
The Geometric Median on Riemannian Manifolds with Application
to Robust Atlas Estimation

P. Thomas Fletchera,*, Suresh Venkatasubramaniana, and Sarang Joshia
aUniversity of Utah, Salt Lake City, Utah, United States

Abstract
One of the primary goals of computational anatomy is the statistical analysis of anatomical variability
in large populations of images. The study of anatomical shape is inherently related to the construction
of transformations of the underlying coordinate space, which map one anatomy to another. It is now
well established that representing the geometry of shapes or images in Euclidian spaces undermines
our ability to represent natural variability in populations. In our previous work we have extended
classical statistical analysis techniques, such as averaging, principal components analysis, and
regression, to Riemannian manifolds, which are more appropriate representations for describing
anatomical variability. In this paper we extend the notion of robust estimation, a well established and
powerful tool in traditional statistical analysis of Euclidian data, to manifold-valued representations
of anatomical variability. In particular, we extend the geometric median, a classic robust estimator
of centrality for data in Euclidean spaces. We formulate the geometric median of data on a
Riemannian manifold as the minimizer of the sum of geodesic distances to the data points. We prove
existence and uniqueness of the geometric median on manifolds with non-positive sectional curvature
and give sufficient conditions for uniqueness on positively curved manifolds. Generalizing the
Weiszfeld procedure for finding the geometric median of Euclidean data, we present an algorithm
for computing the geometric median on an arbitrary manifold. We show that this algorithm converges
to the unique solution when it exists. In this paper we exemplify the robustness of the estimation
technique by applying the procedure to various manifolds commonly used in the analysis of medical
images. Using this approach, we also present a robust brain atlas estimation technique based on the
geometric median in the space of deformable images.
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1. Introduction
Within computational anatomy, geometric transformations play a central role in quantifying
and studying anatomical variations in populations of brain images. The transformations being
utilized for the study of anatomical shapes range from low-dimensional rigid and affine
transforms to the infinite-dimensional space of diffeomorphic transformations. These
transformations, regardless of their dimensionality, inherently have an associated group
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structure and capture anatomical variability by defining a group action on the underlying
coordinate space on which medical images are defined.

Recently, there has been substantial interest in the statistical characterization of data that are
best modeled as elements of a Riemannian manifold, rather than as points in Euclidean space
(Fletcher et al., 2003; Klassen et al., 2004; Pennec, 2006; Srivastava et al., 2005). In previous
work (Buss and Fillmore, 2001; Fletcher et al., 2003; Pennec, 2006), the notion of centrality
of empirical data was defined via the Fréchet mean (Fréchet, 1948), which was first developed
for manifold-valued data by Karcher (Karcher, 1977). In (Joshi et al., 2004) the theory of
Fréchet mean estimation was applied to develop a statistical framework for constructing brain
atlases. Although the mean is an obvious central representative, one of its major drawbacks is
its lack of robustness, i.e., it is sensitive to outliers.

Robust statistical estimation in Euclidean spaces is now a field in its own right, and numerous
robust estimators exist. However, no such robust estimators have been proposed for data lying
on a manifold. One of the most common robust estimators of centrality in Euclidean spaces is
the geometric median. Although the properties of this point have been extensively studied since
the time of Fermat, (this point is often called the Fermat-Weber point), no generalization of
this estimator exists for manifold-valued data. In this paper we extend the notion of geometric
median to general Riemannian manifolds, thus providing a robust statistical estimator of
centrality for manifold-valued data. We prove some basic properties of the generalization and
exemplify its robustness for data on common manifolds encountered in medical image analysis.
In this paper we are particularly interested in the statistical characterization of shapes given an
ensemble of empirical measurements. Although the methods presented herein are quite general,
for concreteness we will focus on the following explicit examples: i) the space of 3D rotations,
ii) the space of positive-definite tensors, iii) the space of planar shapes and iv) the space of
deformable images for brain atlas construction.

2. Background
2.1. Deformable Images via Metamorphosis

Metamorphosis (Trouvé and Younes, 2005) is a Riemannian metric on the space of images
that accounts for geometric deformation as well as intensity changes. We briefly review the
construction of metamorphosis here and refer the reader to (Trouvé and Younes, 2005) for a
more detailed description.

We will consider square integrable images defined on an open subset Ω ⊂ ℝd, i.e., images are
elements of L2(Ω, ℝ). Geometric variation in the population is modeled in this framework by
defining a transformation group action on images following Miller and Younes (2001). To
accommodate the large and complex geometric transformations evident in anatomical images,
we use the infinite-dimensional group of diffeomorphisms, Diff (Ω). A diffeomorphism g : Ω
→ Ω is a bijective, C1 mapping that also has a C1 inverse. The action of g on an image I : Ω
→ ℝ is given by g · I = I ○ g−1.

