can be obtained from PCA.

In sum, SVD is more general than PCA because it is applicable to cases where PCA is applied
but the converse is not valid. Furthermore, as mentioned earlier, an appropriate type of SVD
(thin, compact, and truncated) can be chosen for a problem. Like PCA, SVD is also used for
data reduction. As is the case with PCA, the application of SVD is restricted to phenomena
that have statistical distributions with non-spherical contours. All in all, SVD has the same
drawbacks as PCA because it is based on the same structural approach, which may be restrictive
in some application areas. Also, the orthogonality restriction imposed by the analysis may not
be suitable for some types of data. An interesting illustrative application is in Chung and
Seabrook (2004). The next approach that we discuss goes to a further extreme in the last
direction.

Independent Component Analysis (Blind Source Separation)
ICA seems to have been proposed by several authors from various disciplines in the last quarter
of a century (Comon, 1994). However, the main areas of origin are signal processing and neural
network analyses. ICA is also known as blind (myopic) source separation. The qualifiers
“blind” or “myopic” are used to point out the property that the sole observable of the system
is its output, i.e., the vector X of the model (1). “Independence” is affixed to the name, because
of technical reasons concerning input, i.e., the vector Z of the model can satisfy certain contrast
functions in signal processing when its coordinates are independent. The name “independent
component analysis” seems to have been suggested by Jutten and Herault (1991) with respect
to “principal component analysis”; they also refer to it as “blind source separation”.

In model (1) and/or (2) the variables X1, X2,…, Xn represent random observable variables and
the variables Z1, Z2,…, Zm represent unobservable (latent) variables with A being a mixing
matrix. When the matrix A is orthogonal as in PCA and SVD, the variables Z1, Z2,…, Zm
become orthogonal transformations (projections) of the variables X1, X2,…, Xn. The
orthogonality property results in mutual uncorrelatedness of Z1, Z2,…, Zm (see covarience
matrix Λ above). Uncorrelatedness does not imply independence, which is obviously a stronger
requirement than orthogonality. In terms of the method-of-moments terminology,
orthogonality relates only to second moments (or cumulants) whereas independence also
involves higher moments (or cumulants). ICA is based on the assumption that the generating
sources for the variables X1, X2,…, Xn are independent. The joint distribution of X1, X2,…,
Xn may be known or unknown. The objective of the analysis is to determine an unknown A
and the corresponding unobservable vector Z=(Z1, Z2,…, Zm)t through some observations on
X = (X1, X2,…, Xn)t.

Gaussian distributions are not appropriate for that objective, because, A cannot be identified
and is therefore not estimable by these distributions. In fact, when X and Y are two vectors
with each being an orthogonal transformation of the other, their metrics |X| and |Y| will thus
be identical, i.e., |X| = |Y|. When both X and Y are assumed further to be Gaussian distributions
with identical means and variances (for instance, when they have zero mean vectors and when
their variances are equal to identity matrices of the same dimension), their densities will look
like

Setting X = AZ and Y = AZ as in the model (1),
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which shows that neither A nor Z can be identified by these densities.

Furthermore, Gaussian distributions are proved to have the largest entropy among the
distributions of random variables with identical means and variances (Papoulis and Pillai,
2002, p.669). If we set H(X) for the entropy of a random vector X with coordinates Xi’s and
H(S) stands for a system S with components Xi’s, the entropy corresponding to the whole vector
X or to the system S is then given as

where P stands for the joint probability density function (pdf) for the discrete X, f denotes the
joint pdf in the continuous case, and the logarithm is with respect to 2 or e base. The concept
of entropy discussed here corresponds to Schroedinger’s (1944, p.73) concept of negative
entropy. As such, it is an information measure. Thus, if H(XGaus) stands for the entropy of a
random vector XGaus, which has a Gaussian distribution, and H(X) denotes the entropy of a
distribution of non-Gaussian random variables represented by the vector X, then the non-
negative magnitude

yields the discrepancy of entropies between the Gaussian-distributed XGaus and any other X
supposed to be different from XGaus. Accordingly, the larger J(X) is the more different
XGaus will be from X. One method for checking non-normality of the distribution involved
consists of maximizing J(X) = J((X1, X2, …, Xn). Obviously, J(X) is a variation of negentropy
(not to be confused with Schroedinger’s concept), which is shown to be invariant under linear
transformations. The negentropy function J(X) can be considered as the initial technical process
for estimating matrix A in the model (1) on the basis of joint distribution of X1, X2,…, Xn.
However, if this estimation requires prior knowledge on the relevant pdf or its estimate, then
this technique will be computationally difficult.

