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Summary
Objectives—Researchers have often used rather simple approaches to analyze repeated time-to-
event health conditions that either examine time to the first event or treat multiple events as
independent. More sophisticated models have been developed, although previous applications have
focused largely on such outcomes having continuous risk intervals. Limitations of applying these
models include their difficulty in implementation without careful attention to forming the data
structures.

Methods—We first review time-to-event models for repeated events that are extensions of the Cox
model and frailty models. Next, we develop a way to efficiently set up the data structures with
discontinuous risk intervals for such models, which are more appropriate for many applications than
the continuous alternatives. Finally, we apply these models to a real dataset to investigate the effect
of gender on functional disability in a cohort of older persons. For comparison, we demonstrate
modeling time to the first event.

Results—The GEE Poisson, the Cox counting process, and the frailty models provided similar
parameter estimates of gender effect on functional disability, that is, women had increased risk of
bathing disability and other disability (disability in walking, dressing, or transferring) as compared
to men. These results, especially for other disability, were quite different from those provided by an
analysis of the first-event outcomes. However, the effect of gender was no longer significant in the
counting process model fully adjusted for covariates.

Conclusion—Modeling time to the first event only may not be adequate. After properly setting up
the data structures, repeated event models that account for the correlation between multiple events
within subjects, can be easily implemented with common statistical software packages.

Keywords
recurrent event; modeling; data structure; disability

1. Introduction
Recurrent health conditions, which are common in epidemiological and medical research, can
be classified as two types. The first type uses a continuous risk interval, which is appropriate
for discrete health conditions, such as myocardial infarction, where the first occurrence does
not preclude the possibility of a second occurrence immediately thereafter. Previously studies
have mostly focused on recurrent health conditions with continuous risk intervals [1–9].
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However, in medical research we more often encounter recurrent health conditions of a second
type, that is, ones with discontinuous risk intervals. Examples of such health conditions include
infections, disability episodes [10–12], hospitalizations, and nursing home admissions. When
subjects have disability, they are not at risk of the second episode of disability until they have
recovered from the first episode. To obtain valid estimates of incidence rates and model
parameters, the duration of the heath condition should be excluded from the risk set when
analyzing recurrent time-to-event outcomes with discontinuous risk intervals.

A systematic review of the literature [1] shows that researchers have often used rather naive
approaches to analyze data of recurrent health conditions that either examine time to the first
event only or treat multiple events as independent, thereby ignoring the correlation within
subjects. However, methods have been developed that make use of all available data, while
accounting for the lack of independence of multiple events within subjects. Popular approaches
fall into two families: variance-corrected models and frailty/random effects models [2].
Variance-corrected models were developed to account for correlation by using robust standard
errors. The correlation is of no substantive interest and is merely a nuisance parameter in
variance-corrected methods.The theory behind frailty models is that some subjects are
intrinsically more or less prone than others to experiencing the events of interest; frailty can
be considered a random covariate in the model that corrects dependence among the multiple
event times. Limitations of applying these variance-corrected models and frailty models
include their complexity and difficulty in implementation without careful attention to forming
the data structures, even with commercially available statistical software packages.

In this paper, we review six models for repeated time-to-event outcomes, and we demonstrate
how to efficiently create the data structures with discontinuous risk intervals. We focus on the
practical application of these techniques to generate the incidence rate, which is a core concept
in epidemiology [13]. As an illustration, we apply these models to investigate the effect of
gender on disability in essential activities of daily living (ADLs). We model bathing disability
and other disability (disability in walking, dressing, or transferring) separately to determine
whether bathing disability and other disability may differ by gender and the number of previous
disability episodes. Finally, we provide some general guidance for analyzing recurrent health
conditions with discontinuous risk intervals.

2. Data and Methods
2.1 Brief Description of the Models

We briefly describe four variance-corrected models and two frailty models in this section.

