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ABSTRACT

Motivation: Rapidly expanding repositories of highly informative
genomic data have generated increasing interest in methods for
protein function prediction and inference of biological networks. The
successful application of supervised machine learning to these tasks
requires a gold standard for protein function: a trusted set of correct
examples, which can be used to assess performance through cross-
validation or other statistical approaches. Since gene annotation is
incomplete for even the best studied model organisms, the biological
reliability of such evaluations may be called into question.

Results: We address this concern by constructing and analyzing
an experimentally based gold standard through comprehensive
validation of protein function predictions for mitochondrion
biogenesis in Saccharomyces cerevisiae. Specifically, we determine
that (i) current machine learning approaches are able to generalize
and predict novel biology from an incomplete gold standard
and (i) incomplete functional annotations adversely affect the
evaluation of machine learning performance. While computational
approaches performed better than predicted in the face of
incomplete data, relative comparison of competing approaches—
even those employing the same training data—is problematic with
a sparse gold standard. Incomplete knowledge causes individual
methods’ performances to be differentially underestimated, resulting
in misleading performance evaluations. We provide a benchmark
gold standard for yeast mitochondria to complement current
databases and an analysis of our experimental results in the hopes
of mitigating these effects in future comparative evaluations.
Availability: The mitochondrial benchmark gold standard, as
well as experimental results and additional data, is available at
http://function.princeton.edu/mitochondria

Contact: ogt@cs.princeton.edu

Supplementary information: Supplementary data are available at
Bioinformatics online.

*To whom correspondence should be addressed.
TThe authors wish it to be known that, in their opinion, the first three authors
should be regarded as joint First Authors.

1 INTRODUCTION

Methods for protein function prediction and inference of biological
networks have recently been of interest due to the growing
availability of highly informative genomic data. Many different
learning models have been applied to the problem, including kernel
methods (Barutcuoglu et al., 2006; Lanckriet et al., 2004), Bayesian
networks (Jansen et al., 2003; Sachs et al., 2005; Troyanskaya et al.,
2003) and graph-based approaches (Karaoz et al., 2004; Lee et al.,
2004; Nabieva et al., 2005). In these methods (and in this article), the
task of protein and/or gene function prediction refers to associating
proteins with specific biological processes at the cellular level. Many
of the methods used for this problem are similar to those used in
predicting the biochemical function(s) of a gene (such as kinase
activity), but here we focus specifically on the problem of predicting
involvement in biological processes (such as DNA damage repair)
rather than molecular functions.

All of these approaches fall into the broad category of supervised
machine learning classifiers. As such, each method requires trusted
sets of examples from the classes it is learning about (e.g. a set of
known DNA repair genes for learning about the response to DNA
damage). These gold standard sets of genes are typically derived
from repositories of gene annotations such as the Gene Ontology
(GO; Ashburner et al., 2000), KEGG (Kanehisa et al., 2008) or
MIPS (Ruepp et al., 2004) databases. Given such a gold standard
and a collection of training data, classifiers can be learned from
the data using an algorithm of interest. The same gold standard is
typically used for both learning (training) and assessing classifier
performance (testing), usually through techniques such as hold-out
testing or cross-validation (Russell and Norvig, 2003). New and
improved function prediction algorithms are often then justified
based on their performance relative to existing methods in such
evaluations.

Clearly, these gene annotation databases play a central role in
the successful application of machine learning techniques to gene
function prediction. In fact, this is one of the major reasons why
many published methods have been developed and applied in well-
characterized model organisms. Gene annotations are generally
considered to be more complete for such organisms, largely because
the biological systems themselves are better understood and because
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of annotation efforts in model organism communities [e.g. SGD
for yeast (Hong et al., 2008)]. However, even in Saccharomyces
cerevisiae, one of the most extensively curated organisms, ~20%
(~1100 of ~5800) of genes have no annotations below the root of
the biological process branch of the GO. Furthermore, the majority
of annotated genes (~60%) have only a single GO term annotation,
which often indicates incomplete annotation, since many genes are
expected to serve in multiple cellular roles. While these examples
refer to the GO, other functional catalogs such as KEGG and
MIPS are similarly sparse—not because curation efforts are lacking,
but due to the large amount of novel biology remaining to be
discovered even in simple model organisms. The situation in higher
eukaryotes such as mouse and human reflects an even greater degree
of incompleteness.

