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Abstract

Women develop chronic inflammatory autoimmune diseases more often than men. The 

mechanisms causing the increased susceptibility are incompletely understood. Chronic immune 

stimulation characterizes many autoimmune disorders. We hypothesized that repeated stimulation 

may cause a different T cell response in women than men. Microarrays were used to compare gene 

expression in T cells from healthy men and women with and without repeated stimulation. Four 

days following a single stimulation only 25% of differentially expressed, gender-biased genes 

were expressed at higher levels in women. In contrast, following restimulation 72% were more 

highly expressed in women. Immune response genes were significantly over-represented among 

the genes upregulated in women and among the immune response genes, the inflammatory/

cytotoxic effector genes interferon gamma (IFNG), lymphotoxin beta (LTB), granzyme A 

(GZMA), interleukin-12 receptor beta2 (IL12RB2), and granulysin (GNLY) were among those 

overexpressed to the greatest degree. In contrast, IL17A was the only effector gene more highly 

expressed in men. Estrogen response elements were identified in the promoters of half the 

overexpressed immune genes in women, and in <10% of the male biased genes. The differential 

expression of inflammatory/cytotoxic effector molecules in restimulated female T cells may 

contribute to the differences in autoimmune diseases between women and men.
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Introduction

Genetic factors predispose to autoimmunity, and one of the strongest predisposing factors is 

female sex. Systemic lupus erythematosus (SLE), scleroderma, and rheumatoid arthritis are 

among the autoimmune diseases more prevalent in women than men1. Why women are 

more prone to autoimmunity is not completely understood. Estrogen likely contributes to the 

Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, 
subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms

Correspondence: Dr. Bruce C. Richardson, 3007 BSRB. Ann Arbor, MI 48109-2200, Ph. 734-763-6940., FAX: 734-936-9220, E-
mail: brichard@umich.edu. 

Supplementary information is available at the Genes & Immunity’s website (http://www.nature.com/gene/index.html)

HHS Public Access
Author manuscript
Genes Immun. Author manuscript; available in PMC 2010 January 01.

Published in final edited form as:
Genes Immun. 2009 July ; 10(5): 509–516. doi:10.1038/gene.2009.12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.nature.com/authors/editorial_policies/license.html#terms
http://www.nature.com/gene/index.html


increased susceptibility and severity of autoimmunity in women 2 and some immune genes 

have estrogen response elements 3. However, estrogen does not completely explain the 

female predisposition to autoimmunity. Female predominant diseases like SLE also occur 

more often in prepubertal girls than boys 4, and cytokine responses are different between 

boys and girls 1–3 years of age 5, suggesting a role for non-hormonal factors in the female 

predilection to autoimmunity. Having two X chromosomes may also predispose women to 

autoimmunity 6, although which X chromosome genes are overexpressed in women to 

promote autoimmunity is also unclear. Finally, recent studies suggest that sex-specific 

differences in the regulation of autosomal genes independent of estrogen may also 

contribute to gender-specific diseases 1. What these genes are is also unknown.

T cells are critical to the development of many forms of autoimmunity. T cells are sufficient 

to cause lupus-like autoimmunity in animal models 7, 8, and T cell responses are implicated 

in the pathogenesis of human lupus 9, rheumatoid arthritis 10 and other autoimmune 

diseases 11. Further, the differentiation of T cells into distinct subsets such as Th1, Th2, 

Th17, naïve, memory, regulatory (Treg) and others, each with distinct functions, suggests 

that gender-specific differences in T cell gene expression, perhaps due to gender-specific 

subset differentiation, could also contribute to the female predisposition to autoimmunity. 

The repeated T cell stimulation that occurs in chronic autoimmunity could promote 

differentiation into subsets with distinct repertoires in men and women.

We hypothesized that T cells from men and women express different levels or repertoires of 

effector molecules under conditions of repeated stimulation such as that occurring in chronic 

relapsing autoimmune diseases. As an initial test of this hypothesis we used expression 

microarrays to compare gene expression patterns in T cells from healthy young men and 

women following two rounds of stimulation. Differentially expressed immune genes were 

identified, and overexpression of effector molecules was validated by RT-PCR and protein 

analyses. The overexpressed genes were further analyzed for estrogen response elements as 

well as chromosomal location.

