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Abstract
BACKGROUND—The review presents the 2005–2006 peer-reviewed marine pharmacology
literature, and follows a similar format to the authors’ 1998–2004 reviews. The preclinical
pharmacology of chemically characterized marine compounds isolated from marine animals, algae,
fungi and bacteria is systematically presented.

RESULTS—Anthelminthic, antibacterial, anticoagulant, antifungal, antimalarial, antiprotozoal,
antituberculosis and antiviral activities were reported for 78 marine chemicals. Additionally 47
marine compounds were reported to affect the cardiovascular, immune and nervous system as well
as possess anti-inflammatory effects. Finally, 58 marine compounds were shown to bind to a variety
of molecular targets, and thus could potentially contribute to several pharmacological classes.

CONCLUSIONS—Marine pharmacology research during 2005–2006 was truly global in nature,
involving investigators from 32 countries, and the United States, and contributed 183 marine
chemical leads to the research pipeline aimed at the discovery of novel therapeutic agents.

SIGNIFICANCE—Continued preclinical and clinical research with marine natural products
demonstrating a broad spectrum of pharmacological activity and will probably result in novel
therapeutic agents for the treatment of multiple disease categories.
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1. Introduction
The current article reviews the 2005–6 preclinical pharmacology of marine natural products
using a similar format to the previous reviews on pharmacological research [1–5]. The review
of the literature on the pharmacology of antitumor and cytotoxic marine compounds has been
reported elsewhere [6–11]. Only those articles reporting on the bioactivity or pharmacology
of marine chemicals that were structurally characterized are included in the current article. As
in our previous reviews, we used a modification of Schmitz’s chemical classification [12] to
assign structures to four major chemical classes, namely, polyketides, terpenes, nitrogen-
containing compounds or polysaccharides. Those articles that reported anthelminthic,
antibacterial, anticoagulant, antifungal, antimalarial, antiprotozoal, antituberculosis and
antiviral properties of marine chemicals have been presented in Table 1 with the corresponding
structures shown in Fig. 1. The publications describing marine compounds affecting the
cardiovascular, immune and nervous systems, as well as those with anti-inflammatory effects
are grouped in Table 2, and their structures shown in Fig. 2. Finally, marine compounds with
activity towards a series of cellular and molecular targets are exhibited in Table 3, and their
structures depicted in Fig. 3. Publications regarding the bioactivity of marine extracts or as yet
structurally uncharacterized marine compounds have been excluded from the present review,
although several promising reports were published during 2005–6: anti-inflammatory and
analgesic effects of Egyptian Red Sea sponge extracts [13]; proangiogenic effects of 15–20
kDa fucoidans on endothelial cells [14]; antioxidative and anti-inflammatory effects of
phlorotannin-containing extracts with potential for osteoarthritis from the brown alga Ecklonia
cava [15]; immunostimulating activity in vivo of a novel sulfated exopolysaccharide derived
from a red-tide microalga Gyrodinium impudicum [16]; antiherpetic activity in vitro of sulfated
fucans from the marine brown alga Stoechospermum marginatum [17]; in vitro bioactivity of
Brazilian marine sponge extracts against herpes, adenovirus and rotaviruses [18]; antifungal
activity of glycolipid fractions from the red alga Chondria armata [19]; antiviral and
immunoregulatory activity of an exopolysaccharide from the marine Bacillus licheniformis
[20]; potent anticoagulant activity of a sulfated polysaccharide from the brown alga Ecklonia
cava [21]; antimicrobial activity of Red Sea coral extracts [22]; a novel broad-spectrum
antibacterial protein produced by the bacterium Marinomonas mediterranea [23]; antiviral
activity of polysaccharide fractions isolated from the cyanobacterium Arthrospira platensis
(formerly Spirulina platensis) [24]; antiangiogenic and antimicrobial activity of sponge-
associated bacterial extracts [25], and a β-galactose-specific lectin with anti-HIV-1 activity
isolated from the marine worm Chaetopterus variopedatus [26].

2. Marine compounds with anthelmintic, antibacterial, anticoagulant,
antifungal, antimalarial, antiprotozoal, antituberculosis, and antiviral
activities

Table 1 presents new pharmacological findings reported during 2005–6 on the anthelmintic,
antibacterial, anticoagulant, antifungal, antimalarial, antiprotozoal, antituberculosis, and
antiviral pharmacology of the 78 marine natural products shown in Fig. 1.

2.1 Anthelmintic and antibacterial activity
Three studies contributed to the search of novel anthelmintic marine natural products during
2005–6. Capon and colleagues [27,28] described two novel betaines (−)-echinobetaine A
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(1) and (+)-echinobetaine B (2), from the Australian sponge Echinodictyum sp. which were
nematocidal (LD99=83 and 8.3μg/mL, respectively) to the commercial livestock parasite
Haemonchus contortus. Although the mechanism of action of these compounds remains
undetermined, (+)-echinobetaine B’s nematocidal activity was comparable to that of “two
commercially available synthetic antihelmintics, closantel and levamisole”. Davyt and
colleagues [29] reported a novel halogenated β-bisabolene sesquiterpenoid (3) from the red
alga Laurencia scoparia that showed anthelmintic activity (EC50=0.11 mM) against the
parasitant stage (L4) of Nippostrongilus brasiliensis, a rat gastrointestinal parasite that has a
similar lifestyle and morphology to human hookworms.