2.1.1 Poisson regression model—The Poisson regression model is frequently used to
study disease incidence and mortality [13]. The conditional mean of Y (number of events)
given T (person-time) is written as:

(1) Ln(Y|T) = Ln(T) + Xiβ, where Xiβ = β0 + β1x1 + … + βpxp and β is a vector of parameters
and Xi is a vector of fixed effects.

Liang and Zeger [14] developed a generalized estimating equation (GEE) method for the
analysis of repeated data, which is a quasi-likelihood method used for modeling binary or
discrete data. The GEE is a variance-corrected approach that requires the specification of a
working correlation to derive the robust estimator of variance.

2.1.2. Extended Cox models—We examined three models that were extensions [2,15] of
the Cox regression model [16]: counting process model (Anderson-Gill model or AG) [17],
conditional model A (Prentice-Williams-Peterson counting process model or PWP-CP) [18]
and conditional model B (Prentice-Williams-Peterson gap time model or PWP-GT) [18]. We
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calculated the robust sandwich variance estimators for standard errors of coefficients [19],
which do not require specification of the correlation matrix. The three formulas below follow
the general form of a Cox regression model where:

λik(t) represents the hazard function for the kth event of the ith subject at time t,

λ0 represents the common baseline hazard for all events,

λ0k represents the event-specific baseline hazard for the kth event, and

Xikβ represents the covariate vector (p fixed effects) for the ith subject with respect to the
kth event where Xik is the covariate matrix.

(2) Counting process model (AG): λik(t) = λ0(t)eXikβ

(3) Conditional model A (PWP-CP): λik(t) = λ0k(t)eXikβ

(4) Conditional model B (PWP-GT): λik(t) = λ0k(t – tk−1)eXikβ

The counting process model (AG) is a simple extension of the Cox model where a subject
contributes to the risk set for an event as long as s/he is under observation at the time the event
occurs and shares the same baseline hazards function. In the conditional models (PWP), a
subject is assumed not to be at risk for a subsequent event until a current event has terminated.
There are two variations of PWP that depend on how the starting point of the risk interval is
set. The conditional model A is similar to the counting process model but stratified by event.
The conditional model B is similar to the conditional model A but assumes all events start at
the time of study entry.

2.1.3. Frailty models—(5 and 6) λi(t) = λ0(t)eXiβ+Ziω, where Xi and Zi are the covariate
matrices and ω is a vector of unknown random effects that describe excess risk or frailty [2].
The distribution of p(ω) may be either log-Gamma or Gaussian, corresponding, respectively,
to the Gamma or Gaussian frailty model. The frailty or the random effect varies across subjects
but is constant over time within subject. Like the counting process model, the baseline hazard
function for the frailty models does not vary by event; but the coefficient estimates of treatment
effect from the frailty models may differ from those of the general Cox model or its extension
if there is a meaningful contribution of the random term.

2.2 Data Example
We used data from the Precipitating Events Project (PEP), a longitudinal study of 754
community-living persons, who were aged 70 years or older and nondisabled in four essential
ADLs (bathing, dressing, transferring, and walking) at baseline. There are two primary reasons
why we selected this data set: (1) PEP is designed to observe the recurrent nature of disability;
(2) we have previously implemented recurrent event models with this data set [10–12].
Complete details about the study design and the assessment of disability, including formal tests
of reliability and accuracy, can be found elsewhere [20]. Briefly, after a comprehensive home-
based assessment, subjects were interviewed monthly over the phone to ascertain disability
using standard questions. For each of the four essential ADLs, we asked, “At the present time,
do you need help from another person to (complete the task)?” Bathing disability was defined
as the inability to wash and dry one’s whole body without personal assistance. Other disability
was defined as the inability to dress, transfer from a chair, or walk inside the house. For this
analysis, we require that the disability (both bathing and other) persist for at least two
consecutive months, that is, a single month of disability was not considered as an outcome as
justified in an early report [21]. We examined the occurrence of disability over a period of 72
months. During the follow-up period, 213 (28.2%) participants died after a median follow up
of 40 months, and 32 (4.2%) dropped out of the study after a median follow-up of 21 months.
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Participants who died had more episodes of both bathing disability (p<0.001) and other
disability (p<0.001) as compared with those did not die during the follow-up period.

