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Abstract This theoretical scheme is intended to formu-

late a potential method for high fidelity synthesis of

Nucleic Acid molecules towards a few thousand bases

using an enzyme system. Terminal Deoxyribonucleotidyl

Transferase, which adds a nucleotide to the 30OH end of a

Nucleic Acid molecule, may be used in combination with a

controlled method for nucleotide addition and degradation,

to synthesize a predefined Nucleic Acid sequence. A pH

control system is suggested to regulate the sequential

activity switching of different enzymes in the synthetic

scheme. Current practice of synthetic biology is cumber-

some, expensive and often error prone owing to the

dependence on the ligation of short oligonucleotides to

fabricate functional genetic parts. The projected scheme is

likely to render synthetic genomics appreciably convenient

and economic by providing longer DNA molecules to start

with.
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Abbreviations

30AcdN 30 Acetyl deoxyribo nucleoside

30AcdNA 30 Acetyl deoxyribo nucleic acid

30AcdNDP 30 Acetyl deoxyribo nucleoside di phosphate

30AcdNMP 30 Acetyl deoxyribo nucleoside mono

phosphate

30AcdNTP 30 Acetyl deoxyribo nucleoside tri phosphate

Ac Acetyl group

AcOH Acetic acid (in equilibrium with acetate)

AE Acetylesterase, deacetylase (EC: 3.1.1.6)

AP Acid phosphatase (EC: 3.1.3.2)

DNA Deoxyribo nucleic acid

dNTP Deoxyribo nucleoside tri phosphate

ds Double strand

ID Inorganic diphosphatase (EC: 3.6.1.1)

Kb Kilobase

Mb Megabase

NA Nucleic acid

NTP Ribo nucleoside tri phosphate

P Phosphate group

PCR Polymerase chain reaction

RNA Ribo nucleic acid

ss Single strand

TdT Terminal deoxynucleotidyl transferase, DNA

nucleotidyl exotransferase (EC: 2.7.7.31)

Introduction

To a great extent the progress in biotechnology and basic

biomedical research has been centralized on the major

advances in DNA synthesis and sequencing. Elucidation of

the genetic code (Khorana 1968), production of synthetic

gene (Agarwal et al. 1974), widespread use of PCR

(Kleppe et al. 1971; Saiki et al. 1988), sequencing of the

human genome (Venter et al. 2001; Lander et al. 2001),

and the synthesis of whole genome of a microorganism

(Gibson et al. 2008) are powerful examples. These
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applications along with many others have pivotally

depended on the ability to synthesize short oligonucleo-

tides, used as primers, typically ssDNA 10–80 base in

length (Caruthers 1985).

The widespread application of synthetic biology is

essentially limited by the complexity and cost of assem-

bling short oligonucleotides into longer functional DNA

(Endy 2005). In addition to whole genomes (Hutchison

et al. 1999; Smith et al. 2003; Gibson et al. 2008), con-

struction of entire biochemical pathways (Martin et al.

2003; Mehl et al. 2003; Kodumal et al. 2004) and genetic

circuitry (Elowitz and Leibler 2000; Sprinzak and Elowitz

2005) are illustrative of synthetic biology requiring syn-

thesis of far more than a single gene. Therefore, the rapid

availability of predefined DNA, more than 1 Mb in length

at a cost per base comparable to or less than oligonucleo-

tides is greatly appealing. Despite important progress in

this direction through building large numbers of genes by

harnessing the massively parallel form of oligonucleotide

synthesis to produce microarrays (Richmond et al. 2004;

Tian et al. 2004), still the procedures depend on the

chemical synthesis of short oligos. Thus the availability of

longer DNA molecules is in principle restricted by the

inherent limit of the chemical processes for oligonucleotide

synthesis.

The error rate of synthesizing oligonucleotides is also of

immense importance. At an error rate of 1 in 600 bp, it is

required to sequence 10 clones to get a DNA construct of

1 Kb and 100 clones for 2 Kb (Baedeker and Schulz 1999;

Withers-Martinez et al. 1999; Hoover and Lubkowski 2002;

Chalmers and Curnow 2001). Thus large target fabrication is

extremely difficult and error prone at this rate (Cello et al.