As part of an ongoing global effort to discover novel antimicrobials to treat infections caused
by resistant pathogenic bacteria, during 2005–6, 27 studies contributed novel antibacterial
marine natural products isolated from marine fungi, bacteria, sponges, soft corals, jellyfish and
fish, a considerable increase from our previous reviews [1–5]. Only two reports provided
detailed mechanism of action studies. Linington and colleagues [30] discovered that the novel
caminosides B (4) and D (5) glycolipids, isolated from the Caribbean marine sponge Caminus
sphaeoroconia, were inhibitors of pathogenic E.coli type III secretion system. Both
caminosides were observed to “possess a number of structural features not found in sponge
glycolipids” and were also noted to be effective against Gram-positive methicillin-resistant S.
aureus and vancomycin–resistant Enteroccocus (MIC=3.1–6.3 μg/disk). Oh and colleagues
[31] reported that the bis(indole) alkaloids deoxytopsentin (6) and hamacanthin A (7) isolated
from the marine sponge Spongosorites sp. exhibited potent antibacterial activity against S.
aureus (MIC=3.12–6.35 μg/mL). Interestingly, both alkaloids inhibited the enzyme sortase A
(IC50=15.7 & 86.3 μg/mL, respectively), a membrane-associated transpeptidases that plays a
key role in Gram-positive pathogenic bacterial invasion of host cells.

As shown in Table 1, several potent marine antibacterials were also reported in 2005–6 (Fig
1), with MICs less than 10 μg/mL against several antibiotic-resistant bacterial strains, but
unfortunately the articles did not include data on putative mechanisms of action: aurelin (8)
[32]; batzellaside A (9) [33]; dendridine A (10) [34]; 6-oxo-de-O-methyllasiodiplodin
(11) [35]; grammistins (12) [36]; halichonadin C (13) [37]; lajollamycin (14) [38];
marinomycins A (15), B (16), C (17) and D (18) [39]; resistoflavin methyl ether (19) [40];
Streptomyces anthraquinones (20–21) [41]; Streptomycetaceae quinone (22) [42] and,
xeniolide I (23) [43].

Furthermore, novel structurally characterized marine molecules with MICs greater than 10
μg/mL were also isolated during this period, but are not included in Table 1 or Fig. 1 because
of their weaker antibacterial activity: agelasidine A, (MIC=50 μg/mL) [44], alkylpyridinium
(MIC<25 μg/mL) [45]; diaporthelactone (MIC=50 μg/mL) [46]; Geniculosporium sp.
botryanes [47]; guangomide A & B (MIC=100 μg/mL) [48]; latrunculins (MIC=14.7–17.8
μg/mL) [49]; norresistomycin (MIC=16 μg/mL) [50]; perinadine A (MIC=33–66.7 μg/mL)
[51]; Pseudomonas aeruginosa quinoline (MIC=50–100 μg/mL) [52]; rifamycin B & SV
[53]; sarasinoside A1 and J [54]; scalusamide A (MIC=33 μg/mL) [55], and Thorectandra
sp. alkaloid (MIC=12.5 μg/mL) [56]. Although these marine compounds demonstrated weaker
antimicrobial activity, they highlight the fact that novel antimicrobial leads may result from
further research into the chemical biodiversity present in marine bacteria, fungi and sponges.

2.2 Anticoagulant activity
As shown in Table 1, during 2005–6, 5 articles reported anticoagulant marine natural products
isolated from algae, fish and clams, an increase from our previous reviews [1–5]. Rajapakse
and colleagues [57] characterized a 12.01 kDa single-chain monomeric protein from the
marine yellowfin sole (Limanda aspera) which inhibited the blood coagulation serine
endopeptidase factor XII (IC50<1 μM) by forming an inactive complex, and also triggered
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platelet aggregation by binding to a membrane glycoprotein integrin. Drozd and colleagues
[58] extended the pharmacology of the fucoidans (24) from the marine algae Fucus
evanescens and Laminaria cichorioides, showing that these sulfated polysaccharides inhibited
both thrombin and factor Xa with potency comparable to non-fractioned and low-molecular
weight heparins, although with considerable variability attributed to the “degree of sulfation
and various types of glycoside bonds”. Luppi and colleagues [59] reported the purification and
structural characterization of an unusual low-sulfated heparin (25) from the marine Italian
bivalve mollusk Callista chione that decreased anti-factor Xa and activated partial
thromboplastin time activity (IC50=52–97 IU/mg), probably as the result of a specific decrease
in sulfation at position 2 of the uronic acid units. Pereira and colleagues [60] using an approach
that combined structural analysis with specific biological assays, investigated the anticoagulant
pharmacology of sulfated galactans (26,27) isolated from the red marine alga Gelidium
crinale. Their detailed mechanistic studies demonstrated that 2,3-disulfated a-galactose units
along the galactan chain were of major significance for the sulfated galactans’s anticoagulant
activity, because the chains modulated interactions of the polysaccharides with “target
proteases and coagulation inhibitors”. Rocha and colleagues [61] described a novel sulfated
galactofucan (28) isolated from the marine brown alga Spatoglossum schroederi with a unique
structure composed of a central core of 4-linked, partially 3-sulfated β-galactose units.
Remarkably, the polysaccharide had no anticoagulant activity, yet showed potent
antithrombotic activity resulting from the synthesis of heparan sulfate by vascular endothelial
cells.

2.3 Antifungal activity
As shown in Table 1, sixteen studies during 2005–6 reported on the antifungal activity of
several novel marine natural products isolated from marine algae, fungi, bacteria, sponges and
sea stars, a substantial increase from our 1998–2004 reviews [1–5].