2.3 Data Structures
We define duration as the time between the start and end of a disability episode. An episode
(event) of disability had to be preceded and followed by a time period with no disability except
in the case of death and at the end of the 72-month follow-up period. Figure 1 provides
information on five hypothetical study subjects (more complete details are provided in
Appendix A). Subject 1 died after 20 months of follow-up without having a disability event,
while subject 2 was censored at the end of follow-up (72 months) without having an event.
Subject 3 had one event at 68 months. Subject 4 had two events at months 10 and 46 with
durations of 4 months and 7 months, respectively. Subject 5 had four events at months 4, 20,
36, and 46. The corresponding durations were 3, 4, 4, and 18 months.

The data structures presented in Table 1 are based on the counting process data structure frame
[4,22,23]. The idea is to divide the follow-up period into intervals based on disability episodes.
The data are organized as one record per subject per event. The data structure for the counting
process model consists of the first four columns in Table 1. A subject with multiple events is
considered as multiple subjects for analytic purposes. For example, subject 5 in Table 1 is
considered as five subjects: the first begins follow-up at time 0 and has an event at 4 months;
the second has delayed entry at 7 months and is followed until an event occurs at 20 months;
the third has delayed entry at 24 months and is followed until an event occurs at 36 months;
the fourth has delayed entry at 40 months and is followed until an event occurs at 46 months;
and the fifth subject has delayed entry at 64 months and is followed through 72 months without
having an event. Because the counting process model does not consider the order of the events,
it does not use the ‘interval’ column.

In the conditional models, a subject is assumed not to be at risk for a subsequent event until
the current event has terminated. In other words, one cannot be at risk for the second event
without having experienced and completed the first event. The data structure for conditional
model A is similar to that of the counting process model except that the fifth column in Table
1 is also used to identify the event interval. Conditional model B also uses time since the
previous event (similar to model A) but the clock is reset to zero after each event interval. The
data structure for conditional model B uses the first five columns of Table 1 but replaces ‘start’
with zero and ‘end’ with ‘time’ (see SAS and S_PLUS codes in Appendix B).

2.4 Incidence Rate of Repeated Events
The incidence rate (density function), i.e., the number of events per 1000 person-months, can

be easily calculated from Table 1 as follows  where: eventij is the event status
(1 or 0) for the ith subject in the jth interval; timeij is the time at risk for the ith subject in the
jth interval; and n is the number of subjects. The 95% confidence intervals (CIs) were calculated
by bootstrapping samples with replacement, using the entire cohort. One thousand samples
were created, and the 2.5th and 97.5th percentiles were used to form the CIs.

2.5 Relative Risk
We used the relative risks (RRs) to assess the effect of gender (women vs. men) on the
development of disability. The RRs were calculated from the incidence rates (the incidence
rate among women divided by the incidence rate among men) or were estimated by
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exponentiating the coefficients from the models as described above. The 95% CIs for the RRs
based on the incidence rates were calculated by bootstrapping 1000 samples with replacement.
The 95% CIs for the RRs based on the models were derived from robust variances.

2.6 Counting Process Model (AG) with Time-varying Covariates
As an illustration we ran a full counting process Cox model with time-varying covariates. We
chose the counting process model because of its broader application in medicine and its greater
suitability to disability data. The data structure with time-varying variable is listed in the
Appendix. The covariates selected based on our previous publications [10–12,21] were age in
year at baseline, non-Hispanic white (vs. other races), education (years), living alone (vs. living
with others), number of the nine chronic conditions (hypertension, myocardial infarction,
congestive heart failure, stroke, diabetes mellitus, arthritis, hip fracture, chronic lung disease,
and cancer), cognitive impairment (a score less than 24 on the Folstein Mini-Mental State
Examination (MMSE)) [24], slow gait (< 10 seconds to walk back and forth over a 10-ft [3-
meter] course as quickly as possible)[25] and depression symptoms (a scored 16 or higher on
the CES-D)[26]. For comparison, we ran two separate models without and with the number of
previous disability episodes.