Results

Gene expression in stimulated and restimulated male and female T cells

To approximate the repeated stimulation characterizing autoimmune responses, PBMC from 

3 pairs of healthy men and women were stimulated with PHA, cultured for 4 days, then 

restimulated or not with PMA and ionomycin. Six hours later T cells were purified and gene 

expression compared using microarrays. Using the Genomatix ChipInspector program and a 

false discovery rate (FDR) of 4%, analysis of the unrestimulated T cells revealed a total of 

6295 significantly up or down regulated probes, corresponding to 305 distinct transcripts 

that were differentially expressed between women and men. With a FDR of 4%, 

approximately 12 of the 305 genes are expected to be false-positive. Interestingly, men 

overexpressed more genes than women 4 days following the single stimulation. The men 

overexpressed 228 of the 305 genes (75%), while 77 of the 305 genes (25% of the total) 

were female biased.
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In contrast, when the T cells were restimulated and gene expression similarly compared, a 

total of 24791 probes were significantly up or down regulated, corresponding to 1953 

differentially expressed genes, of which 74 are expected to be false positives. Also in 

contrast to the unrestimulated cells, 1408 (72%) of the dimorphic genes were female biased 

while 545 (28%) were male biased, indicating a greater response in the female cells. Lists of 

the sexually dimorphic genes in unrestimulated and restimulated T cells are shown in 

Supplemental Table S1 and Supplemental Table S2.

Figure 1 illustrates the distribution of the sexually dimorphic genes, categorized by the 

relative magnitude of the difference in expression (fold change 1–1.2, 1.21–1.5, 1.51–2.0, 

and >2.0) in unrestimulated and restimulated T cells. In this figure a positive number is used 

to indicate a greater increase in T cells from women, while a negative number indicates a 

greater increase in T cells from men. Regardless of the sex of the donor, the majority of the 

sexually dimorphic genes had a fold change difference in the range of 1.2–1.5. The 

functional significance of the relatively few genes with a fold-change difference of only 1.0–

1.2 is uncertain, and thus were not further analyzed.

Quality controls included comparison of gender-specific sex chromosome gene transcript 

levels. XIST (X (inactive)-specific transcript) is expressed exclusively from the inactive X 

in women, and was among the most strongly female biased genes (7.9 fold increase relative 

to men). Similarly, the Y chromosome genes EIF1AY (fold increase 6.7 men/women), and 

RPS4Y (fold increase 15.5 men/women) were among the male biased genes with greatest 

differences (Supplementary Table S1&Supplementary Table S2). The majority of the 

remaining differentially expressed genes were localized to autosomal chromosomes.

The functional significance of the differentially expressed genes was estimated using Gene 

Ontology (GO) terms. Since the magnitude of the biologic effect is likely to be proportional 

to the magnitude of the difference in immune effector molecule levels, those genes with a ≥ 

1.4-fold difference in the level of expression between the sexes were analyzed as likely to be 

most reflective of functional differences. Using this criterion, 109 of the 305 unrestimulated 

transcripts, and 289 of the 1953 restimulated transcripts, were classified by GO terms. The 

broad Biological Process filter identified 95 differentially expressed genes in the 

unrestimulated cells, and 249 in the restimulated cells. These genes were then analyzed for 

GO subcategories. The GO categories were only considered significant if they contained at 

least 4 genes and their Z-score was ≥1.65, corresponding to p ≤ 0.05, or inclusion in the top 

5% of overrepresented genes.

Gender specific differences in restimulated T cell gene expression were found in multiple 

GO categories. The categories are shown in Table 1, ranked by the number of genes 

included in each relative to restimulated female T cells, which contained the greatest number 

of genes affected. The 150 female-biased biological process gene transcripts were most 

significantly (Z ≥ 4) overrepresented in the following GO classifications: response to 

stimulus, immune response, immune system process, and signal transduction (Table 1). In 

contrast, only cell communication and immune system process were enriched to this degree 

among the male biased genes in the restimulated cells. In unrestimulated cells, the categories 

of response to stimulus, cell differentiation, immune system process, immune response, cell 
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death and apoptosis were highly (Z >4) enriched in the women, while only immune system 

process and immune response were enriched to this degree in the men.