Four reports extended the molecular pharmacology of novel antifungal marine chemicals. Li
and colleagues [62] discovered that the capisterones A and B (29,30) from the green alga
Penicillus capitatus reversed drug resistance to clinically relevant azole-resistant fungal
strains. Interestingly, although both compounds had no inherent antifungal activity, they
enhanced fluconazole activity in efflux pump-overexpressing Candida albicans strains,
suggesting their utility in protocols for resistant fungal infections. Sionov and colleagues
[63] observed that a phenol compound (31) from the marine sponge Dysidea herbacea had
significant activity against the human fungal pathogens C. albicans and Aspergillus
fumigatus (MIC=1.95–7.8 μg/mL) which compared well with the clinically used antifungal
amphotericin B (MIC=1–2 μg/mL). The phenol compound caused significant concentration-
dependent changes in fungal cell morphology and cell membrane, resulting in K+ ion leakage.
Pettit and colleagues [64] extended the in vitro and in vivo pharmacology of the marine
spongistatin 1 (32) isolated from the marine sponge Hyrios erecta, a previously described
anticancer agent [65]. The macrocyclic lactone polyether was shown to be fungicidal to 74
reference strains and clinical isolates (MIC=1–32 μg/mL), including several fungal strains
resistant to the clinically used drugs flucytosine, ketoconazole and fluconazole. Furthermore,
mechanism of action studies revealed that spongistatin 1 disrupted cytoplasmatic and spindle
microtubules in Cryptococcus neoformans in a time- and concentration-dependent manner,
preventing nuclear migration, and both nuclear and cellular cell division. Jang and colleagues
[66] found that a synthetic analogue of halocidin (33), a previously reported antimicrobial
peptide isolated from the hemocytes of a marine ascidian, had potent antifungal activity
(MIC=1–4 μg/mL). The synthetic Di-K19Hc peptide derivative of 33 was shown to bind to C.
albicans very rapidly (30 seconds) via an interaction with β-1,3-glucan, a component of the
fungal cell wall, and concomitantly inducing ion channel formation, K+ efflux, and death of
the fungal cell.
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Additionally, and as shown in Table 1, several marine chemicals showed significant antifungal
activity (i.e. MICs that were less than 10 μg/mL (Fig 1; 34–43), but unfortunately mechanism
of action studies were lacking at the time of publication: the lipopeptide hassallidin A (34),
(MIC=4.8 μM) [67], the polyketide latrunculins (35–42), (MIC=2.5–19 μM) [49], and the
fatty acid majusculoic acid (43), (MIC=8 μM) [68]. Further investigation of the molecular
pharmacology of these compounds will be required to determine their mechanism of action.

Finally, additional novel structurally-characterized marine molecules demonstrated MICs
greater than 10 μg/mL, and therefore because of the weaker antifungal activity they have been
excluded from Table 1 and Fig. 1: amphidinols (IC50=10–58 μM) [69,70], callipeltins F–I
(IC50=100 μM) [71], Lamellodysidea herbacea sterols [72], minutosides A and B [73],
oceanalin A (IC50=30 μM) [74], sokodoside A and B [75], and sterigmatocyn [76]. Although
these marine chemicals showed weaker antifungal activity, they represent potential
pharmacological leads perhaps possessing novel and uncharacterized mechanisms of action
that might ultimately benefit the ongoing global search for clinically useful antifungal agents.

2.4 Antimalarial, antiprotozoal, and antituberculosis activity
As shown in Table 1, in 2005–6 nine studies were reported in the area of antimalarial,
antiprotozoal and antituberculosis pharmacology of structurally characterized marine natural
products, a significant increase from our previous 1998–2004 reviews [1–5].

Wright and Lan-Unnasch [77] reported that pycnidione (44) isolated from the marine fungus
Phoma sp., had significant antiplasmodial activity against three strains of Plasmodium
falciparum (IC50=0.15–0.4 μM). Because of structural similarities between pycnidione and
atovaquone, an ingredient of the antimalarial medication Malarone®, the investigators
proposed that the antiplasmodial activity of pycnidione was “significant in terms of lead
structure development”. Campagnuolo and colleagues [78] identified antimalarial activity in
novel polyketide cycloperoxides isolated from the marine sponge Plakortis simplex. The
known plakortide Q (45) demonstrated the highest inhibition of P. falciparum chloroquine-
sensitive and chloroquine-resistant strains (IC50=0.52–1 μM), suggesting that the configuration
at C-3 exerted a significant effect on antimalarial activity of these compounds. Laurent and
colleagues [79] proved that the known xestoquinone (46) isolated from the Pacific Ocean
sponge Xestospongia sp. had significant in vitro antiplasmodial activity (IC50=3μM), and
inhibited Pfnek-1(IC50=1 μM), a protein kinase of P. falciparum that plays a yet undetermined
role in its biochemistry. Rao and colleagues [80] highlighted the bioactivity of four new
manzamine-type alkaloids, as well as that of 13 known manzamine alkaloids isolated from
Indonesian sponges of the genus Acanthostrongylophora against the chloroquine-sensitive and
chloroquine-resistant strains of P. falciparum. Although less potent than artemisinin, used as
a control in these studies (IC50=10 & 6.3 ng/mL, respectively), the higher bioactivity of
manzamine Y (47) against P. falciparum (IC50=0.42–0.85 μg/mL) demonstrated the
importance of hydroxy and the 8-membered ring in the aliphatic region of this molecule for
the antimalarial activity.