3. Results
Table 2 provides information on the number, duration, and incidence of bathing disability and
other disability for all subjects and by gender. About 60% of subjects did not develop an episode
of bathing disability over the follow-up period, about 20% had only one episode, and 5% had
4 or more episodes. Similar results were found for other disability. As compared with men,
women had more episodes of both bathing disability and other disability (both p<0.001, Chi-
Square test).

Among all participants, the incidence rates for bathing disability and other disability were
comparable (Table 2). As compared with men, women had higher incidence rates of both
bathing disability and other disability, although the difference between women and men was
not statistically significant for other disability based on the 95% CI. The RRs for gender
(women vs. men) based on the incidence rates were 1.74 (1.33–2.27) for bathing disability and
1.36 (0.99–1.90) for other disability.

Table 3 provides the estimates for the effect of gender on the development of disability
(unadjusted or adjusted for the number of previous events). The GEE Poisson and counting
process models generated very similar results. After adjustment for the number of previous
events (column ‘PrevEvent’ in Table 1) in the GEE Poisson and counting process models, the
effect of gender on other disability did not change but was reduced for bathing disability.

The RRs from the two conditional models were smaller than those from the GEE Poisson and
counting process (unadjusted for the number of previous events) models for both bathing
disability and other disability (Table 3). The RRs from the two frailty models were similar to
those from the GEE Poisson and counting process (unadjusted) models for both bathing
disability and other disability (Table 3). This suggests that there may not be a strong random
effect in this example that affects the coefficient estimate for gender.

We also estimated the effect of gender on the development of both bathing disability and other
disability with the first-event approach, which only modeling time to the first event (Table 3).
The RRs from the first-event approach, especially for other disability, were much smaller than
those based on the GEE Poisson, the counting process (unadjusted), and the frailty models.
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Table 4 listed the results of a full counting process model (AG) with time-varying covariates
for both bathing disability and other disability. The effect of gender was no longer significant
for bathing disability after fully adjusted for covariates including number of previous disability
episodes.

4. Discussion
Although rather simple approaches, which examine time to the first event or treat multiple
events within subjects as independent, have been commonly used to analyze recurrent event
data1, more sophistical methods have been developed that make use of all available data while
accounting for the lack of independence among the recurrent events [2–9]. These models have
also been applied in other disciplines and research areas [27–29]. We have demonstrated how
to efficiently create the data structures with discontinuous risk intervals for these more
sophisticated methods and to interpret the corresponding model results. For these analyses, the
duration of the episode must be taken into account and excluded from the risk set. The basic
counting process data structure that we have presented is easy to understand and master; and
the incidence rates for repeated events can be easily calculated after forming the data structures.
This counting process data structure and the corresponding models can easily incorporate
multiple variables including those that are time-dependent (Appendix C).

The counting process and GEE Poisson models showed, as expected given the mathematical
relationship between the two models [30], consistently similar results for both bathing
disability and other disability. The counting process (or AG) model is simple and easy to
understand, requires few assumptions, and is comparably robust as the traditional Cox
regression model. Based on the results of simulated data, Therneau and colleagues [2,4] have
recommended the counting process model because of its efficiency and reliability. The choice
between the counting process model and conditional models can depend on several factors,
including: (1) the relationship between first event and subsequent events; (2) the set of
covariates, especially those that are time-dependent; (3) the number of subjects without any
event; and (4) whether an overall effect is of interest. Based on our experience [10–12], the
counting process (or AG) model, with careful consideration of covariates, has broader
application in epidemiological and medical research if one is interested in the overall effect,
such as the treatment effect in a clinical trial, and if there is no clear biological mechanism
underlying the relation between the first event and subsequent events. The conditional models
assume that a subject is at risk for a subsequent event only if s/he has experienced a previous
event. These models could significantly underestimate the overall effect if there is no strong
biological relationship between events, especially in a sample that includes a large number of
subjects with no event, as illustrated in our example for other disability. However, if there is
a strong biological relationship between the first and subsequent events (e.g. an initial viral
infection may reduce the risk of a subsequent viral infection because of the development of
immunity), and if one is more interested in the separate risk for these events, then conditional
models might be considered. We are focusing on the clinical relevance of the models. There
are good reviews regarding the mathematical comparison and interpretations of the models
[2,3,27–29].