Metamorphosis combines intensity changes in the space L2(Ω, ℝ) with geometric changes in
the space Diff (Ω). A metamorphosis is a pair of curves (μt, gt) in L2(Ω, ℝ) and Diff (Ω),
respectively 1. The diffeomorphism group action produces a mapping of these curves onto a
curve in the image space: It = gt · μt. Now the energy of the curve It in the image space is defined
via a metric on the deformation part, gt, combined with a metric on the intensity change part,
μt. This gives a Riemannian manifold structure to the space of images, which we denote by
M.

1We will use subscripts to denote time-varying mappings, e.g., μt(x) = μ(t, x).
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To define a metric on the space of diffeomorphisms, we use the now well established flow
formulation. Let v : [0, 1] × Ω → ℝd be a time-varying vector field. We can define a time-
varying diffeomorphism gt as the solution to the ordinary differential equation

(1)

The metric on diffeomorphisms is based on choosing a Hilbert space V, which gives an inner
product to the space of differentiable vector fields. We use the norm

(2)

where L is a symmetric differential operator, for instance, L = (αI − Δ)k, for some α ∈ ℝ and
integer k. We use the standard L2 norm as a metric on the intensity change part.

Denote the diffeomorphism group action by g(μ) = g · μ. Also, for a fixed μ the group action
induces a mapping Rμ : g ↦ g · μ. The derivative of this mapping at the identity element e ∈
Diff (Ω) then maps a vector field v ∈ TeDiff (Ω) to a tangent vector deRμ(v) ∈ TμM. We denote
this tangent mapping by v(μ) = deRμ(v). If we assume images are also C1, this mapping can be
computed as v(μ) = −〈∇μ, v〉. Given a metamorphosis (gt, μt), the tangent vector of the
corresponding curve It = gt · μt ∈ M is given by

(3)

Now, a tangent vector η ∈ TIM can be decomposed into a pair (v, δ) ∈ TeDiff (Ω)×L2(O, ℝ),
such that η = v(I)+δ. This decomposition is not unique, but it induces a unique norm if we
minimize over all possible decompositions:

(4)

Using this metric, the distance between two images I, I′ can now be found by computing a
geodesic on M that minimizes the energy

(5)

with boundary conditions I0 = I and I1 = I′. An example of a metamorphosis geodesic between
two 3D MR brain images is shown in Figure 1. It was computed using a gradient descent on
(5), which is described in further detail in Section 6.4.
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2.2. Outliers, Robust Estimators And The Geometric Median
Outliers in data can throw off estimates of centrality based on the mean. One possible solution
to this problem is outlier deletion, but removing outliers often merely promotes other data
points to outlier status, forcing a large number of deletions before a reliable low-variance
estimate can be found. The theory of robust estimators formalizes the idea that no individual
point should affect measures of central tendency. The measure of robustness of an estimator
is the breakdown point; formally, it is the fraction of the data that can be “dragged to
infinity” (i.e., completely corrupted) without affecting the boundedness of the estimator.
Clearly, the mean, whether it be a standard centroid or the more general Fréchet mean, has a
breakdown point of 0, since as any single data point is dragged to infinity, the mean will grow
without bound.

The theory of robust estimation has led to the development of numerous robust estimators, of
which the L1-estimator, also known as the geometric median, is one of the best known. Given
a set of points {xi, i = 1, ···, n} ∈ ℝd, with the usual Euclidean norm ||x||, the L1-estimator is

defined as the point m ∈ ℝd minimizing . It can be shown (Lopuhaä and
Rousseeuw, 1991) that this estimator has a breakdown point of 0.5, which means that half of
the data needs to be corrupted in order to corrupt this estimator. In Figure 2 we illustrate this
by showing how the geometric median and the mean are displaced in the presence of a few
outliers.

The existence and uniqueness of the the median in ℝd follows directly from the convexity of
the distance function. In one dimension, the geometric median is the point that divides the point
set into equal halves on either side (if n is odd) and is any point on the line segment connecting
the two middle points (if n is even). In general however, computing the geometric median is
difficult; Bajaj has shown that the solution cannot be expressed using radicals (arithmetic
operations, and kth roots) (Bajaj, 1988).

There are two main approaches to computing the geometric median of a collection of points

in ℝd. One way is to compute an approximate median m̃ such that  is at most a
(1 + ε)-factor larger than cost of the optimal median. This can be computed using the ellipsoid
method (Chandrasekaran and Tamir, 1990). A more efficient algorithm achieving the same
result is due to Bose et al. (2003).

These algorithms do not generalize beyond Euclidean spaces. A more general iterative
algorithm due to Weiszfeld (1937) and later improved by Kuhn and Kuenne (1962) and Ostresh
(1978) converges to the optimal solution in Euclidean spaces (Kuhn, 1973), and was
subsequently generalized to Banach spaces by Eckhardt (1980).