Several additional marine chemicals were reported in 2005–6 to possess antimalarial activity,
but their bioactivity appeared to be less significant, i.e. MIC >10μM: The diterpenes
caucanolides A and D (48,49) from the Colombian gorgonian coral Pseudopterogorgia
bipinnata, (IC50=17 μg/mL) [81], sesquiterpenoid metabolites (50–54) from a Caribbean
gorgonian coral Eunicea sp., (IC50=10–18 μg/mL) [82], the diterpene kallolide D (55) from a
Colombian Pseudopterogorgia species, (IC50=30.6 μM) [83], the furanocembranolide
diterpenes leptolide (56) and deoxypseudopterolide (57) from the Panamanianoctocorals
Leptogorgia alba and Leptogorgia rigida, (IC50= 50 & 74 μM, respectively)[84], and a
tyramine derivative (58) from the Panamanian octocoral Muricea austera (IC50=36 μM)
[85].
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Three marine compounds were reported to possess antiprotozoal activity. Lim and colleagues
[86] found that ent-plakortide P (59), a new natural product from the sponge Plakortis sp.,
inhibited Leishmania mexicana proliferation (IC50=1 μg/mL), although it appeared to be less
potent than ketoconazole (IC50=0.06 μg/mL). Washida and colleagues [87] examined a novel
polyol compound karatungiol A (60) isolated from the symbiotic Indonesian marine
dinoflagellate Amphidinium sp., and observed antiprotozoal activity against Trichomonas
foetus (IC50=1 μg/mL). This constitutes an important observation in view of the fact that this
flagellated protozoan parasite of both the bovine and feline reproductive tract appears to show
increasing resistance to the anthelmintics fenbendazole and metronidazole. Gray and
colleagues [88] discovered a new disulfated meroterpenoid, isoakaterpin (61), from extracts
of the Brazilian marine sponge Callyspongia sp. that inhibited Leishmania spp. adenine
phosphoribosyl transferase (IC50=1.05 μM), an enzyme that is part of the purine salvage
pathway in the parasite, and “should compromise parasite but not mammal metabolism”.

Three novel marine compounds were contributed to the global search for novel
antituberculosis agents. De Oliveira and colleagues [89] reported that (+)-fistularin -3 (62)
and 11-deoxy-fistularin-3 (63) isolated from the Brazilian sponge Aplysina cauliformis
inhibited growth of Mycobacterium tuberculosis H37Rv (MIC=7.1–7.3 μM, respectively), thus
extending previous observations on the antituberculosis activity of fistularin-3 (62)[90].
Because these compounds evidenced very low toxicity to macrophages (IC50=200 and 630
μM, respectively), there is definite potential for these compounds to become leads for
antituberculosis drug development. As part of the investigation of the extensive chemodiversity
of the Caribbean sea whip Pseudopterogorgia elisabethae, Rodriguez and colleagues [91]
noted that at the concentration range of 128-64 mg/mL the novel benzoxazole alkaloid
ileabethoxazole (64) inhibited M. tuberculosis (H37Rv, MIC=61 μg/mL), with a potency that
“lies within the same range as that of the very active rifampin”. As a result of an ongoing
investigation to identify new manzamines from the Indo-Pacific sponge,
Acanthostrongylophora sp., Rao and colleagues [80] identified two of the alkaloids, namely
(+)-8-hydroxymanzamine A (66) and manzamine F (73), that inhibited M. tuberculosis
(H37Rv, MIC=0.9 & 0.4 μg/mL, respectively), results which compared very favorably with
rifampicin (MIC=0.5 μg/mL), a first-line antituberculosis drug.

2.5 Antiviral activity
As shown in Table 1, interest in the antiviral pharmacology of novel marine natural products
remained high during 2005–6. Four studies reported novel marine chemicals with antiviral
activity against herpes simplex, measles and cytomegalovirus. Rodriguez and colleagues
[92] isolated three galactan polysaccharide fractions from the Argentinian marine algae
Callophyllis variegata which showed potent antiviral activity against herpes simplex types 1
(HSV-1) and 2 (HSV-2) (IC50=0.16–2.19 μg/mL) and dengue type 2 (IC50=0.1–0.41 μg/mL),
together with low cytotoxicity, suggesting that these compounds might become “promising
antiviral agents”. Lee and colleagues [93] described a sulfated polysaccharide naviculan from
Navicula directa, a diatom collected from deep-sea water in Toyama Bay, Japan, which
inhibited HSV-1 and HSV-2 (IC50=7–14 μg/mL) by interferring with early stages of viral
replication, probably affecting viral binding, adsorption and penetration into host cells.
Matsuhiro and colleagues [94] reported the structural analysis and antiviral activity of a
sulfated galactan isolated from the marine red seaweed Schizymenia binderi. The sulfated
galactan exhibited highly selective antiviral activity against HSV-1 and HSV-2 (IC50=0.18–
0.76 μg/mL), very low cytotoxicity, appeared to inhibit viral adsorption to host cells and was
thus considered to be superior to “other previously reported sulfated galactans of algal origin”.
Iwashima and colleagues [95] discovered that three plastoquinones (74–76) isolated from the
marine alga Sargassum micracanthum inhibited cytomegalovirus (IC50=0.49–2.6 μM) and
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measles virus (IC50=2.7–3.1 μM), suggesting that the compounds could become “lead
compounds in an anti-human cytomegalovirus drug” development.

Two reports contributed additional pharmacology against human immunodeficiency virus
type-1 (HIV-1), the causative agent of the acquired immunodeficiency disease syndrome
(AIDS), a disease that infects more than 40 milion people worldwide. In a detailed mechanistic
study De Souza and colleagues [96] described the biochemical pharmacology of two
diterpenes (77–78) isolated from a Brazilian marine alga Dictyota menstrualis on HIV-1
reverse transcriptase enzyme. Both diterpenes were shown to behave as classical non-
competitive reversible inhibitors of the RNA-dependent DNA polymerase activity of HIV-1
reverse transcriptase (Ki=10 and 35 μM, respectively). Mori and colleagues [97] contributed
the characterization of a novel and potent HIV-inactivating protein griffithsin from the red
alga Griffithsia sp. Griffithsin, a new type of lectin, displayed potent antiviral activity against
laboratory strains and primary isolates of HIV-1 (IC50=0.043–0.63 nM), by a mechanism that
required binding to viral glycoproteins (eg. gp120, gp41 and gp160) in a monosaccharide-
dependent manner. Furthermore, the authors noted griffithsin was a potential “candidate
microbicide to prevent the sexual transmission of HIV and AIDS”.