Although frailty models generated similar results as GEE Poisson and counting process models
in this study, procedures to specify a distribution of frailty, which certainly affects coefficient
estimates, have not been published. We did not consider the marginal model (LWL) [31], which
is similar to conditional model A because the underlying assumption that a subject is at risk
for all events simultaneously was not applicable in our example, and is less likely to be widely
applicable in medical research. Furthermore, the model often overestimates the overall effect
[6]. Our primary aim was to practically model recurrent events of the same type, which has
broader applicability in clinical medicine. When there are situations where multiple events of
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different types are of interest or multiple events of the same type can occur at the same time,
then one should consider more complicated models that may incorporate the nature of both
variance-corrected models and frailty/random effects models or consider both the
heterogeneity between subjects and event correlation within subject. These topics, however,
are beyond the scope of the current paper. Because of space constraints, we could not formally
evaluate the effect of informative censoring. We found that participants who died had more
episodes of both bathing disability and other disability as compared with those who did not die
during the follow-up period. These findings suggest that drop out due to death, which was
about 28%, might be informative and, hence, could have affected our results. However,
concerns about informative censoring are diminished by the frequency of our assessments,
which ensured that disability status was known within a month of death. One way to analyze
how drop out due to death could affect the results is to do sensitivity analysis, by assuming
that all persons were disabled or nondisabled, respectively, at the time of death. Another way
is to model both disability and death simultaneously as we have done in an earlier study [12].

There is increasing evidence that modeling time to the first event is not adequate [2]. Our results
indicate that the first event approach may generate biased results. All models with the first
event approach showed that there is no association between gender and the development of
other disability. However, all the models for multiple events suggested a clear relationship
between gender and other disability, although the relation with other disability was weaker
than that with bathing disability.

5. Conclusion
In summary, analyzing repeated event times requires accounting for the correlation between
multiple events within subjects. Although there are a number of approaches available for
analyzing recurrent events, the counting process model, which is a simple extension of the Cox
model, is fairly robust and easy to interpret in accordance with the Poisson model and the
incidence rate. One can include the previous events as covariates to further correct the
dependence between the events within subject if one believes the occurrence of the previous
events may influence the occurrence of current events. The counting process model should be
the primary choice, especially if one is interested in the overall effect such as the treatment
effect in a clinical trial. However, if one strongly believes that there is biological relationship
between the first event and subsequent events and if one is more interested in modeling separate
risk for specific event, the condition models should be considered. Forming data structures is
critical to proper modeling and the duration of an event has to be excluded from the risk set in
analyzing multiple failure events with discontinuous risk intervals.
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Fig. 1.
Disability data over the period of 72 months for five hypothetical subjects.
Dots denote episodes of disability; the values indicate the starting and ending months of each
episode.
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Table 2
Episodes of bathing and other disability by gender

All (N=754) Women (N=487) Men (N=267)

Episodes of bathing disability per person,
n (%)

    0 443 (58.8) 270 (55.4) 173 (64.8)

    1 159 (21.1) 100 (20.5) 59 (22.1)

    2 72 (9.5) 52 (10.7) 20 (7.5)

    3 42 (5.6) 32 (6.6) 10 (3.7)

    ≥4 38 (5.0) 33 (6.8) 5 (1.9)

Total no. of episodes 631 479 152

Duration of episode, mean (median) 8.8 (4.0) 9.1 (4.0) 7.7 (3.0)

Incidence rate (95% CI) 15.7 (13.6–17.9) 18.5 (15.7–21.5) 10.6 (8.3–13.0)

Episodes of other disability* per person,
n (%)

    0 466 (61.8) 295 (60.6) 171 (64.0)

    1 143 (19.0) 86 (17.7) 57 (21.3)