The 3 categories with the greatest enrichment in restimulated T cells were all in women. In 

descending order these were “response to stimulus”, “immune response”, and “immune 

system process”. Genes in the category “immune response” were enriched in restimulated T 

cells from women relative to men (Z scores 5.68 in women vs 3.79, 20 vs 11 genes in men), 

and “immune system process” was also enriched in women (Z scores 4.7 vs 4.09, 21 vs 15 

genes, women vs men).

The GO functional subcategories of genes involved in immune function are shown in Table 

2, again ranked by number of genes identified. The top 4 categories for both men and 

women were “immune system process”, “immune response”, “response to external 

stimulus” and “defense response”, and all contained more genes and were more significantly 

enriched in restimulated T cells from women than the men. The categories “regulation of 

immune system process”, “immune system development” and “innate immune response” 

were approximately equal in men and women, but contained relatively few genes (4–5) in 

both sexes. Due to low numbers of genes, further sub-grouping of immune genes was not 

meaningful for the list of genes from unstimulated cells. The immune genes in the category 

“response to stimulus” were largely overlapping with these groups, and are shown in 

Supplementary Table S3 for the interested reader.

Sexually dimorphic genes from the “immune response” category with a ≥ 1.4 fold difference 

in expression between T cells from women and men are listed in Table 3 and Table 4 

respectively. Twenty genes exhibited female-biased expression (Table 3) while 11 genes 

exhibited male-biased expression (Table 4). Interestingly the women expressed higher levels 

of the pro-inflammatory/cytotoxic effector molecules granulysin, IFN-γ, granzyme A, and 

lymphotoxin-β, as well as IL-12 receptor β2 involved in Th1 responses (Table 3). In 

contrast, men only overexpressed the pro-inflammatory cytokine IL17A, and had higher 

levels of the Th2 cytokines IL5 and IL10 (Table 4). The women also had higher levels of the 

chemokines CX3CL1, CX3CL2 and the cytokines IL1F5 and IL16, while men had higher 

levels of the chemokines XCL1, CXCL9 and CXCL10.

Sex hormones regulate gene expression and may play an important role in predisposing 

women to autoimmunity 12. We therefore analyzed the gender-specific genes for estrogen 

response elements. Ten of the 20 female biased immune gene promoters exhibited estrogen 

response element family (EREF) binding sites in the promoter region (Table 3), suggesting 

that some, but not all genes differentially expressed in women may be directly influenced by 

hormone levels. In contrast, only 1 of the 11 male biased genes had an EREF binding site 

(Table 4).

We also considered the possibility that X chromosome genes may be overexpressed in 

women due to processes such as X chromosome demethylation or skewing, as has been 

reported in some female-predominant autoimmune diseases 6, 13. However, none of the 

immune genes overexpressed in restimulated T cells were encoded on the X chromosome 

(Table 3).
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Validation of gender-biased genes

As noted above, the pro-inflammatory/cytotoxic molecules IFNG, GNLY, IL12RB2, GZMA 

and LTB were among the female-biased immune genes detected by the microarrays. The 

microarray results were validated by comparing levels of these transcripts in restimulated 

CD4+ and CD8+ cells from 10 pairs of healthy men and women. PBMC were similarly 

isolated from the men and women, stimulated with PHA, then restimulated for 6 hours with 

PMA + ionomycin on day 4 as before. CD4+ and CD8+ T cells were then purified, and 

LTB, IFNG, IL12RB2, GZMA and GNLY transcripts measured by quantitative RT-PCR. 

mRNA levels of all 5 genes were significantly higher in women compared to men. LTB 

expression was significantly higher (p = 0.01) in women in both CD4+ and CD8+ cells (Fig. 

2A). Restimulation similarly caused a female-specific increase in INFG expression in both 

CD4+ (p=0.01) and CD8+ (p =0.05) cells (Fig 2B). Significant (p=0.02) female-biased 

expression of IL12RB2 was also seen in both CD4+ and CD8+ cells (Fig 2C), and GZMA 

similarly exhibited higher expression levels in women for both CD4+ (p= 0.05) and CD8+ 

(p = 0.01) T cells (Fig 2D). GNLY was expressed at higher levels in CD8+ than CD4+ cells, 

although statistically female-biased expression was observed in both CD4+ (p =0.02) and 

CD8+ (p=0.03) T cells (Fig 2E). Figure 2F confirms that men overexpress IL17A in CD4+ 

(p=0.02) but not CD8+ T cells relative to women.