3. Marine compounds with anti-inflammatory effects and affecting the
cardiovascular, immune and nervous system

Table 2 summarizes the preclinical pharmacological research completed during 2005–2006
with the 47 marine secondary metabolites shown in Fig. 2.

3.1 Anti-inflammatory compounds
The anti-inflammatory pharmacology of marine compounds reported during 2005–6 showed
a considerable increase from our previous reviews [1–5].

Busserolles and colleagues [98] tested the hypothesis that oral administration of
bolinaquinone (79) and petrosiaspongiolide M (80), two marine terpenes isolated from the
sponges Dysidea sp. and Petrosaspongia nigra, could inhibit inflammation and oxidative stress
in an in vivo murine model of inflammatory bowel disease in humans. The observation that
both compounds inhibited neutrophilic infiltration, interleukin-1β, prostaglandin E2 levels and
cyclooxygenase 2 protein expression in vivo, supports further development of these compounds
for “protective strategies” against intestinal inflammatory diseases. Miyaoka and colleagues
[99] contributed to the pharmacology of phospholipase A2 inhibitors by investigating two
sesterterpenoids, cladocorans A (81) and B (82) from the coral Cladocora cespitosa, which
possess a -hydroxy-butenolide moiety. Cladocorans A and B were observed to potently inhibit
secretory phospholipase A2 (IC50=0.8–1.9 μM), with a potency similar to manoalide (IC50=0.6
μM). McNamara and colleagues [100] reported the isolation of a novel isozonarone
derivative (83) and of isozonarol (84) from the New Zealand sponge Dysidea cf. cristagalli.
In vitro studies with human neutrophils demonstrated a concentration-dependent reduction of
superoxide anion release (IC50=3–11 μM) by a mechanism hypothesized to involve the
accumulation of the lipophilic sesquiterpene moiety in cell membranes, where it could interfere
with superoxide production. Mayer and colleagues [101] conducted a structure-activity
relationship (SAR) study to investigate the anti-neuroinflammatory properties of the indole-
derived alkaloids manzamines A (65), B (69), C (85), D (86), E (71) and F (73), isolated from
the marine sponges Haliclona sp., Amphimedon sp., and Xestospongia sp. Manzamine A’s
potent inhibition of both superoxide anion (IC50=0.1 μM) and thromboxane B2 (IC50=0.016
μM) release by activated brain microglia cells, suggested that the “solubility or ionic forms of
manzamine A as well as changes such as saturation or oxidation of the β carboline or 8-
membered amine ring” played a critical role in the observed SAR results. Sawant and
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colleagues [102] investigated both the marine cembranoid diterpene sarcophine (87) and a
semisynthetic sulfur-containing derivative (88) in an in vitro anti-neuroinflammatory assay
[103]. Only compound (87) significantly inhibited both generation of superoxide anion and
thromboxane B2 (IC50=1 μM) from activated rat brain macrophages, demonstrating that
“targeting the epoxide ring of sarcophine” enhanced sarcophine’s anti-inflammatory activity.
Mandeau and colleagues [104] showed that a new steroid, 3β-hydroxy-26-norcampest-5-
en-25-oic acid (89) from the sponge Euryspongia n. sp. reduced 6KPGF1α production by
human keratinocytes by 41% at 10 μg/mL. Interestingly, Ahmed and colleagues [105] reported
that the known steroid gibberoketosterol (90), isolated from the Formosan soft coral Sinularia
gibberosa, significantly reduced proinflammatory iNOS and COX-2 proteins in
lipopolysaccharide-stimulated murine macrophages at a concentration of 10 μM to 44.5 % and
68.3 % of control values, respectively. Tziveleka and colleagues [106] submitted anti-
inflammatory studies with the known chromenol (91) isolated from the marine Greek sponge
Ircinia spinosula. The authors noted that the compound’s potent inhibition of leukotriene B4
generation by stimulated porcine leukocytes (IC50=1.9 μM), was related to the “absence of a
side chain OH group as well as the reduced number of prenyl moieties” on the sponge
metabolite. Huang and colleagues [107] described a novel sesquiterpenoid isoparalemnone
(92) from the Formosan soft coral Paralemnalia thyrsoides that significantly inhibited
inflammatory iNOS protein expression (70% at 10 μM) in activated RAW 264.7 cells. Sugiura
and colleagues [108] reported that a phlorofucofuroeckol-B (93) from an edible Japanese
marine brown alga, Eisenia arborea, inhibited histamine release (IC50=7.8 μM) from a rat
basophilic leukemia in a concentration-dependent manner, an observation which compared
favorably with a clinically used antihistamine Tranilast (IC50=46.6 μM). Kita and colleagues
[109] discovered a novel amphoteric iminium metabolite, symbioimine (94) in a dinoflagellate
Symbiodinium sp. isolated from the marine flatworm Amphiscolops sp., and showed that it
inhibited the cyclooxygenase 2 enzyme by 32% at 10 μM. The authors suggested that
symbioimine might become a useful lead to develop new nonsteroidal anti-inflammatory drugs.