Before matrix A is estimated, statistically independent components of or statistically
independent sources for the rows (or columns) of the matrix X in (1) must be checked (Lee et.
al., 1998). A method used for that purpose is based on minimization of the mutual information
function of Papoulis and Pillai (2002, p.647) or the transmission function of Conant (1968, p.
11) defined as

(10)

where H(Xi) is the entropy of each individual random variable Xi of an n-dimensional column
vector X = (X1, X2,…,Xn)t. T(X) is a non-negative quantity indicating discrepancy between
entropies of the dependence case, i.e., H(X1, X2,…,Xn), and the n independence case, i.e.,
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; the latter is always larger than the former (Papoulis and Pillai, 2002, p.646). (The
proof given by these authors corresponds to the two-subsystem [two-variable] case but can be
easily extended to the n-variable case as well.) The larger the quantity T(X) in (10), the more
dependent X1, X2,…,Xn become, in which case X1, X2,…,Xn are not appropriate for estimating
matrix A. Obviously, to be able to minimize T(X), marginal and joint distributions of X1, X2,
…,Xn must be known and, as previously remarked, estimation of pdf values is difficult.
Methodological developments by Conant (1968 and 1972) allow all computations involved in
T(X) to be easily based on empirical frequencies.

The essential method for estimating matrix A in (1) is a maximum likelihood technique that is
applicable when the relevant densities are known (Hyvarinen and Oja, 2000;Comon,
1994;Hyvarinen et al., 2001). Before the application of this method, to be on the safer side, the
required non-normality of the distribution involved and the necessary independence conditions
used for estimation must be checked through the two methods previously discussed.

In sum, ICA has a well-founded statistical basis. The analysis displays the same drawbacks as
PCA and SVD because its foundation is a structural approach that may not fit the data of some
areas of the application. ICA evidently eliminates the orthogonality requirement of PCA and
SVD by introducing the independence condition, but the latter actually is stricter than the
former (for an illustrative comparative review of the above three techniques, see, Srinivasan
et. Al.). Application of this technique seems to be restricted to non-Gaussian distributions. All
three previous decomposition techniques are designed to choose matrix A of model (1) from
among the matrices that satisfy orthogonality and independence properties imposed on real
data. Such matrices may not be appropriate for biological data. We have thus another technique
as proposed by the decomposition approach: NCA.

Network Component Analysis
Some recent discussions (Liao et. al., 2003) concerning PCA, SVD, and ICA note that the
hypothesized relationship between Z and X (assumed to exist by these three techniques for the
models (1) or (3)) imposes some statistical constraints on data; for example, orthogonality
(orthonormality) and independence of unobservable variables are not warranted in some
applications, such as biological experimentation. These methods obtain a (random) value of
matrix A from a class of all real (complex)-valued matrices satisfying the hypothesized
relationship. In an actual case, X is maintained to be produced by Z according to a bipartite
network system between two distinct groups of phenomena such as phenotype and genotype
(Figure 1).

The (n×N) observation matrix X on the left side of (3) can be reconstructed as

(11)

where the (m × N) matrix C, which replaces matrix Z in (3) above and is now called ‘regularity
matrix’, consists of N samples of m signal inputs (genotypes) with the condition m < N. The
(n × m) connectivity matrix B, which replaces matrix A in (3) above, indicates the number of
ways by which input signals (genotypes) are connected to signal outputs (phenotypes) in X so
that each input may or may not be connected to each output. Thus, a typical entry (bij) of B
shows how many times the jth signal input is connected to the ith output; it is zero when there
is no connectivity between the relevant inputs and outputs. Regularity matrix C is assumed to
be of full row rank (i.e., r(C) = m); connectivity matrix B is of full column rank (i.e., r(B) =
m) with each column of B containing at at least (m − 1) zeros. By (3) and (10), we have
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(12)

As follows from (12), the statistical assumptions concerning orthogonality or independence on
the constituent factors Z work through the regularity matrix C on the right side of (11) in such
a way as to make C comply with these orthogonality and/or independence criteria. The
decompositions corresponding to the right side of (11) are unique up to a nonsingular
transformation P such as A*=AP; Z*=P−1Z, B*=BP and C*= P−1C, which yields

As is proven in Liao et al. (2003, Appendix 1), when on the conditions C is of full row rank,
the rank of B equals the number of its columns, and each column of B contains at least (m −
1) zeros, the transformation matrix P can only be a diagonal matrix so that the decomposition
X = BC is unique up to a diagonal scalar. This ensures identifiability of a system up to diagonal
scalar in the sense that, corresponding to certain regularity C, only one connectivity (network)
matrix B produces the observations X.