The incomplete state of current gene annotations immediately
raises at least two questions: how does this affect our ability to
develop effective machine learning approaches, and how can we
accurately estimate their performance when much of the ground truth
is yet to be established? We address these issues by constructing
and analyzing an experimentally based gold standard through a
comprehensive validation of gene function predictions related to
mitochondrion organization and biogenesis (MOB) in S.cerevisiae;
the biological and computational methodologies employed in these
experiments are detailed in the study by Hess er al. (2009) and
Hibbs et al. (2009), respectively. Briefly, we used three published
approaches for predicting gene function from large collections of
microarray (Hibbs er al., 2007; Huttenhower et al., 2006) and
other genomic data (Myers and Troyanskaya, 2007). The most
confident predictions from all the three methods were tested,
along with a collection of positive controls (genes known to
play a role in mitochondrial function). In all, we tested 241
unique genes for association with mitochondrial function, and this
experimentally confirmed set serves as the basis for answering
fundamental questions about classifier performance; they have also
been contributed to SGD for incorporation into the S.cerevisiae GO
annotations. In this article, we focus on the affect of existing gold
standards on the field of function prediction, and we provide an
analysis of these results as a benchmark for the experimentally
validated evaluation of function prediction methods.

In the analysis performed here, we find that machine learning
approaches can learn effectively even from limited functional
annotations; our classification accuracy as confirmed through
laboratory experiments is much higher than estimated for all
the three methods (an average of 68% higher precision at 10%
recall). However, we also observe substantial discrepancies in the
estimated and actual relative performance of different prediction
methods, even those based on exactly the same training data. These
discrepancies have serious implications in comparative prediction
evaluation, which we discuss below.

The organization of this article is as follows: we first summarize
the details of our experimental validation, including a brief
description of prediction methods and the experimental assays used
to test mitochondrial function. We then focus on a comparison of
estimated classifier performance (based on cross-validation) with
actual classification accuracy (based on experimental results) and
discuss striking discrepancies between the two evaluations. Finally,
we conclude with a discussion of these results, their implications for
the general task of predicting gene function and a benchmark gold
standard assembled from this data for use in future evaluations.

2 METHODS

To successfully combine computational gene function prediction with
medium-throughput experimental validation, we employed a pipeline
detailed in the study by Hess ef al. (2009) and Hibbs e al. (2009) and
summarized in Figure 1. The system was initialized by generating predictions
from three computational methods (detailed below) that use information from
the GO (Ashburner et al., 2000) as a portion of their input. These three
methods generated ranked lists of genes to be assigned to the MOB term,
which were then combined into a master list of testable predictions. The
first evaluation was performed on these predictions using only information
currently in GO.

Genes predicted to function in mitochondrial biogenesis were then further
validated using medium-throughput laboratory experiments: assays covering
several hundred genes over the course of several person-months with the
accuracy of low-throughput techniques. In the case of MOB, this consisted of
a petite frequency assay (detailed below) supplemented with semi-automated
liquid growth rate measurements, both yielding statistically rigorous results.
Genes verified in this manner to function in the mitochondrion were added
to the GO-derived positive standard, augmenting the information available
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Fig. 1. Overview of the system employed for computational function
prediction and medium-throughput experimental validation. We used three
computational data integration systems to predict S.cerevisiae genes
functioning in the area of mitochondrion biogenesis. An initial gold
standard was generated from the GO and used to train two of the machine
learning systems: MEFIT, which integrates microarray data, and bioPIXIE,
which integrates other diverse genomic data. SPELL was queried using
mitochondrial genes from the same gold standard. Genes predicted to
function in mitochondrion biogenesis after training or as the result of
queries were combined and used to select candidate genes for experimental
validation. Genes that significantly perturbed mitochondrion biogenesis
when deleted were added to the gold standard, the three prediction
methods were retrained, and a second round of experimental validation was
performed. In addition to discovering many genes not previously known
to participate in mitochondrial biogenesis, this process revealed striking
discrepancies between the computational methods’ abilities to predict
experimental results and their apparent performance based on standard
machine learning cross-validation.
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to the computational methods and allowing more accurate predictions to
be generated. This allowed a second evaluation of our predictions to be
performed incorporating the results of our laboratory experiments.