3.2 Cardiovascular compounds
Sauviate and colleagues [110] reported novel studies on the mechanism of action of
lepadiformines A and B (95,96), previously described marine alkaloids from the tunicate
Clavelina moluccensis. Lepadiformines A and B dose-dependently inhibited the background
inward rectifying K+ current (IC50=1.42 μM) by blocking the cardiac muscle Kir channel, and
putatively interacting with “one of the negatively charged aminoacids located in the inner
vicinity of the narrow K+ selectivity filter, candidates being residues D172, E224 or E229.
Onodera and colleagues [111] isolated zooxanthellamide Cs (97) from cultures of the marine
dinoflagellate Symbiodinium sp., and showed they were vasoconstrictive to rat blood vessels
(EC50= 0.39 μM). The structure-activity relationship study suggested that the “huge
macrolactone structure” played an as yet undetermined but critical role in the vasoconstrictive
activity.

3.3 Compounds affecting the immune system
As a significant contribution to the discovery of novel indoleamine 2,3-dioxygenase (INDO)
inhibitors, agents shown to prevent immunological rejection of tumors, Pereira and colleagues
[112], reported that the polyketides annulins A, B, and C (98–100) purified from the marine
Northeastern Pacific hydroid Garveia annulata, potently inhibited INDO in vitro (Ki= 0.12–
0.68 μM). Interestingly, the annulins were more potent than 1-methyltryptophan (Ki=6.6 μM),
one of the most potent agents currently available. Aminin and colleagues [113] investigated
the immunomodulatory properties of a “medical lead” named cumaside, which consisted of a
complex of cholesterol with monosulfated cucumariosides (101), triterpene oligoglycosides
from the Far-Eastern edible sea cucumber Cucumaria japonica. The investigators observed
that cumaside, while lowering the membranolytic activity of the cucumariosides, appeared to
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significantly enhance their immunomodulatory properties on both human and murine
macrophages and lymphocytes. Costantino and colleagues [114] contributed a new α-
galactoglycosphingolipid, damicoside (102), isolated from the marine sponge Axinella
damicornis. Damicoside exhibited concentration-dependent stimulatory activity in a murine
spleen proliferation assay, showing that a free galactose 2-OH and 3-OH are critical for activity,
while in contrast, a free galactose 4-OH is not required for the immunostimulatory activity of
these bioactive glycosphingolipids compounds. Kim and colleagues [115] investigated the
antiapoptotic activity of laminarin polysaccharides isolated from the alga Laminaria
japonica. A detailed pharmacological investigation revealed that the laminarin polysaccharides
suppressed mouse thymocyte apoptosis, while also significantly inducing the upregulation of
33 immunomodulatory genes from a total of 7,410 genes which were examined using a cDNA
microarray. Xia and colleagues [116] extended the pharmacology of a sulfated
polymannuroguluronate (SPMG) (103), a polysaccharide with an average molecular weight
of 8.0 kDa isolated from the brown alga Laminaria japonica, which recently entered Phase II
clinical trials in China as an anti-AIDS drug candidate. Although SPMG appeared to exert
immunopotentiation by direct activation of T cell proliferation, and the concomitant
modulation of cytokines, namely enhancement of interleukin-2 and interferon- generation and
inhibition of tumor necrosis factor-α release, the authors concluded that “much remains,
however, unknown about the immunomodulation mechanism of SPMG”. Oda and colleagues
[117] described the pharmacology of verrucarin A (104), a compound isolated from the culture
broth of the Palauan marine fungus Myrothecium roridum. Verrucarin A significantly inhibited
interleukin-8 production from human promyelocytic leukemia cells, by a mechanism that
involved inhibition of the activation of the mitogen activated kinases c-JUN and p38.

3.4 Compounds affecting the nervous system
Pharmacological studies with marine compounds affecting the nervous system during 2005–
6 focused on three main areas of neuropharmacology: the stimulation of neurogenesis, the
targeting of receptors, and other miscellaneous activities on the nervous system.

Biologically active molecules which stimulate neurogenesis and rescue damaged neuronal cells
are potentially promising therapeutic strategies to treat neurodegenerative diseases [118]. As
shown in Table 2, the enhancement of the neuritogenic properties of nerve growth factor (NGF),
a chemical that has a critical role in differentiation, survival and neuronal regeneration, was
reported for several marine natural compounds isolated from sea cucumbers, sea stars, brown
algae and a fungus, respectively.