The same restimulation protocol was used to compare LTB, IL12RB2, and IFN-γ protein 

levels in T cells from men and women. LTB and IL12RB2 were quantitated by 

immunoblotting using protein isolated from the same restimulated CD4+ and CD8+ T cells 

from 10 men and 10 women used for the experiments shown in Fig 2, while IFN-γ was 

measured by ELISA in the supernatants of serially restimulated T cell aliquots from 4 

additional men and women. Figure 3A shows that women have greater levels of LTB in 

restimulated CD4+ and CD8+ T cells relative to the men, and Figure 3B confirms a similar 

increase in IL12RB2 in CD4+ and CD8+ T cells in women relative to men. Figure 3C shows 

that female T cells secreted greater amounts of IFN-γ relative to the men, with the greatest 

secretion on day 3 following the initial stimulation (p = 0.004 by ANOVA).

Discussion

Microarray approaches have demonstrated sexually dimorphic gene expression in mouse 

liver, adipose tissue, brain and muscle 14. To the best of our knowledge though, the present 

studies represent the first use of microarrays to compare T cell gene expression between 

men and women, particularly under conditions of repeated stimulation. Following 

restimulation, T cells from women overexpressed a greater number of genes than T cells 

from men, and the inflammatory/cytotoxic effector molecules IFNG, GNLY, GZMA, 

IL12RB2 and LTB were the among the most highly overexpressed (1.4–1.8 times higher 

than men). Since the number of male-female pairs studied by array was limited, 

overexpression of these genes was confirmed in a separate cohort of men and women using 

RT-PCR as well as immunoblotting and ELISAs.

In contrast, the only pro-inflammatory gene overexpressed to the same degree in 

restimulated T cells from men was IL17A (1.4 times higher than in women). IL17 defines a 

pro-inflammatory T cell subset found in autoimmune diseases like rheumatoid arthritis and 
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multiple sclerosis 15 and could contribute to the pathogenesis of these conditions in men, 

although these diseases still have a female predominance 1. Interestingly, the arrays also 

indicted overexpression of the anti-inflammatory Th2 gene IL10 and the Th2 cytokine IL5 

in men (1.5-fold relative to women), suggesting a more mixed T cell effector response in 

men. In support of this, UV-induced immune suppression is greater in men, and mediated by 

IL-10 16. Overall, these results suggest a greater inflammatory/cytotoxic T cell response in 

restimulated T cells from women than men, at least within the age range and time frame 

tested.

Sex-specific differences in gene expression are not unique to humans or the immune system. 

Sex-specific differences in autosomal gene regulation have also been described in worms, 

flies, fish, rodents and primates. Others have observed that sex-biased genes tend to evolve 

rapidly at the DNA sequence level 17, and differences in gene regulation between sexes tend 

to be evolutionarily conserved 1, 18, 19 implying functional importance. Such differences 

have been proposed to contribute to other gender-specific diseases such as hypertension and 

schizophrenia1. Women may also be predisposed to some diseases due to gender-related 

differences in exposure to environmental agents, differences in metabolism of exogenous 

substances, and to differences in behavior 20. Sex specific differences in T cell gene 

regulation such as those reported here and by others 1 likely also contribute to the 

development of autoimmunity in women. Why women might have evolved a more 

inflammatory T cell response is unclear. However, a stronger inflammatory response during 

the years of peak estrogen levels may help women resist infections during their peak 

childbearing years as proposed by others 21.

The mechanisms causing differential T cell gene expression between men and women are 

not completely understood, but estrogen likely plays a role. In the present studies half the 

highly expressed gender-biased genes in restimulated female T cells had an EREF, 

suggesting that estrogen contributes directly to the overexpression in some of the genes 

detected. Further, estrogen receptor-α (ER-α) can also exert its effects indirectly by binding 

transcription factors such as AP-1 or SP1, or by forming signaling complexes at the plasma 

membrane with proteins such as Src 22, and so could contribute to overexpression of the 

female biased genes lacking an EREF. Future studies using estrogen inhibition/stimulation 

and similar gene surveys would help address this question.

T cells also differentiate throughout life into subsets such as Th1, Th2, Th17, Treg, naïve, 

memory and others, and gender-biased differentiation could potentially contribute 

differences in gene expression in women. In support of this, others have reported that 

healthy women have greater numbers of CD4+CD45RO+ “memory” T cells 23, which are 

functionally diverse and can develop within 72 hours 24, thus potentially contributing to a 

difference in gene expression between women and men such as that observed in the present 

study. However, to date no study as systematically tested whether estrogen alters T cell 

repertoire or alters thymic deletion of autoreactive T cells 22.