Taking advantage of these experimental results allowed the generation of
new, more complete lists of genes predicted to function in mitochondrial
biogenesis. These lists were recombined, and genes newly predicted to
have mitochondrial function were again experimentally validated. We found
that the accuracy of both the individual prediction methods and of the
combined predictions was greatly underestimated by the initial GO-derived
standard. This implies that while GO provides enough knowledge to enable
predictive machine learning, functional annotations alone are insufficient
(at least for the MOB term) to fully describe a biological process or to
allow comparative evaluation of different methods. The final list of genes
participating in mitochondrial biogenesis—from the GO, underannotations
(described below) and our experimental validations—were assembled into
the benchmark gold standard provided here.

2.1 Computational predictions

The three systems employed to generate computational function predictions
were bioPIXIE (Myers and Troyanskaya, 2007; Myers et al., 2005), MEFIT
(Huttenhower et al., 2006) and SPELL (Hibbs et al., 2007). The systems’
implementation details are provided in their respective publications; in
brief, bioPIXIE predicts pairwise functional relationships using a Bayesian
framework consuming diverse genomic experimental data. This framework
includes one Bayesian classifier per biological context of interest, where
in this case, each context was an individual GO term. A positive standard
generated from GO was used to learn conditional probability tables specific
to MOB. Predicted annotations to this term were derived from the resulting
weighted interaction network by finding the significance of each gene’s
connectivity to known mitochondrial genes:
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where ¢; is gene i’s confidence of mitochondrial function, M is the set of
106 genes annotated to MOB, G is the genome, w(i, j) is the predicted
probability of functional relationship between genes i and j, HG(w, x, y, 2)
denotes the hypergeometric probability distribution and {x} indicates that x
is rounded to the nearest integer.

MEFIT also predicts pairwise functional relationships using a collection
of GO-trained naive Bayesian classifiers. It consumes gene expression data
drawn from ~2500 microarray conditions drawn mainly from GEO (Barrett
etal.,2007), SMD (Demeter et al., 2007) and ArrayExpress (Parkinson et al.,
2007). A ranked list of mitochondrial function predictions was derived from
the MOB-specific network by calculating each gene’s ratio of connectivity
to known mitochondrial genes:
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where ¢;, M, G and w(i, j) are as above.

SPELL is a query-driven system that also consumes these ~2500
microarray conditions. When provided with a set of query genes, SPELL
preprocesses each microarray dataset using singular value decomposition and
weights them based on the correlations among the query genes in that data.
Using these weights, the remainder of the genome is ranked by weighted
average correlation with the query genes. To generate a set of predicted
mitochondrial genes, the 106 genes annotated to MOB were used as a query.
In all the cases, these systems were initially trained and evaluated on the GO
structure and annotations from April 15, 2007.
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Fig. 2. Prediction accuracy as estimated by prior knowledge, one round
of laboratory validation, and a second iteration of experimental validation.
(A) Performance of three function prediction methods and their ensemble as
evaluated by a GO-based gold standard. (B) Accuracy of the same predictions
as evaluated by a standard augmented with the results of one round of
experimental validations (189 tests). (C) New predictions (generated by
the same three methods) evaluated using the augmented standard of (B).
(D) Accuracy of these predictions evaluated using additional information
from a second round of laboratory experiments (52 additional tests). Actual
predictive accuracy as evaluated by experimental results is very different
than would be expected from a GO-based evaluation.