2002). The error was reduced to 1 in 1,400 bp by Tian et al.

(2004) using microchip based multiplex synthesis. Protein

mediated error correction has been utilized to reduce the rate

further to 1 in 10,000 bp (Carr et al. 2004).

If the starting material is precise DNA molecules 1–10 Kb

in length rather than *50 bases, the speed and over all

efficiency of synthetic genomics would tremendously

increase because synthesis of longer constructs would be

possible with fewer clones and sequencing. An extensive

application of synthetic genes would be possible with a more

convenient and reliable process for their fabrication. Thus an

investigation for an efficient synthetic scheme is worth

pursuing.

An attempt to delineate the necessary properties of a

successful long DNA synthesis process leads to some salient

features. Firstly, the error rate should be less than 10-4 in

order to allow convenient synthesis of DNA constructs

around 105 bp in length. Second, the maximum synthesiz-

able length of DNA should be greater than 105 as current

protocols allow transformation with DNA constructs of up to

3 9 105 - 20 9 105 bp in length (Glick and Pasternak

2003). These features indicate that preferably an enzymatic

system might be successful. Moreover, enzymatic systems

would in principle be more specific and efficient than

chemical processes (Sitnitsky 2006). However, the enzymes

those can synthesize DNA without templates are not con-

trolled. For example TdT will add a homopolymeric tract

of nucleotides when provided with a primer and a single type

of NTP (Bollum 1978; Ratliff 1981). When provided with

a mixture of nucleotides and a primer, TdT act as a ran-

dom-sequence generator (Bollum 1978; Ratliff 1981). The

physiological role of TdT conform to this random

sequence generation as it provides additional variations in

hematopoetic cells through acting as a somatic mutator,

diversifying the amino acid sequence in the variable region

of immunoglobulin molecules (Ratliff 1981).

TdT has already been utilized in genomics. It has been

used for the production of synthetic homo and heteropoly-

mers (Bollum 1974), homopolymeric tailing of linear duplex

DNA (Deng and Wu 1983; Eschenfeldt et al. 1987), oligo-

deoxyribonucleotide and DNA labeling (Deng and Wu

1983; Tu and Cohen 1980; Vincent et al. 1982; Kumar et al.

1988; Igloi and Schiefermayr 1993), rapid amplification of

cDNA ends (Frohman et al. 1988) and in situ localization of

apoptosis (Gorczyca et al. 1993). Scheele and Fukuoka

(1992, 1997) used TdT to add homopolymeric oligo dC tract

to 30 end of ss linear DNA in order to facilitate synthesis of

ds linear DNA using oligo dG primer. However, no attempt

to use TdT to synthesize a defined DNA sequence has been

reported. Perhaps the random sequence generation by TdT in

an uncontrolled system has prevented this.

Here a theoretical model for predefined long DNA

synthesis based on TdT is proposed. The scheme depends

on the addition of 30AcdNTP to the 30-OH end of a DNA.

The Ac group is suggested to prevent polymer formation

and thus prevent the chain extension to a single base in

each cycle (Fig. 1). After extension the pH of the system is

decreased to activate AE and AP while TdT would be

deactivated. AP would hydrolyze excess 30AcdNTP while

AE would remove the Ac groups. Then dialysis would

render the small molecules out of the system. Dialysis

would also elevate the pH to activate TdT and deactivate

AE and AP. Thus a new cycle of extension can be initiated

by addition of 30AcdNTP. Theoretical analysis based on

available data suggests the scheme to be highly promising

in synthesizing long DNA molecules.

Methods

The scheme

Synthesis of a predefined DNA sequence requires the

addition of a single known nucleotide at each step to a
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given nucleic acid polymer. Thus the problem is essentially

reduced to formulating a system such that:

DNAn �!
Enzyme Systems

DNAnþ1

is allowed, while:

DNAn �!
Enzyme Systems

DNA [ nþ1

is forbidden. Also the allowed reaction should be virtually

complete such that no unextended DNA can go through the

second round. Searching for enzymes able to extend DNA

molecules in the BRENDA enzyme database (Schomburg

et al. 2002, 2004; Barthelmes et al. 2007) TdT (EC:

2.7.7.31) was selected to be a potential enzyme because it

can add nucleotides to the 30-OH group of DNA several Kb

long and can add modified bases.