From a computational standpoint, the matrix decomposition BC of X is obtained through an
iterative optimization (minimization with respect to matrices B and C), an algorithm applied
to the square of Frobenius (Euclidean) matrix norm mentioned earlier, e.g.,

of the rectangular matrix M = X − BC. Hence, B and C are estimated from X by using a two-
step least-squares algorithm using the objective function

subject to the side condition that the connectivity pattern B belongs to a manifold of matrices
with a certain pattern (e.g., entries representing connectivity are arbitrary non-zero natural
numbers initially and non-connectivity is represented by zero). The detailed algorithm of
estimation itself is summarized and can be found in Liao et al. (2003, Appendix 2).

To sum up, NCA has fundamentally the same foundation as the previous analyses: It has a
structural and therefore a parametric approach, the only difference being the estimate of matrix
A from a narrower class of matrices satisfying a certain network configuration. It therefore
displays the same drawbacks as PCA, SVD, and ICA.

Decomposition by Information Transfer
As it is the case with the previous approaches, the idea behind the decomposition by ITF is to
find a much simpler system than a given system, simplicity being defined as lack of complexity
of systems (especially for hierarchical systems that are composed of some layers of
subsystems). Unlike PCA, SVD, ICA, and NCA, ITF does not specify a structural model and
analysis is not carried out in terms of such a model. Ignoring the specific natures of components
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that make up a system, a measure of complexity of a system can be related to the earlier-defined
entropy H(S) and transmission T(S) functions for a system S = {X1, X2,…,Xn} with n ordered
components X1, X2,…,Xn.. For technical reasons, S is not necessarily a vector with coordinates
X1, X2,…,Xn but represents a system with ordered components in the sense that, unless stated
otherwise, all permutations of {X1, X2,…,Xn} stand for distinct systems. Thus, because
complexity is related to information (actually, a lack of information), the following non-
negative magnitude, which is in fact a measure of information,

can be used to measure lack of complexity of a system when n individuals (components) are
taken one by one and their inherent potentials (measured in terms of entropy) are added up
arithmetically. The underlying assumption for such measure is that individuals act
independently and do not exhibit a coherent body. Similarly,

is also a measure of information (lack of complexity) when interactive behavior of n
components is taken into account, i.e., when individuals form a coherent body of a system.

The transfer function T(X) already defined as a difference of the two foregoing measures of
information in (10) is now designated by T(S, p) and will be defined in terms of the components
of S:

(13)

This obviously is a non-negative measure of change in information between a system composed
of a random collection of n independent individuals and a system composed of an integrated
body of these n individuals. In a way, the transfer function indicates useable information that
exists in components for the system. The larger the magnitude, the more remote the system S
will be from the chaotic case of n components being unable to form a system. The symbol p,
expressed precisely as p {X1, X2,…,Xn}, represents a partition of S. The notation T(S, p) hence
emphasizes that information transformation depends on the given system S as well as the
specific partition p of S under consideration. Roughly, the contribution of p to T(S, p) n

corresponds to the sum  on the right side of (13), and that of the S-part is given by H
(X1, X2,…,Xn) on the same side of the equation. Because we now are dealing with a system
rather than the vector X, we now bring in the system symbol S into (10) to have the notation
in (13). By a partition p {S1, S2,…, Sq} of S, we mean a collection of disjoint subsets S1, S2,

…, Sq, (q ≤ n) of S that exhaust S, i.e., . The simplest partition is p {X1, X2,…, Xn} as
in (13), where q = n with Si ={Xi} and is called the element partition. A trivial partition is p
{S}, i.e., p {S}=S with q=1 whereas numerous partitions correspond to 1< q < n, the well known
of which is the dichotomous partition p {S1,S2}. With partition notation p {S1, S2,…, Sq}, the
ITF becomes
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(14)

where H(S1,S2,…,Sq) is equal to H(X1, X2,…,Xn) because  and H
(S1), H(S2), …, H(Sq) are the corresponding entropies of the individual elements of the partition.
Equation (14) can be interpreted as unused information in p {S1, S2,…, Sq} for the system S.
As noted earlier, (10) and its variations as in (13) and (14) are specifically discussed in Papoulis
and Pillai (2002) and Conant (1968, 1972). For applications in classical statistical inference, a
parallel information theoretic approach is adopted by Kullback (1959, Chapters 1 through 3).