These three prediction methods were also used to produce an ensemble
prediction set using estimated precision. To compute estimated precision,
a unified standard was formed by considering the 106 genes annotated to
MOB to be positive examples, withholding the 80 genes of the mitochondrial
ribosome (due to inordinately strong coexpression; see Myers et al.,
2006), and considering the remaining 4824 annotated genes in the genome
to be negative examples. For each method’s predictions, we computed
the precision/recall scores using each gene’s rank as a positive/negative
threshold; this allowed the assignment of standard precision/recall scores
to each gene in each method’s predictions (each gene thus providing one
point on the lines in Fig. 2). These precisions, which map method-specific
prediction confidences to the same underlying gold standard, were thus
comparable across methods, and the final combined prediction list was
generated by ranking each gene by its average precision across the three
methods.

2.2 Laboratory experiments

The primary assay used to validate our mitochondrial predictions was a
measurement of petite colony frequency, supplemented with a measurement
of growth rate in liquid medium. Detailed methods for these assays can
be found elsewhere (Hess et al., 2009); in summary, we performed all the
assays on haploid deletion mutants drawn from the S.cerevisiae heterozygous
deletion collection (Tong and Boone, 2006). Knockout strains corresponding
to genes with predicted mitochondrial function were drawn from the
collection, sporulated, selected for haploids and assayed as follows.

‘Petite’ yeast colonies form from yeast lacking functioning mitochondria
(specifically, mitochondrial DNA). Yeast mitochondrial DNA is naturally
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somewhat unstable, and wild-type S.cerevisiae forms petites in our assay
with a base frequency of ~23%. To compare this base rate with that of
each deletion mutant, we sporulated the heterozygous deletion collection,
isolated six independent deletion mutants for each gene tested and grew
these strains in media requiring aerobic respiration. The resulting plates
were stained with tetrazolium, turning respiring colonies red and leaving
petite colonies white (Ogur et al., 1957). This allowed colony types
to be counted manually; these counts were converted into percentages,
which were then compared against wild-type for significance using the
Mann—Whitney U test.

Growth curves in liquid media (a measurement of optical colony density
over time) were determined using a Tecan GENios plate reader and incubator
to record colony densities in 96-well plates every 15 min over 42 h. Each plate
contained 12 mutants with six replicates each plus 24 wild-type replicates.
Growth rates were derived from these curves by using Matlab (MathWorks
Natick, MA, USA) to fit an exponential model:

y=a+b2% 4)

This model was fit over each whole curve, the first two-thirds, or the first
half, whichever yielded the best fit (to avoid plateau effects and to model
only exponential growth). Wells with an adjusted R? <0.9 were marked as
non-growing and growth rates for the remaining wells were determined
by subtracting the row, column and plate means for each well from the
exponential parameter ¢. This yielded a rate ¢’ for each well, and each
knockout’s ¢’s were tested for significance against the wild-type population
using a Mann—Whitney U test.

To detect colonies growing exponentially but with significant differences
in fitness, smoothed maximum densities d were calculated for all wells
deemed exponential. Wells in which the maximum density was less than
twice the minimum were marked as non-growing. From the remainder,
plate, row and column averages were subtracted from each well, generating
adjusted maxima d’. Each mutant’s d’s were again compared with the wild-
type values using a Mann—Whitney U test. In both exponential growth and
maximum saturation measurements, mutants with more than one outlier were
deemed inconclusive and excluded from the results.

All defects specific to respiratory growth (i.e. significant in glycerol
but not glucose) were considered. Mutants that failed to grow by both
exponential growth and maximum density measurements were assigned a
severe phenotype; mutants that failed to grow by one measurement or were
significantly defective in both were assigned a moderate phenotype. Mutants
with a significant defect by only one measurement were assigned a weak
phenotype, and all other mutants received no phenotype.

2.3 Validation methods and criteria

Each stage of our experimental validation relied on a combination of controls
and replicates to ensure statistical rigor. Several categories of mutants were
tested, beginning with independently isolated wild-type control colonies. We
chose positive controls for the various experimental assays from among the
106 genes annotated to MOB. Finally, three types of predictions were tested:
underannotated genes with literature support for mitochondrial function
(but not annotated to MOB; these were treated as positive controls), known
genes with some GO annotation outside of MOB (and no current literature
support for mitochondrial function) and unknown genes with no current GO
annotation. See Hess et al. (2009) for a complete list of the 48 positive
controls (six from MOB, 42 underannotated), 75 knowns and 118 unknowns
tested in our assays.