Nandini and colleagues [119] isolated a novel 70-kDa chondroitin sulfate/dermatan
sulfate hybrid chain from the skin of the blue shark Prionace glauca which exhibited
neuritogenic activity of both an axonic and a dendritic nature, as well as binding activities for
various growth factors and two neurotrophic factors. The unique structure and biological
activity of the proteoglycans demonstrated that shark skin has “immense potential to be
exploited for pharmaceutical purposes”. Although it is clear that the harvest of sharks for either
food or pharmaceutical purposes is highly questionable, from a sustainability point of view the
characterization of biological metabolites from these animals is extremely interesting and
significant. Kisa and colleagues [120,121] contributed two new monosialo- and disialo-
gangliosides CEG-3 (105) and CEG-6 (106) from the Japanese sea cucumber Cucumaria
echinata. Although the molecular mechanism of action remains undetermined, both
gangliosides induced neurite outgrowth in 42–50% of rat pheochromocytoma PC12 cells at 10
μM in the presence of NGF, suggesting the “isolation and characterization of such
neuritogenically active ganglosides” will require considerable further study. Inagaki and
colleagues [122] contributed the first isolation and characterization of a trisialo-ganglioside
LLG-5 (107) from the sea star Linckia laevigata. LLG-5 proved to be more neuritogenic (59.3
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% at 10 μM) to rat pheochromocytoma PC12 cells than CEG-3 and CEG-6. Higuchi and
colleagues [123] isolated a biologically active glycoside GP-3 (108) from the starfish Asterina
pectinifera which proved to be slightly less neuritogenic (38.2 % at 10 μM) to rat
pheochromocytoma PC12 cells than CEG-3, CEG-6 and LLG-5. Han and colleagues [124]
reported a structure-activity relationship with new steroid glycosides, namely linckosides
(109–111) isolated from the Okinawan sea star Linckia laevigata. All linckosides enhanced
the neuritogenic activity of NGF by 40–98%, with a SAR study revealing the “importance of
the carbon branch modified by a pentose at the side chain” in the neuritogenic activity. Wei
and colleagues [125] investigated a novel polyketide shimalactone A (112) isolated from the
cultured marine-derived fungus Emericella variecolor GF10. Shimalactone A induced
neuritogenesis in a neuroblastoma Neuro 2A cell line at 10 μg/mL by an as yet undetermined
mechanism. Tsang and colleagues [118] described sargachromenol (113) from the marine
brown alga Sargassum macrocarpum. Sargachromenol was shown to “markedly” promote
NGF-dependent neurogenesis in PC12D cells (ED50=9 μM). Interestingly, mechanistic studies
demonstrated that both the cyclic AMP-mediated protein kinase and mitogen-activated protein
kinase 1/2 signal transduction pathways were required for neurite growth stimulated by
sargachromenol. Tsang’s detailed molecular studies clearly suggests that additional
mechanism of action investigations with the gangliosides, linckosides and shimalactones might
possibly help develop these chemicals as potentially new medicines for the treatment of
neurodegenerative diseases.

As shown in Table 2, the conotoxins αD-VxXIIA, αD-VxXIIB, and αD-VxXIIC, conopeptide
SO-3 and dysiherbaine, were shown to target receptors present in the nervous system.

Loughnan and colleagues [126] reported three novel conotoxins αD-VxXIIA, αD-VxXIIB,
and αD-VxXIIC (114–116), purified from the venom of the marine snail Conus vexillum. A
detailed series of mechanistic studies revealed that the three post-translationally modified
conotoxins were non-competitive inhibitors of nicotinic acetylcholine receptors with
selectivity towards α7 and β-containing neuronal receptor subtypes, and with αD-VxXIIB
conotoxin being the most potent (IC50=0.4 nM for α7). Wen and colleagues [127] described a
new O-superfamily conopeptide SO-3 (117), derived from the marine snail Conus striatus.
Because the new conopeptide was shown to selectively target N-type voltage-sensitive calcium
currents in cultured hippocampal neurons (IC50=0.16 μM), the authors suggested that it may
have “therapeutic potential as a novel analgesic agent”. Sanders and colleagues [128,129]
extended the pharmacology of dysiherbaines (118,119), potent kainate receptor agonists
derived from the marine sponge Dysidea herbacea. Detailed molecular studies revealed the
site residues responsible for subunit selectivity of the two compounds on kainate receptors,
observations which could aid in the rational design of “selective ligands with distinct
pharmacological properties”. Tsuneki and colleagues [130] investigated the preclinical
pharmacology of the marine quinolizidine alkaloid (−) pictamine (120), isolated from the
ascidian Clavelina picta. Pictamine irreversibly blocked α4β2 and α7 nicotinic acetylcholine
receptors (IC50= 1.5 μM), and thus could become a valuable tool to study neuronal activity
mediated by these two major types of nicotinic receptors.

As shown in Table 2, during 2005–6, additional marine compounds were reported to exhibit
pharmacological effects on the nervous system. Aiello and colleagues [131] established the
molecular pharmacology of a novel bromopyrrole alkaloid (121), isolated from the
Mediterranean sponge Axinella verrucosa. In a series of in vitro studies, the alkaloid was
observed to display potent neuroprotective activity against the agonists serotonin and
glutamate. Aiello and colleagues [132] also reported another marine natural product, namely
the alkaloid daminin (122) isolated from the Mediterranean sponge Axinella damicornis that
was observed to reduce Ca2+ levels in neuronal cells in vitro stimulated with either glutamic
acid or n-methyl-D-aspartate, agents that cause a strong rise in Ca2+ in these cells. Bringmann
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and colleagues [133] isolated a novel angucyclinone gephyromycin (123) from the bacterium
Streptomyces griseus. Gephyromcyin appeared to “represent a new potent glutamate agonist”
towards neuronal cells, and at 3 μg/mL caused significant increase in intracellular Ca2+

concentration, a response comparable to the potent glutamate agonist DCG-IV. To and
colleagues [134] while studying the mechanisms involved in neuronal outgrowth observed that
the alkaloid motuporamine C (124), isolated from the Papua New Guinea marine sponge
Xestospongia exigua, stimulated concentration-dependent neuronal growth cone collapse. The
intracellular signaling mechanisms involved significant upregulation of the Rho-Rho- kinase
collapse pathway, suggesting this compound might be useful to examine mechanisms “utilized
by neurons for outgrowth”. Temraz and colleagues [135] noted that Red Sea soft corals
Sarcophyton glaucum and Lobophyton crassum contained natural products which include
trigonelline (125), that increased the electrophysiological excitability of rat cultured dorsal
root ganglion neurons. The increased excitability was associated with enhanced KCl-evoked
Ca2+ influx consistent with an increase in action potential firing, perhaps contributing to
“chemical defenses”.

4. Marine Compounds with Miscellaneous Mechanisms of Action
Table 3 lists 58 marine compounds with miscellaneous pharmacological mechanisms of action,
and with their respective structures presented in Fig. 3. Because during 2005–2006 additional
pharmacological data were unavailable, it was not possible to assign these compounds to a
particular drug class as was the case for the compounds included in Tables 1 and 2.