    2 66 (8.8) 46 (9.4) 20 (7.5)

    3 41 (5.4) 28 (5.7) 13 (4.9)

    ≥4 38 (5.0) 32 (6.6) 6 (2.2)

Total no. of episodes 626 450 176

Duration of episode, mean (median) 6.5 (3.0) 6.8 (3.0) 5.7 (3.0)

Incidence rate (95% CI) 15.0 (13.1–17.2) 16.5 (14.0–19.6) 12.2 (9.2–15.6)

*
Includes disability in walking, dressing, or transferring.
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Table 3
Effect of gender (women vs. men) on disability estimated from various models

Bathing disability
(RR and 95% CI) *

Other disability
(RR and 95% CI)*

GEE Poisson model 1.74 (1.32–2.29) 1.36 (1.00–1.85)

GEE Poisson model** 1.38 (1.06–1.79) 1.42 (1.12–1.81)

Extended Cox model

    Counting process 1.74 (1.32–2.30) 1.36 (1.00–1.85)

    Counting process** 1.37 (1.06–1.77) 1.39 (1.09–1.78)

    Conditional model A 1.35 (1.09–1.67) 1.25 (1.01–1.54)

    Conditional model B 1.27 (1.05–1.53) 1.18 (0.99–1.41)

Frailty model

    Gamma 1.87 (1.56–2.24) 1.41 (1.19–1.68)

    Gaussian 1.76 (1.47–2.12) 1.37 (1.15–1.64)

First event

    Poisson model 1.31 (1.03–1.67) 1.06 (0.83–1.35)

    Cox model 1.30 (1.02–1.66) 1.05 (0.82–1.34)

    Gamma frailty model 1.30 (1.03–1.66) 1.05 (0.82–1.34)

    Gaussian frailty model 1.31 (1.03–1.67) 1.05 (0.82–1.34)

*
Relative risk (95% confidence interval) calculated by exponentiating the coefficients of gender from the models.

**
Adjusted for the number of previous disability episodes; all others are univariate models.
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Table 4
Counting process models (AG) with time-varying covariates

Bathing disability
(RR and 95% CI)*

Other disability
(RR and 95% CI)*

Model without number of previous disability episodes

Women (vs. men) 1.25 (1.01–1.55) 1.04 (0.84–1.28)

Age at baseline (years) 1.04 (1.02–1.06) 1.03 (1.02–1.05)

Non-Hispanic white (vs. other races) 1.26 (0.91–1.74) 1.31 (0.93–1.86)

Education (years) 1.01 (0.98–1.05) 1.01 (0.97–1.04)

Living alone** 0.80 (0.66–0.98) 0.77 (0.64–0.93)

Number of chronic conditions** 1.24 (1.16–1.33) 1.16 (1.08–1.25)

Cognitive impairment (MMSE<24)** 1.29 (0.98–1.68) 1.16 (0.91–1.48)

Slow gait** 2.72 (2.21–3.35) 2.75 (2.22–3.42)

Depression symptom** 1.49 (1.24–1.79) 1.47 (1.21–1.80)

Model with number of previous disability episodes

Women (vs. men) 1.15 (0.96–1.39) 1.01 (0.86–1.19)

Age at baseline (years) 1.04 (1.02–1.05) 1.03 (1.01–1.04)

Non-Hispanic white (vs. other races) 1.16 (0.87–1.54) 1.14 (0.87–1.51)

Education (years) 1.01 (0.98–1.04) 1.01 (0.99–1.04)

Living alone** 0.89 (0.75–1.06) 0.84 (0.72–0.97)

Number of chronic conditions** 1.18 (1.10–1.25) 1.13 (1.07–1.19)

Cognitive impairment (MMSE<24) ** 1.22 (0.96–1.55) 1.07 (0.89–1.30)

Slow gait** 2.45 (2.01–2.99) 2.29 (1.89–2.77)

Depression symptom** 1.33 (1.14–1.57) 1.32 (1.13–1.54)

Number of previous disability episodes 1.13 (1.09–1.17) 1.18 (1.15–1.21)

*
Relative risk (95% confidence interval) calculated by exponentiating the coefficients.