To emphasize the interaction between these two sets when a dichotomous partition p {S1, S2}
and their transmission is involved, the function T is sometimes indexed by the subscript B, i.e.,

Similarly, to emphasize interaction within the system S ={X1, X2,…,Xn} with an element
partition p, the magnitude T(S, p) can also be tagged as TW(S, p), where the subscript W stands
for the interaction within the system S. Because a coherent system can only be composed of a
series system, a parallel system, or a mixture of both (Barlow and Prochan, 1975, Chapter 2),
then the probability corresponding to the partition can range from the probability of the former,
i.e., P(S1, S2) = P(S1) × P(S2) with its entropy being H(S1,S2) = H(S1) + H(S2), to the probability
of the latter, i.e., P(S1, S2) = min{P(S1), P(S2)} with the corresponding entropy of the latter
being H(S1, S2) = min{H(S1), H(S2)}. We have thus a maximum value for T(S1,S2, p) that is
obtained when H(S1, S2) = min{H(S1), H(S2)} and the minimum value of TB(S1,S2, p) is reached
when H(S1,S2) = H(S1) + H(S2), in which case TB(S1,S2, p) = 0. The minimum value of the
transfer function indicates that S1 and S2 are independent in statistical terms. If we let
TU

B(S1:S2) stand for the maximal value of TB(S1,S2, p),

(15)

For all systems partitioned as S1 and S2 and having joint distributions with fixed marginal
distributions for S1 and S2 (i.e., systems with the given marginal distributions of S1 and S2),
T12 will be closer to one as the underlying sub-systems S1 and S2 get more and more integrated
to form a whole system and will approach to zero as S1 and S2 become disintegrated to form
separate systems. T12 is actually some version of the absolute value of the usual correlation
coefficient when S1 and S2 are singletons like S = {X1}and S2 = {X2}. Hence, T12 = 0 means
non-relatedness of subsets S1 and S2, and T12 = 1 implies that S1 and S2 depend completely on
each other. This latter aspect of transfer functions is amply emphasized in Conant (1968,
1972).

For comparison of the complexities of pairs of subsystems, Conant (1968) introduced an
additional instrumental index called the interaction measure:

(16)
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which is useful in detecting a change in the complexity of Sj when it is integrated into the
subsystem Si, so that the interdependence among the components of Sj are evaluated against
their joint conditional interdependence, given the integration of the elements of Si. TSi (S j, p)
in (16) denotes the conditional transmission over Sj ={Xj1, Xj2,…, Xjr} and given the
interrelatedness of the elements of Si, and is defined as

where

Unlike the T(.) transfer functions that are always positive, the interaction measure Q(.) in (16)
can be negative (i.e., the sets Si and Sj interact negatively), positive (i.e., Si and Sj interact
positively), or zero (i.e., Si and Sj are stochastically independent).

The usefulness of the information transfer function in (13) or (14) for applications of systems
is two-fold. When we have no usable information or conversely when we have full information
on both S and p, the function T(S, p) ceases to be useful. Its use becomes accentuated when we
have partial information on S and/or p. In fact, we may be in a position to obtain a system with
some given subsystems or to derive some subsystems from a given system. The former problem
is composition (integration) and latter is decomposition. In composition, p is known but we
have no information on S. In decomposition, we have information on S but none about p.
Information on p and/or S means knowledge about the distributions involved as well;
“information” as used here is either in the theoretic sense, e.g., the information transfer
function, or is in the daily usage sense, i.e., knowledge. Thus, for solution of the integration
problem, the information transfer function is maximized over all possible systems  ={S|S•

} that yield the given common partition p. In other words, H(S)= H(S1,S2,…,Sq) or H(X1,
X2,…,Xn) is minimized. Conversely, a solution for decomposition (partition p) is obtained by
minimizing the transfer function over all possible partitions π = { p: p • π } of the given system

S. In other words,  or  is minimized. Composition is not simply a reversal of
decomposition because, in addition to the required knowledge on relevant partition, the so-
called blueprint of composition must also be known, i.e., compatibility of all marginal
distributions with the given joint distribution of S must be checked (Dall’Aglio, 1972;Butterfly
et. al., 2005;Arnold et al., 1999). However, the current work is only interested in
decomposition.