In order to prevent formation of a homopolymeric tract

the 30-OH group of the incoming nucleotide should be

blocked. Methyl and acetyl groups are extensively used as

OH protecting groups. Due to the promising convenience of

deprotection by acetylesterase (EC: 3.1.1.6); acetyl group is

expected to be a better candidate. Thus, instead of dNTP the

DNA primer is to be elongated by addition of a 30AcdNTP

catalyzed by TdT. There is lack of KM and Kcat data of TdT

with 30AcdNTP. Nevertheless, the accommodation of

modified bases by TdT indicates a high possibility of addi-

tion of a single 30AcdNTP to 30-OH end of a DNA.

Now the completion of the reaction remains a problem.

TdT has Km value of 3 9 10-4 mM for oligonucleotide

primers at pH 8.2 in the presence of Mn?2 (Coleman 1977)

and turnover number 0.833 for ATP (Bollum 1974). Thus

TdT should be present in a high molar ratio with respect to

primers in order to ensure the completeness of the reaction.

Further, the polymerization reaction would be energetically

favorable as pyrophosphate may be quickly removed by

hydrolysis.

A new cycle of base addition must be preceded by

removal of excess 30AcdNTP and deprotection of the 30OH

group of the extended DNA. Acid phosphatase (EC: 3.1.3.2)

is a suitable candidate for hydrolysis of excess 30AcdNTP

while acetylesterase is preferred for deprotection.

DNAn þ 30AcdNTP�!TdT
30AcDNAnþ1 þ PP

PP�!AP
2P

30AcdNTP�!AP
Pþ 30AcdNDP�!AP

2Pþ 30AcdNMP

30AcDNAnþ1�!
AE

AcOH þ DNAnþ1

However the process raises problem regarding precise

temporal order. As depicted in Fig. 2, if the protective Ac

group is removed before complete hydrolysis of

30AcdNTP, additional bases may add to the extended

DNA. Moreover AE deacetylates wide range substrates.

Thus 30AcdNTP may become deacetylated before

incorporation into DNA. This event would also fail the

objective. Thus TdT must be inactive when AE is active

and vice versa. Bovine TdT has a pH optimum at 7.5 and

has limited activity below pH 6.9 (Coleman 1977) however

it is stable at pH down to 4.5. On the other hand Aspergillus

niger AE has a pH optimum of 5.5 with limited activity

over pH 6 (Kormelink et al. 1993). A. niger AE is however

stable at pH 8. Therefore, the elongation step should be

catalyzed by TdT at pH 7.5 while the deprotection step

should take place at pH 5.5.

Penicillium chryrsogenum acid phosphatase has pH

optimum at pH 5.5 (Haas et al. 1991). Therefore it is

expected to be an efficient scavenger of excess 30AcdNTP

after elongation. E. coli inorganic diphosphatase (EC:

3.6.1.1) has pH optimum at pH 7.5 (Vainonen et al. 2005).

Thus it can be utilized to hydrolyze pyrophosphate formed

during elongation by TdT.
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Fig. 1 Simplified scheme for

TdT based DNA synthesis
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DNAn þ 30AcdNTP �!
TdT, pH7:5

30AcDNAnþ1 þ PP

PP �!
ID, pH 7:5

2P

30AcdNTP �!
AP, pH 5:5

Pþ 30AcdNDP �!
AP, pH 5:5

2Pþ 30AcdNMP

30AcDNAnþ1 �!
AE, pH 5:5

AcOHþ DNAnþ1

The rapid change is pH demanded by such a pH controlled

system would be very difficult to achieve in a traditional

reactor system. A nanoreactor would provide distinctive

advantage of rapid condition alteration. Thus, the enzyme

system in a nanoreactor coupled with pH regulation is a

promising one for template free long DNA synthesis.