Several other robust estimators of centrality have been proposed in the statistics literature
(Maronna et al., 2006). Winsorized means, where a percentage of extreme values are clamped,
and trimmed means, where extreme values are removed, have been used for univariate data.
The drawback of these methods is that they require a somewhat arbitrary selection of a
threshold. M-estimators (Huber, 1981) are a generalization of maximum likelihood methods
in which some function of the data is minimized. The geometric median is a special case of an
M-estimator with an L1 cost function.

3. The Riemannian Geometric Median
Let M be a Riemannian manifold. Given points x1,…, xn ∈ M and corresponding positive real
weights wi,…, wn, with Σi wi = 1, define the weighted sum-of-distances function f(x) = Σi wid
(x, xi), where d is the Riemannian distance function on M. Throughout, we will assume that
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the xi lie in a convex set U ⊂ M, i.e., any two points in U are connected by a unique shortest
geodesic lying entirely in U. We define the weighted geometric median, m, as the minimizer
of f, i.e.,

(6)

When all the weights are equal, wi = 1/n, we call m simply the geometric median.

In contrast, the Fréchet mean, or Karcher mean (Karcher, 1977), of a set of points on a
Riemannian manifold is defined, via the generalization of the least squares principle in
Euclidean spaces, as the minimizer of the sum-of-squared distances function,

(7)

We begin our exploration of the geometric median with a discussion of the Riemannian distance
function. Given a point p ∈ M and a tangent vector v ∈ TpM, where TpM is the tangent space
of M at p, there is a unique geodesic, γ: [0, 1] → M, starting at p with initial velocity v. The
Riemannian exponential map, Expp : TpM → M, maps the vector v to the endpoint of this
geodesic, i.e., Expp(v) = γ(1). The exponential map is locally diffeomorphic onto a
neighborhood of p. Let V (p) be the largest such neighborhood. Then within V (p) the
exponential map has an inverse, the Riemannian log map, Logp : V (p) → TpM. For any point
q ∈ V (p) the Riemannian distance function is given by d(p, q) = ||Logp(q)||. For a fixed point
p ∈ M, the gradient of the Riemannian distance function is ∇xd(p, x) = −Logx(p)/||Logx(p)|| for
x ∈ V (p). Notice that this is a unit vector at x, pointing away from p (compare to the Euclidean
distance function).

The diameter of U, denoted diam(U), is the maximal distance between any two points in U.
Using the convexity properties of the Riemannian distance function (see the Appendix for more
details), we have the following existence and uniqueness result for the geometric median.

Theorem 1
The weighted geometric median defined by (6) exists and is unique if (a) the sectional
curvatures of M are nonpositive, or if (b) the sectional curvatures of M are bounded above by
Δ > 0 and .

Proof—Let γ : [a, b] → U be a geodesic. By the arguments in the Appendix, the distance
function to any xi is convex, that is, (d2/dt2)d(xi, γ(t)) ≥ 0. Since the weighted sum-of-distances
function f(x) is a convex combination of such functions, it is also convex. Furthermore, since
the xi do not all lie on the same geodesic, the vector Logγ(t) (xk) is not tangential to γ(t) for at
least one k ∈ [1, n]. Therefore, by Lemma 1 we have (d2/dt2)d(xk, γ(t)) > 0, and f (x) is a
strictly convex function, which implies that the minimization (6) has a unique solution.

An isometry of a manifold M is a diffeomorphism f that preserves the Riemannian distance
function, that is, d(x, y) = d(φ(x), φ(y)) for all x, y ∈ M. The set of all isometries forms a Lie
group, called the isometry group. It is clear from the definition of the geometric median (6)
that the geometric median is invariant under the isometry group of M. In other words, if m is
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the geometric median of {xi} and φ is an isometry, then φ (m) is the geometric median of {φ
(xi)}. This is a property that the geometric median shares with the Fréchet mean.

4. The Breakdown Point of the Geometric Median
A standard measure of robustness for a centrality estimator in Euclidean space is the breakdown
point, which is the minimal proportion of data that can be corrupted, i.e., made arbitrarily
distant, before the statistic becomes unbounded. Let X = {x1,…, xn} be a set of points on M.
Define the breakdown point of the geometric median as

where the supremum is taken over all sets Yk that corrupt k points of X, that is, Yk contains n −
k points from the set X and k arbitrary points from M. Lopuhaä and Rousseeuw (1991) show
that for the case M = ℝd the breakdown point is ε*(m, X) = ⌊(n +1)/2⌋/n. Notice that if M has
bounded distance, then ε*(m, X) = 1. This is the case for compact manifolds such as spheres
and rotation groups. Therefore, the breakdown point is only interesting in the case of manifolds
with unbounded distance. The next theorem shows that the geometric median on unbounded
manifolds has the same breakdown point as in the Euclidean case.