All foregoing discussions and indices are undoubtedly relevant when distributions are known.
When such information is unavailable, empirical distributions can be used as consistent
estimates. Collecting observations for this purpose is costly and difficult. This is basically true
for empirical assessment of joint distributions when we are interested in obtaining estimates
of multivariate distributions for large sets of components. The following illustrate the initial
stages where observations on element partition and pair-wise partition of the system are
available:
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Illustration One
A simple empirical case corresponds to the availability of observations on each individual
component. Let S ={Y1, Y2,…,Yn} hence be a system with n ordered components and with the
given matrix X of discrete observations

where yij denotes the ith functional value (i=1,2,…, κ) taken up by the jth component of the
system S = {Y1, Y2,…,Yn}. The number (say, κ) of functional values is identical for each random
component for the convenience of notation. The values yij are not necessarily identical for all
components. Assume further that these values are observed with the frequencies in Table 1:

By definition, the magnitudes m∘j and m in Table 1 are  and . These
observations are sufficient for obtaining estimates for marginal distributions of the individual
components Y1, Y2,…,Yn. A real-life example for this case corresponds to frequency of long-
distance phone calls mij placed at a certain geographical location Yi at some given time unit
yij.

Consider the element partition p {S1, S2,…,Sn}of S where Sj={Yj} for each component Yi. Thus,
the marginal probability of each component Sj={Yj} is P(Sj) = πj, which can be consistently

estimated by . For each component Yi,, the probability of the event {Yj=yij} is

represented by P(Yj=yij|Sj) = πi|j, which will, similarly be estimated by . However,
after observing the system S, the probability for the same event {Yj=yij} becomes P(Yi=yij|S)

= πij and is estimated with . Accordingly, estimates for the entropies of individual
components are

and the estimate for the system entropy is given by

By (11), the estimated information transfer will be
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(17)

A vanishing value of this non-negative real number in (17) provides some evidence that the
partition p {S1, S2,…,Sn} conforms well with the given system S, so that the degree of its
divergence from zero is a clue that there is still some unused information in p {S1, S2,…,Sn}
for S. When Tr(Ŝ,P)= 0, observations suggests that the system cannot be decomposed further
than the element decomposition p {S1,S2,…,Sn}. A non-vanishing value of the empirical
information transfer function Tr(Ŝ,P)thus suggests that it is worthwhile to seek decompositions
other than p {S1,S2,…,Sn}. We can partition S in some other way such as p {S1, S2,…,Sq} where
1< q < n. The foregoing analysis can be repeated using (14) to check whether p {S1, S2,
…,Sq} has some information for S. In that case, the system entropy estimate

 will stay put, but estimates of entropies H (Ŝℓ) of individual subsets Sℓ will
change.

The given observations in the Table 1 are clearly not sufficient for obtaining a conclusion
beyond the result obtained above. For further conclusions we need more sophisticated
observations and experiments. Hence, we have the next illustration:

Illustration Two
The second illustration relates to a case where empirical data for pairs of components are
available. This case is more general in the sense that availability of empirical observations
(frequencies) on pairs of random variables also implies availability of observations on
individual variables. Assume again, for simplicity of exposition, that the random components
Y1, Y2,···, Yn−1 and Yn are discreet and the number of functional values taken by each Yi is ri,
(i=1,2,…,n) with these values ranging over the whole numbers

For notational convenience and without a loss of generality, we can assume that ri = r for all
i=1,2,…,n. In accordance with a certain pattern, the joint event {Yi=yih, Yj=yjk}, i• j, takes
values in the discrete (r(n−1))× (r(n − 1)) matrix layout set up as in Table 2. This layout is now
our observational system T, which is a proper subset of S×S.

Because we are interested in cross pairs of variables like Yi and Yj with i ≠ j, the diagonal cells
(darker gray) are irrelevant and we therefore have (n−1) rows and (n−1) columns of interest.
Hence, off-diagonal cells become a center of interest. Each off-diagonal cell is composed of
an (r×r) matrix of observations on the bi-variable event such as {Yi=yih, Yj=yjk}, i ≠ j = 1,2,
…,n and h,k = 1,2,…,r. When the two events {Yi=yih, Yj=yjk} and {Yj=yjk,Yi=yih} are identical,
i.e., when they are symmetrical, only the upper or lower off-diagonal part of the table can be
used. For convenience of visualization, the unused part (for instance, the lower part) is shaded
in light gray. In this latter case, the upper off-diagonal block cells become the system T of
observations to be considered below. The bottom row and the last column shaded in blue are
empty and the cell in the southeast corner contains one single element marked m representing
total number of observations.
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To aid exposition, the cell corresponding to the observational frequencies on the ith and jth
variables (orange) is reproduced in Table 3 with the same color. For the specific pair of Yi and
Yj, the symbol m i(h)j(k) in stands for the frequency with which the bi-variable event {Yi=yih,
Yj=yjk} is observed empirically. The last column and the bottom row present marginal
frequencies involved (column-wise and row-wise sums of the frequencies in the table): For
observations on