The results of experimental assays were deemed significant enough to
validate a gene’s involvement in MOB only after passing stringent statistical
requirements. In the case of the petite frequency assay, any mutant differing
from the wild-type controls with effect size >20% and P <0.05 was deemed
to be verified to MOB. These genes were added to the augmented standard
used for retraining and in Figure 2. The growth rate assay was used to explore

more specific subprocesses of the general MOB term, e.g. respiratory growth
as discussed below.

3 RESULTS

We provide a benchmark gold standard of 341 S.cerevisiae genes
participating in the process of mitochondrial biogenesis, collected
from 106 existing annotations in the GO, 135 underannotated
genes and 100 genes confirmed by our experimental results.
We show that, in the absence of such an experimentally based
gold standard, the sparsity of current functional catalogs can lead to
misleading machine learning evaluations. Specifically, both absolute
estimates of predictive performance (e.g. using cross-validation)
and comparative evaluations (among different function prediction
methods) can produce spurious results when based on a gold
standard with substantial missing information. However, machine
learning techniques can still predict gene function accurately even
when trained on a sparse gold standard.

3.1 Experimentally validated accuracy is higher
than predicted

It is striking that even in S.cerevisiae, one of the organisms
most thoroughly annotated in current functional catalogs, publicly
available high-throughput experimental data provide a wealth of
gene function information not yet captured by the GO MOB term.
Such information can be extracted by classifiers trained on a curated
gold standard (such as GO) to identify additional genes with
potential roles in this function. Figure 2 contrasts the estimated
accuracy of our three function prediction systems (and of the
combined consensus predictions) before and after multiple rounds of
experimental validation. Our initial predictions were generated using
only pre-existing experimental data and GO annotations; scoring
these against GO (without held-out test data) yields Figure 2A.
Figure 2B evaluates the same predictions using an answer set
augmented with the results of our first round of experimental
validation and determination of underannotations. Figure 2C and D
show the equivalent difference after the prediction methods are
retrained on this augmented standard and after the standard is
augmented again by a second round of experimental validation.

Of particular note is the difference in performance between
Figure 2A’s GO-based standard and Figure 2B’s experimentally
verified standard, also captured in the expected versus actual
phenotype counts of Figure 3. The precision/recall curves in
Figure 2A and B are generated using the same set of computational
predictions made using only existing high-throughput data and the
GO—but evaluation using GO alone vastly underestimates their
accuracy. While there is some bias in this evaluation due to the
focus on testing novel predictions (which, when verified, will boost
the precision of the predictor), it accounts for only a small fraction
of the difference in evaluation (e.g. see Hibbs et al., 2009) for
an analysis of randomly selected genes). One may conclude from
this that, at least in certain functional areas, functional catalogs
such as GO currently possess sufficient depth to direct accurate
machine learning in large datasets, but they may not have sufficient
breadth to fully characterize novel predictions generated in this way
from experimental data. Supplementary Figure 1 provides a similar
comparison using the MIPS database, confirming that this finding is
not specific to the GO; KEGG contains insufficient information on
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Fig. 3. Comparison of phenotype frequencies expected from a compu-
tational gold standard versus experimentally validated frequency. Expected
mitochondrial phenotype area under the precision/recall curves (AUPRCs)
were calculated from Figure 2A using only the GO; experimentally validated
AUPRGC:s use the augmented standard of Figure 2D. Phenotype frequencies
and accuracy of computational predictions are much higher in all cases than
anticipated by pre-existing functional catalogs.

mitochondrial biogenesis to perform a comparison. We stress that
this is not a fault of any functional catalog or of biological database
curators in general; it is simply a product of the large amount of
biology left to discover even in time-honored model organisms.