Theorem 2
Let U be a convex subset of M with diam(U) = ∞, and let X = {x1,…, xn} be a collection of
points in U. Then the geometric median has breakdown point ε*(m, X) = ⌊ (n + 1)/2⌋/n.

Proof—The first part of the proof is a direct generalization of the argument for the Euclidean
case given by (Lopuhaä and Rousseeuw, 1991) (Theorem 2.2). Let Yk be a corrupted set of
points that replaces k points from X, with k ≤ ⌊(n − 1)/2⌋. We show that for all such Yk, d(m
(X), m(Yk)) is bounded by a constant. Let R = maxi d(m(X), xi), and consider B = {p ∈ M: d
(p, m(X)) ≤ 2R}, the ball of radius 2M about m(X). Let δ = infp ∈ B d(p, m(Yk)). By the triangle
inequality we have d(m(X), m(Yk)) ≤ 2R + δ, and

Now assume that δ > ⌊(n − 1)/2⌋2R. Then for the original points xi we have

Combining the two inequalities above with the fact that n−⌊(n − 1)/2⌋ of the yi are from the
original set X, we get
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However, this is a contradiction since m(Yk) minimizes the sum of distances, Σi d(m(Yk), yi).
Therefore, d(m(Yk), m(X)) ≤ 2R + δ ≤ ⌊ (n + 1)/2⌋2R. This implies that ε*(m, X) ≥ ⌊(n + 1)/2
⌋/n.

The other inequality is proven with the following construction. Consider the case where k ≥ ⌊
(n + 1)/2 ⌋ and each of the k corrupted points of Yk are equal to some point p ∈ M. It is easy
to show that m(Yk) = p. Since we can choose the point p arbitrarily far away from m(X), it
follows that ε*(m, X) ≥ ⌊(n + 1)/2⌋/n.

5. The Weiszfeld Algorithm for Manifolds
For Euclidean data the geometric median can be computed by an algorithm introduced by
Weiszfeld (1937) and later improved by Kuhn and Kuenne (1962) and Ostresh (1978). The
procedure iteratively updates the estimate mk of the geometric median using essentially a
steepest descent on the weighted sum-of-distances function, f. For a point x ∈ ℝn not equal to
any xi, the gradient of f exists and is given by

(8)

The gradient of f(x) is not defined at the data points x = xi. The iteration for computing the
geometric median due to Ostresh is

(9)

where Ik = {i ∈ [1, n] : mk ≠ xi}, and α > 0 is a step size. Notice if the current estimate mk is
located at a data point xi, then this term is left out of the summation because the distance function
is singular at that point. Ostresh (1978) proves that the iteration in (9) converges to the unique
geometric median for 0 ≤ α ≤ 2 and when the points are not all colinear. This follows from the
fact that f is strictly convex and (9) is a contraction, that is, f(mk+1) < f (mk) if mk is not a fixed
point.

Now for a general Riemannian manifold M, the gradient of the Riemannian sum-of-distances
function is given by
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(10)

where again we require that x ∈ U is not one of the data points xi. This leads to a natural steepest
descent iteration to find the Riemannian geometric median, analogous to (9),

(11)

The following result for positively curved manifolds shows that this procedure converges to
the unique weighted geometric median when it exists.

Theorem 3
If the sectional curvatures of M are nonnegative and the conditions (b) of Theorem 1 are
satisfied, then limk → ∞ mk = m for 0 ≤ α ≤ 2.

Proof—We use the fact that the Euclidean Weiszfeld iteration, given by (9), is a contraction.
First, define f̃ (v) = Σi wi||v − Logmk(xi)||, i.e., f̃ is the weighted sum-of-distances function for
the log-mapped data, using distances in Tmk M induced by the Riemannian norm. Notice that
the tangent vector vk defined in (11) is exactly the same computation as the Euclidean Weiszfeld
iteration (9), replacing each xi with the tangent vector Logmk (xi). Therefore, we have the
contraction property f̃ (α vk) < f̃ (0). However, geodesics on positively curved manifolds
converge, which means that distances between two points on the manifold are closer than their
images under the log map. (This is a direct consequence of the Toponogov Comparison
Theorem, see (Cheeger and Ebin, 1975)). In other words, d(Expmk (α vk), xi) < ||α vk − Logmk
(xi)||. This implies that f(mk+1) = f (Expmk (αvk)) < f̃ (α vk) < f̃ (0) = f(mk). (The last equality
follows from ||Logmk (xi)|| = d(mk, xi).) Therefore, (11) is a contraction, which combined with
f being strictly convex, proves that it converges to the unique solution m.

We believe that a similar convergence result will hold for negatively curved manifolds as well
(with an appropriately chosen step size α). Since the algorithm is essentially a gradient descent
on a convex function, there should be an α for which it converges, although in this case α may
depend on the spread of the data. Our experiments presented in the next section for tensor data
(Section 6.2) support our belief of convergence in this case. The tensor manifold has
nonpositive curvature, and we found the procedure in (11) converged for α = 1. Proving
convergence in this case is an area of future work.