**
Time-varying covariates whose detailed descriptions are in section 2.6.
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Appendix B
SAS and S_PLUS codes [32,33] for modeling repeated and first time-to-event outcomes. Variables are in bold font
and are defined in the footnote blow (see the data structures in Table 1).

SAS code S_PLUS code

GEE Poisson model proc genmod data=dataname;
class ptid;
model event=female / dist=p offset=myoffset;
repeated subject=ptid;
run;
(myoffset = log(time)).

glm(event ~ offset(log(time)) + female, data =
dataname, corstr = “exch”, family=poisson)
(For GEE Poisson model, please see ‘gee’ function in R at
http://www.r-project.org/)

Extension of Cox model

    Counting process proc phreg data=dataname covs(aggregate) covm;
model (start end)*event(0)=female / ties=exact;
id ptid;
run;

coxph(surv(start, end, event) ~ female + cluster(ptid),
data=dataname)

    Conditional model A proc phreg data=dataname covs(aggregate) covm;
model (start end)*event(0)=female/ ties=exact;
strata interval;
id ptid;
run;

coxph(surv(start, end, event) ~ female + strata(interval),
+ cluster(ptid), data=dataname)

    Conditional model B proc phreg data=dataname covs(aggregate) covm;
model (start end)*event(0)=female/ ties=exact;
strata interval;
id ptid;
run;
(start=0, end=time)

coxph(surv(start, end, event) ~ female + strata(interval),
+ cluster(ptid), data=dataname) (start=0, end=time)

    Conditional model B
(simple codes)

proc phreg data=dataname covs(aggregate) covm;
model time*event(0)=female/ ties=exact;
strata interval;
id ptid;
run;

coxph(surv(time, event) ~ female + strata(interval), +
cluster(ptid), data=dataname)

Frailty model

    Gamma (please see SAS procedure NLMIXED of SAS/STAT at
‘http://support.sas.com/onlinedoc/913/docMainpage.jsp’)

coxph(surv(start, end, event) ~ female + frailty(ptid),
data=dataname)

    Gaussian (please see SAS procedure NLMIXED of SAS/STAT at
‘http://support.sas.com/onlinedoc/913/docMainpage.jsp’)

coxph(Surv(start, end, event) ~ female + frailty(ptid,
dist=“gauss”), data=dataname)

First event

    Poisson model proc genmod data=dataname;
where interval=1;
model event=female / dist=p offset=myoffset;
run;
(myoffset = log(time)).

glm(event ~
offset(log(time)) + female, data = dataname, corstr =
“exch”, family=poisson)

    Cox model proc phreg data=dataname;
where interval=1;
model (start end)*event(0)= female/ ties=exact;
run;

coxph(surv(start, end, event) ~ female + cluster(ptid),
data=dataname)

    Gamma frailty model (please see SAS procedure NLMIXED of SAS/STAT at
‘http://support.sas.com/onlinedoc/913/docMainpage.jsp’)

coxph(surv(start, end, event) ~ female + frailty(ptid),
data=dataname)

    Gaussian frailty model (please see SAS procedure NLMIXED of SAS/STAT at
‘http://support.sas.com/onlinedoc/913/docMainpage.jsp’)

coxph(Surv(start, end, event) ~ female + frailty(ptid,
dist=“gauss”), data=dataname)

Dataname, name of the data set.
PTID, study subject identification number.
Start, the start time of the interval (in months).
End, the time (in months) at which the event occurs or the time of censoring (death, drop-out, or the end of study).
Event, the occurrence of disability event (yes=1, no=0).
Interval, the order of the events.
Time, the number of months at risk that is calculated from the columns ‘Start’ and ‘End’.

MMSE, the Mini-Mental State Examination27, which was measured every 18 months in the PEP study, is a brief cognitive test with possible scores
ranging from 0 (worse) to 30 (best).
Female, women=1, men=0.
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