{Yi=yis} corresponding to a certain s =1,2,…,r we have

and similarly, for a certain t =1,2,…,r we have

Thus,

with

As it is designated in Table 2, m is located in the southeast cell of the table.

The  upper off-diagonal block cells of Table 2 can now be labeled T1, T2, …,Tq. p
{T1, T2, …,Tq} is a proper partition of T. Labeling starts from the top leftmost cell of the table
and then goes to the leftmost off-diagonal block cell of the second row and so on as in the
lexicographical ordering: T1 for {Y1,Y2}, T2 for {Y1,Y3},…, Tq for {Yn−1,Yn}. For each partition
ℓ= (i,j), i < j, estimates of the marginal probabilities

are given by

Tuncer et al. Page 21

Comput Stat Data Anal. Author manuscript; available in PMC 2009 August 31.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



For the whole system the same estimate becomes

so that, as before,

The estimated transfer function

will have small values close to zero when a pair-wise partition is enough for decomposition
whereas its higher values will produce evidence that there is further information to be utilized
in T for a further partition p {T1, T2, …,Tr}, q ≠ r.

ITF seems to be free from restrictions of structural modeling and does not depend on the type
of distribution of the random variables involved. It also does not require any restriction on the
type of interaction of variables such as their uncorrelatedness, independence, etc. It therefore
is a flexible technique but need a great deal of care and designing efforts before being applied
empirically. As it is the case with previous approaches, high dimensionality of data may at
times be a deterrent factor in its application.

Concluding Remarks
This work is an attempt to provide a uniform body of exposition for available techniques of
decomposition in the literature. Because of prevailing high-dimensionality issues, these
techniques have increased in importance for the past two decades. Except for some comments
and the two illustrations of the use of information transfer and for our efforts to present a unified
standpoint, we do not claim originality. Our unifying framework has been probability theory
and multivariate statistics as well as information theory. We have not dwelt on inferential issues
concerning use of statistical estimates because of our intension to provide a general text that
will apply to a large spectrum of application areas.

Regarding the applicability of the five techniques reviewed: All of the four techniques PCA,
SVD, ICA, and NCA are based on structural modeling of a real-life phenomenon; they are
dependent upon some assumptions concerning interactive nature of real-life events such as
uncorrelatedness or independence which may be restrictive for data; they are analytically well-
founded, which paves the way for their preference; and they have dimension reduction
properties in their favor. The last technique, ITF, is free from all such drawbacks but requires
challenging tasks of design and computation. Unlike the first three techniques, it is not
particularly used for data reduction purposes. All five techniques confront high-dimensionality
problems and seem to need care in applications involving Gaussian distributions.
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FIGURE 1. A Pictorial Example for Network Design
Depicted in the upper part is a bipartite network between four regulatory agents (gene knock-
outs, drugs etc.) denoted by R1 through R4 and five outputs (e.g., growths of certain organisms)
designated with O1 through O5. Connections between regulatory nodes and output nodes are
shown as usual. The rectangular table just underneath the network represents the connectivity
matrix B with columns corresponding to regulatory agents and rows to outputs. The regulatory
matrix C is not shown in the picture. When there are no connections between output nodes
(rows) and regulatory nodes (columns), the corresponding cells contain zero. Obviously, all
other cells are composed of ones for the network shown here.
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Table 3
Frequencies of {Yi=yih, Yj=yjk} in Table 2 for the highlighted pair of i and j

mi(1)j(1) mi(1)j(2) … mi(1)j(r) mi(1)j

mi(2)j(1) mi(2)j(2) … mi(2)j(r) mi(2) j

⋮ ⋮ ⋮ ⋮ ⋮

mi(r)j(1) mi(r)j(2) … mi(r)j(r) mi(r) j

mi j(1) mi j(2) … mi j(r) mi j
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