6. Applications
In this section we present results of the Riemannian geometric median computation on 3D
rotations, symmetric positive-definite tensors, planar shapes and, finally, the robust estimation
of neuroanatomical atlases from brain images. For each example the geometric median is
computed using the iteration presented in Section 5, which only requires computation of the
Riemannian exponential and log maps. Therefore, the procedure is applicable to a wide class
of manifolds beyond those presented here. The Fréchet mean is also computed for comparison
using a gradient descent algorithm as described in (Fletcher et al., 2003) and elsewhere. It is
important to note that unlike the Euclidean case where the mean can be computed in closed-
form, both the Fréchet mean and geometric median computations for general manifolds are
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iterative, and we did not find any appreciable difference in the computation times in the
examples described below.

6.1. Rotations
We represent 3D rotations as the unit quaternions, ℍ1. A quaternion is denoted as q = (a, v),
where a is the “real” component and v = bi + cj + dk. Geodesics in the rotation group are given
simply by constant speed rotations about a fixed axis. Let e = (1, 0) be the identity quaternion.
The tangent space Teℍ1 is the vector space of quaternions of the form (0, v). The tangent space
at an arbitrary point q ∈ ℍ1 is given by right multiplication of Teℍ1 by q. The Riemannian
exponential map is Expq((0, v) · q) = (cos(θ/2), v · sin(θ/2)/θ) · q, where θ = ||v||. The log map
is given by Logq((a, v) · q) = (0, θ v/||v||) · q, where θ = 2 arccos(a).

To demonstrate the geometric median computations for 3D rotations, we generated a random
collection of 20 quaternions. First, random tangent vectors were sampled from an isotropic
Gaussian distribution with μ = 0, σ = π/30 in the tangent space at the identity. Next, the
exponential map was applied to these random tangent vectors to produce random elements of
ℍ1, centered about the identity. The same procedure was repeated to generate sets of 5, 10,
and 15 random outliers, whose mean now was rotated by 90 degrees from the original set. A
sample of 8 of the original random rotations are displayed as 3D frames in the top row of Figure
3 along with 8 of the outliers in the bottom row.

We computed both the Fréchet mean and the geometric median of the original rotation dataset
with 0, 5, 10, and 15 outliers included. This corresponds to an outlier percentage of 0%, 20%,
33%, and 43%, respectively. The geometric median was computed using the iteration in (11).
The Fréchet mean was computed using the gradient descent algorithm described in (Buss and
Fillmore, 2001). Both algorithms converged in under 10 iterations in a fraction of a second for
all cases. The results are shown in Figure 4. The geometric median remains relatively stable
even up to an addition of 15 outliers. In contrast, the Fréchet mean is dragged noticeably
towards the outlier set.

6.2. Tensors
Positive definite symmetric matrices, or tensors, have a wide variety of uses in computer vision
and image analysis, including texture analysis, optical flow, image segmentation, and
neuroimage analysis. The space of positive definite symmetric tensors has a natural structure
as a Riemannian manifold. Manifold techniques have successfully been used in a variety of
applications involving tensors, which we briefly review now.

Diffusion tensor magnetic resonance imaging (DT-MRI) (Basser et al., 1994) gives clinicians
the power to image in vivo the structure of white matter fibers in the brain. A 3D diffusion
tensor models the covariance of the Brownian motion of water at a voxel, and as such is required
to be a 3 × 3, symmetric, positive-definite matrix. Recent work (Batchelor et al., 2005; Fletcher
and Joshi, 2004; Pennec et al., 2006; Wang and Vemuri, 2005) has focused on Riemannian
methods for statistical analysis (Fréchet means and variability) and image processing of
diffusion tensor data. The structure tensor (Bigun et al., 1991) is a measure of edge strength
and orientation in images and has found use in texture analysis and optical flow. Recently,
Rathi et al. (2007) have used the Riemannian structure of the tensor space for segmenting
images. Finally, the Riemannian structure of tensor space has also found use in the analysis of
structural differences in the brain, via tensor based morphometry (Lepore et al., 2006).
Barmpoutis et al. (2007) describes a robust interpolation of DTI in the Riemannian framework
by using a Gaussian weighting function to down-weight the influence of outliers. Unlike the
geometric median, this method has the drawback of being dependent on the selection of the
bandwidth for the weighting function.
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We briefly review the differential geometry of tensor manifolds, which is covered in more
detail in (Batchelor et al., 2005; Fletcher and Joshi, 2004; Pennec et al., 2006). Recall that a
real n × n matrix A is symmetric if A = AT and positive-definite if xTAx > 0 for all nonzero x
∈ ℝn. We denote the space of all n × n symmetric, positive-definite matrices as PD(n).
Diffusion tensors are thus elements of PD(3), and structure tensors for 2D images are elements
of PD(2). The tangent space of PD(n) at any point can be identified with the space of n × n
symmetric matrices, Sym(n). Given a point p ∈PD(n) and a tangent vector X, the Riemannian
exponential map is given by

(12)

where exp(Σ) is the matrix exponential and can be computed by exponentiating the eigenvalues
of Σ, since it is symmetric. Likewise, the Riemannian log map between two points p, q ∈ PD
(n) is given by

(13)

where log(Λ) is the matrix logarithm, computed by taking the log of the eigenvalues of Λ,
which is well defined in the case of positive definite symmetric matrices.