Thermodynamics of the scheme

The free energy of the intended reactions would depend on

the concentration of the reactants and products. The choice

of reactant concentration is determined by the intended

concentration of the product. DNA concentration of

10-12 M is enough for most molecular biology protocols

(Sambrook and Russel 2001). In order to synthesize suffi-

cient amount of DNA for molecular biology protocols, here

we arbitrarily set the intended product concentration to be

10-9 M. For the sake of the completeness of the reaction

the initial concentrations in Table 1 are proposed.

In the reaction:

DNAn þ 30AcdNTP �!
TdT, pH7:5

30AcdNAnþ1 þ PP

A phosphodiester bond is synthesized while an ester

bond between a and b phosphate of the 30AcdNTP is

hydrolyzed. The DGo/ of synthesizing a phosphodiester
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Deacetylation before 
removal of excess 3'AcNTP

Extension with a homopolymeric tract of indefinite length

 No deacetylation before 
removal of excess 3'AcNTP

Extension with a single 3' acetylated nucleotide

Fig. 2 Lack of precise temporal

order in removal of excess

modified NTP and deacetylation

may lead to unintended chain

elongation

Table 1 Proposed initial con-

centration of reactants in the

synthetic scheme

Species Initial

concentration

(M)

Primer

(DNAn)

10-9

30AcdNTP 10-8

TdT 10-8

PP \10-12

P \10-12

30AcDNAn?1 \10-15

DNAn?1 \10-15

AcOH 10-8

H2O 55.5

30AcdNMP 10-8

TdT 10-8
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bond is ?22.2 KJ mol-1 (Dickson et al. 2000) while DGo/

of hydrolyzing bond between a and b phosphate of

nucleotides is -32.2 KJ mol-1 (Voet and Voet 2004).

Thus the DGo/ of the above reaction would be very close to

-10 KJ mol-1. For the concentrations of reactants in table

(1) the value of DG is -69.3 KJ mol-1.

In the next reaction:

PP �!
ID, pH 7:5

2P

An ester bond between two phosphate groups of a

pyrophosphate is hydrolyzed. DGo/ of this reaction is

-33.5 KJ mol-1(Voet and Voet 2004). For the concen-

trations of reactants in table (1) the value of DG is

-115.1 KJ mol-1.

The following reaction:

30AcdNTP �!
AP, pH 5:5

Pþ 30AcdNDP �!
AP, pH 5:5

2P

þ 30AcdNMP

Two high energy phosphate bonds are hydrolyzed. The

DGo/ of this reaction is -65.7 KJ mol-1 (Voet and Voet

2004). For the concentrations of reactants in table (1) the

value of DG is -181.4 KJ mol-1.

The following reaction:

30AcDNAnþ1 �!
AE, pH 5:5

AcOH þ DNAnþ1

breaks an ester bond and a H–OH bond while creates a

CH3C(O)–OH and a RO–H bond. The bond dissociation

energies of ester, H–OH, CH3C(O)–OH and RO–H bonds

are 433.1, 497.4, 456.2 and 425.1 KJ mol-1 respectively

(Luo 2007). Thus DHo of this reaction would be close to

?49.2 KJ mol-1. Both the products of the reaction are

soluble in water, thus the entropy of the reaction would

be positive in aqueous media. Therefore, DGo of this

reaction would be less than DHo. For the concentrations

of reactants in table (1) the value of DG should be less

than -44.2 KJ mol-1. Moreover, the activation energy

of hydrolysis of acetate ester in water is around

?40 KJ mol-1 at temperature 35–37�C (Aksnes and

Libanu 1991). Therefore, the reactants would be kinetically

stable in absence of an active catalyst.

Results

The study on enzyme properties and possible combinations

suggests that an enzymatic synthesis of predefined long

DNA molecule is theoretically plausible. Based on the

available data the process depicted in Fig. 3 is expected to

be successful. AcOH would be added to decrease the pH to

5.5 while dialysis in a buffer of pH 7.5 would serve mul-

tiple functions, including removal of AcOH, phosphate

groups, nucleosides and other small molecules in addition

to restoring the pH to 7.5.