Other mechanisms proposed for female biased autoimmunity include X chromosome 

skewing, which characterizes some forms of female-biased autoimmunity such as thyroiditis 

6, and reactivation of immune genes on the silenced X chromosome 13. However, none of 
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the highly expressed gender biased genes detected in this study were encoded on the X 

chromosome, arguing against these mechanisms occurring in normal women.

In summary, these studies indicate that T cell responses can differ between men and women 

particularly when restimulated. The overexpression of inflammatory/cytotoxic effector 

molecules in women could contribute to the development and severity of autoimmune 

diseases such as lupus in women.

Materials and Methods

Subjects

Healthy men and women ages 25–35 years were recruited by advertising from the general 

population at the University of Michigan (Ann Arbor, MI). All procedures involving human 

subjects were reviewed and approved by the University of Michigan Institutional Review 

Board for Human Subject Research.

Cell culture

PBMC were isolated from venous blood of pairs of age and racially matched healthy donors 

using Ficoll-Paque (GE Healthcare, Uppsula, Sweden) density gradient centrifugation, 

stimulated with 1 µg/ml phytohemaglutinin (PHA) (Remel, Lenexa, KS) and cultured at 

37°C in a 5% CO2 balanced air atmosphere in RPMI 1640 media (Hyclone, Logan, UT) 

supplemented with 10% FBS (Gibco, Grand Island NY), 100 U/ml penicillin (Gibco) and 

100 µg/ml streptomycin. At the times indicated, the cells were washed and restimulated or 

not with 10 ng/ml PMA (Sigma Chemical Co, St Louis, MO) and 1 µg/ml ionomycin 

(Sigma). Six hours later the CD4+ and CD8+ cells were isolated using magnetic bead 

selection (Miltenyi Biotech, Auburn, CA) for gene expression assays.

RNA and protein isolation

T cell RNA was extracted with the Qiagen RNAeasy Mini kit (Valencia CA) and the RNase-

free DNase set following the manufacturer’s instructions. For simultaneous RT-PCR and the 

protein analysis, DNA, RNA, and protein were purified from CD4+ and CD8+ T cells using 

the Qiagen All Prep DNA/RNA/Protein Mini Kit according to manufacturer's instructions.

Microarray analyses

RNA samples were analyzed on Affymetrix (Santa Clara, CA) GeneChip Human Genome 

Plus 2.0 (HG-133 Plus 2.0) microarrays by the University of Michigan Comprehensive 

Cancer Center (UMCCC) Affymetrix and Microarray Core Facility http://www.umich.edu/

~caparray/). The resulting data were then analyzed using the Genomatix (http://

www.genomatix.de) ChipInspector program. Differential gene expression was detected 

using men as the control, and a false discovery rate (FDR) ≤ 4% was applied to identify 

differentially expressed genes. Microarray data mining was performed using BiblioSphere, 

Gene2Promoter and GEMS-Launcher applications of the Genomatix software suite, Gene 

Ontology (GO) classifications were performed using the BiblioSphere Biological Process 

filter. To identify potential Estrogen Response Elements Family (EREF) binding sites, 
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promoter sequences flanking the transcriptional start sites (−500 kbp to + 100 bp) were 

extracted using Gene2Promoter and queried for potential ER sites.

Real Time quantitative PCR

The RNA from the isolated CD4+ and CD8+ cells converted to cDNA synthesis with the 

Invitrogen (Carlsbad, CA) SuperScript first strand synthesis kit then the cDNA was 

subjected to real-time PCR. Roche (Basle) FastStart universal SYBR green master mix 

containing 1 µl template cDNA and 0.5 µM forward and reverse primers in a total volume of 

20 µl was annealed at 56 °C for a total of 40 cycles. The fold change of expression was 

calculated using β-actin as an internal reference gene. The gene-specific primers used to are 

shown in Table 5.