As in the rotations example, we generated 20 random tensors as the image under the exponential
map of Gaussian random tangent vectors. The mean was a tensor with eigenvalues λ1 = 4 and
λ2 = λ3 = 1. Next, sets of 5, 10, and 15 outliers were randomly generated in the same fashion
with a mean tensor perpendicular to the original group. The standard deviation of both groups
was σ = 0.2. A sample of 5 of the original tensor data and 5 of the outlier tensors are shown in
Figure 5. The Fréchet mean and geometric median were computed for the tensor dataset
including 0, 5, 10, and 15 outliers, and the results are shown in Figure 6. Again, convergence
of the geometric median took less than 10 iterations in a fraction of a second. The tensors in
Figures 5 & 6 are colored based on the orientation of the major eigenvector (green = original
orientation, blue = outlier orientation) and with color modulated by the fractional anisotropy
(Basser et al., 1994), i.e., more anisotropic tensors are more brightly colored. The geometric
median retains the directionality and anisotropy of the original data, unlike the mean, which
becomes more isotropic in the presence of outliers. This situation is common in DT-MRI,
where adjacent white matter tracts may pass perpendicular to each other. In such cases, the
geometric median would be a more appropriate local statistic than the mean to avoid
contamination from tensors of a neighboring tract.

6.3. Planar Shapes
One area of medical image analysis and computer vision that finds the most widespread use
of Riemannian geometry is the analysis of shape. Dating back to the ground-breaking work of
Kendall (1984) and Bookstein (1986), modern shape analysis is concerned with the geometry
of objects that is invariant to rotation, translation, and scale. This typically results in
representing an object’s shape as a point in a nonlinear Riemannian manifold, or shape
space. Recently, there has been a great amount of interest in Riemannian shape analysis, and
several shape spaces for 2D and 3D objects have been proposed (Fletcher et al., 2003;
Grenander and Keenan, 1991; Klassen et al., 2004; Michor and Mumford, 2006; Sharon and
Mumford, 2004; Younes, 1998).
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An elementary tool in shape analysis is the computation of a mean shape, which is useful as a
template, or representative of a population. The mean shape is important in image segmentation
using deformable models (Cootes et al., 1995), shape clustering, and retrieval from shape
databases (Srivastava et al., 2005). The mean shape is, however, susceptible to influence from
outliers, which can be a concern for databases of shapes extracted from images. We now present
an example showing the robustness of the geometric median on shape manifolds. We chose to
use the Kendall shape space as an example, but the geometric median computation is applicable
to other shape spaces as well.

We first provide some preliminary details of Kendall’s shape space (Kendall, 1984). A
configuration of k points in the 2D plane is considered as a complex k-vector, z ∈ ℂk. Removing
translation, by requiring the centroid to be zero, projects this point to the linear complex
subspace V = {z ∈ ℂk: Σ zi = 0}, which is equivalent to the space ℂk−1. Next, points in this
subspace are deemed equivalent if they are a rotation and scaling of each other, which can be
represented as multiplication by a complex number, ρeiθ, where ρ is the scaling factor and θ is
the rotation angle. The set of such equivalence classes forms the complex projective space,
ℂP k−2. As Kendall points out, there is no unique way to identify a shape with a specific point
in complex projective space. However, if we consider that the geometric median only require
computation of exponential and log maps, we can compute these mappings relative to the base
point, which requires no explicit identification of a shape with ℂP k−2.

Thus, we think of a centered shape x ∈ V as representing the complex line Lx = {z · x: z ∈ ℂ
\{0}}, i.e., Lx consists of all point configurations with the same shape as x. A tangent vector at
Lx ∈ V is a complex vector, v ∈V, such that 〈x, v〉 = 0. The exponential map is given by rotating
(within V) the complex line Lx by the initial velocity v, that is,

(14)

Likewise, the log map between two shapes x, y ∈V is given by finding the initial velocity of
the rotation between the two complex lines Lx and Ly. Let πx(y) = x · 〈x, y〉/||x||2 denote the
projection of the vector y onto x. Then the log map is given by

(15)

Notice that we never explicitly project a shape onto ℂP k−2. This has the effect that shapes
computed via the exponential map (14) will have the same orientation and scale as the base
point x. Also, tangent vectors computed via the log map (15) are valid only at the particular
representation x (and not at a rotated or scaled version of x). This works nicely for our purposes
and implies that the geometric median shape resulting from (11) will have the same orientation
and scale as the intialization shape, m0.