Incubation time T1 would depend on the relative con-

centration of TdT, primer, 30AcdNTP and ID. The total

time required for completing a step of the synthetic scheme

would be determined according to the following equation:

tstep ¼ time required for pH switchingþ
time required for reaction completion

tstep ¼
0:6a2

D
þ 1

Kcat½E�0
KM ln

½S�1
½S�2
þ ð½S�1 � ½S�2Þ

� � ð1Þ

where, a is radius of the reactor, Kcat is turnover number of

the enzyme, D is diffusion coefficient of H? ions, [S]1 is

initial substrate concentration, [S]2 is intended final sub-

strate concentration, [E]0 is initial concentration of

enzyme, KM is Michaelis constant of the enzyme for the

substrate.

In order to complete pH switching within less than 0.1 s

the radius of the reactor should be less than 3:94� 10�3cm

with a volume less than 1:92� 10�7 ml or 0:19 nl: As an

enzyme catalyzed reaction is designed to take place in nano

liter volume, the reactor is named nanobioreactor. Use of

nanobioreactors would greatly reduce the time of pH

switching and thus lead to faster synthesis.

Incubation time T2 would depend on the size of the

reactor, Kcat[AP] and Kcat[AE]. The smaller the reactor the

less time would be necessary to activate AE and AP

through shift in pH. Moreover, a slow pH shift may lead to

a transitory period with both TdT, ID and AP, AE enzyme

pairs active; thus increase error rate. Therefore a rapid pH

change essential. Higher enzyme activity would decrease

the time required for complete hydrolysis of excess bases

and deprotection of 30-OH groups. Incubation time T3

pH=5.5pH=7.5

Activate Dialysis

Primer +TdT+AE+AP+ID

Add 3'AcdNTP

Incubate T1 Add AcOH Incubate T2

Incubate T3Inactivate Dialysis

N cycles

Long DNA moleculeFig. 3 Proposed protocol for

DNA synthesis utilizing the

scheme
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would depend mostly on the time required to restore the pH

back to 7.5. Thus the size of the reactor would again be an

important factor.

Number of possible cycles N would depend on the error

rate, which would in turn depend on the completeness of

reaction at each step. As reaction of each step in the cycle is

thermodynamically favorable, the completeness is in prin-

ciple warranted, provided with sufficient time. Since the KM

of TdT for oligonucleotide primer is in the range of 10-4, at

equivalent molar ratio with primer TdT is expected to make

less than 1 in 10,000 errors. The error rate may however

increase if incubation time T1 is longer due to slow pH shift.

Thus faster pH shift would maintain high fidelity.

Discussion

The scheme proposed here is a potentially efficient enzy-

matic method for de novo DNA synthesis. From available

data on the thermodynamics of the reactions and properties

of the involved enzymes, the scheme is theoretically fea-

sible. However, experimental demonstration would be

crucial for its practical application.

A major difficulty may be the low turnover number of

TdT with 30AcdNTP as substrate. From the reported results

of incorporation of modified bases by TdT (Deng and Wu

1983; Tu and Cohen 1980; Vincent et al. 1982; Kumar

et al. 1988; Igloi and Schiefermayr 1993), it is inferred that

TdT would accommodate an acetyl group. Recombinant

enzymes are likely to be available to circumvent the

problem in case native TdT does not incorporate 30Ac-

dNTP. Recombinant enzymes may also lead to a TdT with

higher affinity to primers further limiting the error rate.

Nanobioreactors with capabilities of rapid change in pH

would offer great advantage not only for this scheme but also

for synthetic methods requiring sequential temporal activity

switching of different sets of enzymes. Enzymatic correction

(Carr et al. 2004) may be used on the longer DNA sequen-

ces. This combination may limit the error further down to 1

in 150,000. The availability of longer DNA for gene

assembly would significantly increase the power and range

of synthetic genomics. Not only small microorganism gen-

omes, large genomes of higher organisms may also become

amenable to synthesis with longer starting material.
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