Immunoblotting

Protein was isolated using an Qiagen All-Prep kit, resuspended in 5% SDS/water and 

quantitated by absorbance at 280 nm using a Nanodrop spectrophotometer (Nanodrop 

Technologies Willington, DE). Ten to 20 µg of protein/sample was loaded onto a 

discontinuous 5–15% gradient SDS-PAGE gel (Bio-Rad, Los Angeles, CA). Following 

electrophoretic separation, the proteins were transferred to polyvinylidene difluoride 

(PVDF) filter membranes (Millipore, Bedford, MA) and blocked with 5% non-fat milk 

(Carnation, Glendale, CA) in 20 mM Tris-buffered saline containing 0.05% Tween-20 

(TBST) buffer overnight at 4°C. The membrane was washed thrice with TBST then 

incubated with primary antibody overnight at 4°C. The following antibodies from Santa 

Cruz Biotechnology (Santa Cruz, CA) were used at a 1:200 dilution in 5% non-fat dry milk 

in TBST: Goat anti-actin (SC1616), goat anti-LTB (SC23561), goat anti-IL12Rb2 

(SC18648), and goat anti-granulysin (SC16968). Binding of the primary antibodies was 

detected using a 1:2,000 horseradish peroxidase-conjugated donkey anti-goat (Santa Cruz). 

Signal detection was performed with SuperSignal chemiluminescent substrate (Pierce, 

Rockford, IL) and X-Omatic X-ray film following the manufacturer’s instructions. For 

densitometry analysis, protein profiles were digitized using Canoscan (Canon, Lake Success, 

NY) software followed by quantification of the bands using UN-SCAN-IT gel 6.1 software 

(Silk Scientific, Orem, UT). The protein bands were then normalized to the β-actin band.

ELISAs

Secreted IFN-γ was measured using a BD Pharmingen (San Jose CA) OPTI-EIA Human 

Gamma Interferon ELISA kit and reference recombinant human IFN-γ according to the 

manufacturer’s instructions.

Statistical analysis

Apart from microarray analyses, Student's t-or and ANOVA as appropriate were used to 

determine the significance of differences between groups. Results are presented as the mean 

± SEM.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. Expression profile of T cell genes differentially expressed between men and women
Bars shown greater than zero represent the numbers of genes expressed at higher levels in 

women than men, while the negative values represent the numbers of genes expressed more 

highly in men. Error bars represent the FDR of 4%.
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FIGURE 2. Expression levels of pro-inflammatory transcripts in restimulated T cells from men 
and women
PBMC from 10 racially matched male-female pairs were stimulated with PHA, cultured 4 

days, then restimulated for 6 hours with PMA + ionomycin. CD4+ and CD8+ T cells were 

isolated and expression levels of (A) LTB, (B) IFNG, (C) IL12RB2, (D) GZMA, (E) GNLY 

and (F) IL17A were measured by qRT- PCR relative to β-actin. Results are presented as the 

mean±SEM of the 10 determinations per group. Dark bars represent transcript levels in the 

women, and light bars transcript levels in the men.
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FIGURE 3. LTB, IL12RB2 and IFN-γ protein levels in restimulated T cells from men and 
women
(A) LTB and (B) IL12RB2 were measured by immunoblotting in the same restimulated 

CD4+ and CD8+ cells shown in figure 2. Results again are presented as the mean±SEM of 

the 10 determinations per group. (C) IFN-γ release by similarly restimulated T cells from 4 

additional racially matched male-female pairs was measured by ELISA on the days 

indicated. Results again represent the mean±SEM of the 4 determinations per group.
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Table 5

Gene specific primer sequences

Primer Sequence

ACTB
f- GGA CTT CGA GCA AGA GAT GG

r- AGC ACT GTG TTG GCG TAC AG

GZMA
f- ATTCTGGAAGCCCTTTGTTGTGCG

r- AGAATATAGACACCAGGCCCACGA

IFNG
f- TGAACTGTCGCCAGCAGCTAAA

r- AGGCAGGACAACCATTACTGGGAT

LTB
f- ATTACCTCTACTGTCTCGTCGGCT

r- TCCAGCACTGGAGTCACCGTCT

GNLY
f- AAACACAGGAGCTGGGCCGTGACTA

r- GGTCGCAGCATTGGAAACACTTCT

IL12RB2
f- CTGTGAACGCTGAGCACACGATTT

r- TGCTGTGTCGCCTTGAGCAAGATA

IL17A
f- AATCTCCACCGCAATGAGGA

r- ACGTTCCCATCAGCGTTGA
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