To test the robustness of the geometric median in Kendall shape space, we used the classic
hand outlines from (Cootes et al., 1995). This data, shown in Figure 7, consists of 18 hand
shapes, each with 72 points. We then generated a set of 12 ellipses as outliers. Each ellipse was
generated as (a cos(θk), b sin(θk), where a, b are two uniformly random numbers in [0.5, 1]
and θk = kπ/36, k = 0, …, 71. We computed the Fréchet mean and geometric median for the
hand data with 0, 2, 6, and 12 outliers included, corresponding to 0%, 10%, 25%, and 40%
outliers, respectively. Both the mean and geometric median computations converge in under
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15 iterations, running in less than a second for each of the cases. The results are shown in Figure
9. With enough outliers the Fréchet mean is unrecognizable as a hand, while the geometric
median is very stable even with 40% outliers. To ensure that both the Fréchet mean and the
geometric median computations were not caught in local minima, we initialized both
algorithms with several different data points, including several of the outlier shapes. In each
case the Fréchet mean and geometric median converged to the same results as shown in Figure
9.

6.4. Deformable Images
We now present the application of the manifold geometric median algorithm developed above
for robust atlas estimation from a collection of grayscale images. To do this in a fashion that
combines geometric variability as well as intensity changes in the images, we use the
metamorphosis metric reviewed in Section 2.1. The algorithms to compute the Fréchet mean
and the geometric median of a set of images Ii, i = 1, …, n are slightly different than in the
above finite-dimensional examples. Rather than computing exponential and log maps for the
metamorphosis metric, we compute a gradient descent on the entire energy functional and
optimize the atlas image simultaneously with the geodesic paths. We begin with a description
of the computation for the Fréchet mean image, μ. We now have n metamorphoses ( ),
where  has boundary conditions  and . In other words, each path starts at
the atlas image μ and ends at an input image. The Fréchet mean is computed by minimizing
the sum of geodesic energies, i.e.,

(16)

Similarly, the geometric median image, m, is computed by minimizing the sum of square root
geodesic energies, i.e.,

(17)

Following Garcin and Younes (2005), we compute geodesics directly using the discretized
version of the energy functional U. Denoting a discretized metamorphosis by It, t = 1 …, T,
and vt, t = 1, …, T − 1, the energy of this path is given by

(18)

where TvI denotes trilinear interpolation of the transformed image I(x + v(x)). The gradients of
U with respect to both v and I are given by
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where  denotes the adjoint of the trilinear interpolation operator (see (Garcin and Younes,
2005) for details), and K = L−1. Finally, given a discretized version of the Fréchet mean equation
(16) and discretized paths , we denote the total sum-of-square geodesic energies
by

The gradient of Eμ with respect to the Fréchet mean atlas, μ, is

For computing the geometric median from the discretized version of (17), the gradients for the
individual paths are given by

We denote the total discretized energy functional for the geometric median by

Now, the gradient of Em with respect to the geometric median atlas, m, has the form

We first tested the geometric median atlas estimation using synthesized 3D bullseye images,
consisting of concetric spheres with different grayscales. We created three spherical bullseye
images with varying radii. We then added a single outlier image that was a bullseye with
anisotropic aspect ratio. Slices from the input images are shown in Figure 10. Finally, we
computed the geometric median and Fréchet mean atlases under the metamorphosis metric as
described in this section (Figure 11). The Fréchet mean atlas is geometrically more similar to
the outlier, i.e., it has an obvious oblong shape. However, the geometric median atlas is able
to better retain the spherical shape of the original bullseye data.

Finally, we tested the geometric median atlas estimation from a set of 3D MR brain images.
The input images were chosen from a database containing MRA, T1-FLASH, T1-MPRAGE,
and T2-weighted images from 97 healthy adults ranging in age from 20 to 79 (Lorenzen et al.,
2006). For this study we only utilized the T1-FLASH images. These images were acquired at
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a spatial resolution of 1mm×1mm×1mm using a 3 Tesla head-only scanner. The tissue exterior
to the brain was removed using a mask generated by a brain segmentation tool described in
(Prastawa et al., 2004). This tool was also used for bias correction. In the final preprocessing
step, all of the images were spatially aligned to an atlas using affine registration. We applied
our geometric median atlas estimation to a set of four MR images from the database. The
resulting atlas is shown on the right side of Figure 12. In this case the geometric median atlas
was nearly identical to the Fréchet mean atlas, most likely because there is no clear outlier in
the MR images. We expect the median atlas construction to be useful in cases where there are
gross anatomical outliers.