As shown in Table 3, the pharmacological activity, respective IC50s, and a molecular
mechanism of action have been reported for 23 marine natural products: Agelas sp.
dibromopyrrole (126), adociaquinone B (127), barrettins (128 and 129), bromoageliferins
(130 and 131), chlorolissoclimide (132), fascaplysin analogue CA224 (133), hippuristanol
(134), liphagal ( 135), lukianol B (136), rubrolide (137), micropeptins (138 and 139),
pateamine (140), phlorofucofuroeckol A (141), purealin (142), Spongia sesterterpenoids
(143–145), squalamine analog (146), and xestospongin B (147) and C (148).

In contrast, although a pharmacological activity was described, and an IC50 for inhibition of
an enzyme or receptor determined, detailed molecular mechanism of action studies were
unavailable for the following 35 marine compounds included in Table 3: actiniarin B (149),
amphezonol A (150), ascochitine (151), briaexcavatin E and G (152 and 153),
brunsvicamides B and C (154 and 155), caulerpin (156), cortistatin A (157), cyanopeptolin
954 (158), dehydroluffariellolide diacid (159), O-methyl nakafuran-8-lactone (160), 2β,
3α-epitaondiol (161), fascaplysin (162), gorgosterols (163–165), hexylitaconic acid (166),
himeic acid A (167), kalihinol A (168), largamides D–G 169–172, peribysins E–G (173–
175), petrosamine B (176), phrygiasterol (177), Portieria hornemannii monoterpenes
(178 and 179), Sargassum micracanthum plastoquinone (180), scalaradial (181),
secomycalolide A (182), and Symphyocladia latiuscula bromophenol (183).

5. Reviews on marine pharmacology
Several reviews covering both general and specific subject areas of marine pharmacology were
published during 2005–6: (a) general marine pharmacology: biodiversity as a continuing
source of novel drug leads [136]; international collaboration in drug discovery and
development [137]; indole alkaloid marine natural products as a promising source of new drug
leads for multiple disease categories [138]; the biopotential of marine actinomycete diversity
and natural product discovery [139]; the renaissance of natural products as drug candidates
[140]; bioactive compounds from cyanobacteria and microalgae [141]; drug discovery from
natural sources [142]; a new resource for drug discovery: marine actinomycete bacteria
[143]; bioactive compounds from marine processing byproducts [144]; implications of marine

Mayer et al. Page 11

Biochim Biophys Acta. Author manuscript; available in PMC 2010 May 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



biotechnology on drug discovery [145]; (b) antimicrobial marine pharmacology: advances in
antimicrobial and antiangiogenic pharmacology of squalamine [146]; marine natural products
as anti-infective agents [147]; chemotyping/metabolomics use for metabolite profiling in
microbial drug discovery [148]; the status of natural products from fungi and their potential as
anti-infective agents [149]; (c) cardiovascular pharmacology: dietary long-chain omega-3
fatty acids of marine origin and their protective cardiovascular effects [150]; (d)
antituberculosis, antimalarial and antifungal marine pharmacology: compounds for infectious
diseases [151]; marine natural products against tuberculosis [152]; (e) antiviral marine
pharmacology: antiviral activities of polysaccharides from natural sources [153];
antiplasmodial marine natural products in the perspective of current chemotherapy and
prevention of malaria [154]; (f) anti-inflammatory marine pharmacology: therapeutic potential
of the antioxidative properties of coelenterazine, a marine bioluminescent substrate [155];
chemistry and biology of anti-inflammatory marine phospholipase A2 inhibitors [156]; the
structures, biosynthesis and pharmacology of the marine natural products of Pseudopterogoria
elisabethae [157]; chemistry and biology of anti-inflammatory marine natural products [158];
marine sponge metabolites for the control of inflammatory diseases [159]; antioxidant
metabolites from marine derived fungi [160]; (g) nervous system marine pharmacology: marine
compounds for the treatment of neurological disorders [161]; potential candidates for
Alzheimer’s disease [151]; novel pain relief via marine snails [162]; bryostatin-1:
pharmacology and therapeutic potential as a CNS drug [163], and (h) miscellaneous molecular
targets: V-ATPases as drug targets [164]; topoisomerase inhibitors of marine origin [165];
enzyme inhibitors from marine actinomycetes [166]; marine compounds as a new source for
glycogen kinase 3 inhibitors [167].

6. Conclusion
Four years after the approval of the marine compound ziconotide (Prialt®) by the U.S. Food
and Drug Administration [168], global research focused on the therapeutic potential of marine
natural products remains very active and sustained. The latest update on the clinical pipeline
of marine-derived agents is available at
http://marinepharmacology.midwestern.edu/clinDev.htm.

The current contribution to the marine pharmacology reviews series which was begun in 1998
[1–5], demonstrates that marine pharmacology research continued to proceed at a sustained
pace in 2005–2006, as a result of the active participation of natural product chemists and
pharmacologists from Argentina, Australia, Brazil, Canada, Chile, China, Colombia, Costa
Rica, Egypt, Finland, France, Germany, Greece, India, Indonesia, Israel, Italy, Japan, the
Netherlands, New Caledonia, New Zealand, Panama, Portugal, Russia, Slovenia, South Korea,
Spain, Sweden, Switzerland, Taiwan, United Kingdom, Uruguay, and the United States. Thus,
if the rate of preclinical and clinical pharmacological research continues, we anticipate that
more marine natural products will probably become potential leads for clinical development
as novel therapeutic agents for the treatment of multiple disease categories.
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Figure 1.
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Figure 2.
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Figure 3.
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