7. Conclusion and Discussion
In this paper we extended the notion of the geometric median, a robust estimator of centrality,
to manifold-valued data. We proved that the geometric median exists and is unique for any
non positively curved manifold and under certain conditions for positively curved manifolds.
Generalizing the Weiszfeld algorithm, we introduced a procedure to find the Riemannian
geometric median and proved that it converged on positively curved manifolds. Applications
to the 3D rotation group, tensor manifolds, and planar shape spaces were presented with
comparisons to the Fréchet mean.

We expect the geometric median to be useful in several image analysis applications. For
instance, the geometric median could be used to robustly train deformable shape models for
image segmentation applications. In this application and in robust atlas construction we believe
the geometric median will have advantages to the Fréchet mean when the data includes
anatomical outliers due to misdiagnosis, segmentation errors, or anatomical abnormalities. In
diffusion tensor imaging we envision the geometric median being used as a median filter or
for robust tensor splines (similar to (Barmpoutis et al., 2007)). This would preserve edges in
the data at the interface of adjacent tracts. The geometric median could also be used for along-
tract summary statistics for robust group comparisons (along the lines of Corouge et al.
(2006); Fletcher et al. (2007); Goodlett et al. (2008)).

Since the area of robust estimation on manifolds is largely unexplored, there are several exciting
opportunities for future work. Least squares estimators of the spread of the data have been
extended to manifolds via tangent space covariances (Pennec, 2006) and principal geodesic
analysis (PGA) (Fletcher et al., 2003). Noting that the median is an example of an L1 M-
estimator, the techniques presented in this paper can be applied to extend notions of robust
covariances and robust PCA to manifold-valued data. Other possible applications of the
Riemannian geometric median include robust clustering on manifolds, filtering and
segmentation of manifold-valued images (e.g., images of tensor or directional data).
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Appendix

8. Appendix
Here we outline the convexity properties of the Riemannian distance function. Our argument
follows along the same lines as Karcher (1977), who proves the convexity of the squared
distance function. Let U be a convex subset of a manifold M. Let γ: [a, b] → U be a geodesic
and consider the variation of geodesics from p ∈ U to γ given by c(s, t) = Expp(s ··Logp(γ(t))).
To prove convexity of the Riemannian distance function, we must show that the second
derivative  is strictly positive. Denote c′ = (d/ds)c(s, t) and ċ = (d/dt)c(s, t). (Readers
familiar with Jacobi fields will recognize that ċ is a family of Jacobi fields.) The second
derivative of the distance function is given by

(19)
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When ċ(1, t) is tangential to γ(t), i.e., γ is a geodesic towards (or away from) p, we can easily
see that . Now let ċ⊥(1, t) be the component of ċ(1, t) that is normal to γ(t). We
use the following result from (Karcher, 1977).

Lemma 1
If the sectional curvature of M is bounded above by Δ > 0 and , then 〈ċ⊥(1,
t), (D/ds)c′(1, t)〉 > 0. If M has nonpositive curvature (Δ ≤ 0), then the result holds with no
restriction on the diameter of U.

Along with 〈ċ⊥(1, t), c′(1, t)〉 = 0, Lemma 1 implies that  is strictly positive when
Logγ (t)(p) is not tangential to γ(t).
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Fig. 1.
Metamorphosis geodesic between two 3D brain images. Mid-axial (top row) and mid-coronal
(bottom row) slices are shown.
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Fig. 2.
The geometric median (marked with a □) and mean (marked with a ×) for a collection of points
in the plane. Notice how the few outliers at the top right of the picture have forced the mean
away from the points, whereas the median remains centrally located.
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Fig. 3.
Eight rotations from the original dataset (top). Eight rotations from the outlier set (bottom).
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Fig. 4.
Comparison of the geometric median and Fréchet mean for 3D rotations. The geometric median
results with 0, 5, 10, and 15 outliers (top). The Fréchet mean results for the same data (bottom).
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Fig. 5.
Five tensors from the original dataset (top). Five tensors from the outlier set (bottom).
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Fig. 6.
Comparison of the geometric median and Fréchet mean for 3D tensors. The geometric median
results with 0, 5, 10, and 15 outliers (top). The Fréchet mean results for the same data (bottom).
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Fig. 7.
The original dataset of 18 hand shapes.
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Fig. 8.
The 12 outlier shapes.
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Fig. 9.
The gometric median shape (top row) from the hand database with 0, 2, 6, and 12 outliers
included. The Fréchet mean shape (bottom row) using the same data.

Fletcher et al. Page 26

Neuroimage. Author manuscript; available in PMC 2010 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 10.
2D cross-sections from the input images for the 3D bullseye example. The bottom right image
is an outlier.
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Fig. 11.
The Fréchet mean of the bullseye images (left) and the geometric median (right), both using
the metamorphosis metric. Notice the mean is affected more by the outlier, while the median
retains the spherical shape of the main data.
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Fig. 12.
Midaxial slices from the four input 3D MR images (left). The resulting geometric median atlas
(right).
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