3.2 Comparative evaluation of predictions
can be misleading

This variation in coverage within a gold standard, when
combined with similar variations in prediction methods, can
substantially misrepresent function prediction accuracy (Figs 2
and 3). As indicated by the experimentally validated standard
of Figure 2D and the experimental phenotypes in Figure 3,
our three prediction systems perform with roughly equivalent
overall accuracies, particularly in low-recall/high precision areas
of biological interest. However, there is sufficient diversity in the
three prediction sets that they overlap quite differentially with the
existing 106 GO MOB annotations. Prior to experimental validation,
for example, bioPIXIE ranks actin-related proteins such as ARP2
and ARP3 very highly; these are present in the original MOB term
and thus raise bioPIXIE’s precision in Figure 2A. However, genes
such as YMR157C and YMRO98C were ranked highly by MEFIT
and SPELL, but not initially annotated to MOB. Our experimental
assays found that these genes do indeed function in the mitochondria,
revealing in Figure 2B that all the three prediction methods were
performing quite well despite their initially low-apparent precision.

This differential masking of performance by incomplete standards
has clear implications in comparative evaluation of biological
function predictions. Due to the highly complex nature of
systems biology and the amount of knowledge still missing
from even the best curated functional catalogs, it becomes

possible—even likely—to learn ‘real biology’ that is not reflected
in a gold standard and thus degrades, rather than improves,
apparent performance. Conversely, it is equally possible to overfit
a standard, improve performance on computational evaluations
and produce fewer experimentally verifiable predictions. It is
thus essential that, until a greater understanding of the breadth
of systems biology allows the construction of more complete
functional catalogs, computational predictions are validated using
appropriately designed and scaled laboratory experiments or through
experimentally based benchmarks.

3.3 Genes with multiple cellular roles complicate the
selection of gold standard negatives

Of the 144 mutants validated to MOB by our petite frequency
assay, 100 were novel predictions with no prior literature support
of mitochondrial function. Thirty-nine of these novel predictions,
almost 40%, already possessed annotations to non-mitochondrial
functions within the GO. Proteins with known, unrelated biological
roles are often used as gold standard negatives for bioinformatic
machine learning tasks; when such proteins also have multiple
unannotated functions in related processes, this can contaminate the
gold standard and artificially decrease apparent performance. Many
genes participate in multiple biological processes (Blencowe, 2006),
and while GO and other functional catalogs are specifically designed
to encode such characteristics, their significance and commonality
has perhaps not been fully appreciated. Since undiscovered
secondary functions behave as incorrect negatives when present
in a gold standard, a partial solution is to focus evaluations on
known positive examples and thus downweight the influence of
gold standard negatives [e.g. precision at low recall, discussed more
extensively in Myers er al. (2006)]. This underrepresentation of
functional plurality in current standards can thus, like the lack of
coverage discussed above, obscure or bias comparative evaluation
of gene function predictions.

3.4 Medium-throughput experiments validate
predictions

The fact that these experimental validations were done in medium
throughput is a key to achieving both coverage and reliability in our
augmented standards. In addition to the global evaluative power
of our petite frequency assay demonstrated in Figures 2 and 3,
directed medium-throughput experiments such as the growth rate
assay can indicate specific sub-functions for particular genes. For
example, the yeast myosins MYO3 and MYOS5 are often considered
to be redundant, and few high-throughput assays can differentiate
their biological roles (Moseley and Goode, 2006). More specific,
medium-throughput assays can reveal subtle differences in gene
sub-functionalization, however. In our results, MYO3 and the
functionally uncharacterized AIM8 both show much higher than
expected petite frequencies (150%, P < 1073 and 136%, P < 1073).
However, a myo3A mutant shows no significant growth defect
in liquid media, while aim8A 1is significantly impaired (achieving
neither exponential growth nor a single doubling of culture density).
While the petite frequency assay alone could not differentiate these
genes’ activities within MOB, the more targeted growth rate assay
suggests that AIMS8 may function specifically within respiratory
growth. Additionally, this myo3A phenotype is in interesting
contrast with MYOS5, which leaves petite frequency essentially
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unchanged when deleted (108%, P > 0.2); to our knowledge, these
two myosins have not previously been shown to act differentially in
mitochondrial inheritance, and these results may indicate a specific
role for MYO3 in mitochondrial motility.

4 DISCUSSION

We have examined the impact of an initially incomplete standard
on machine learning behavior and evaluation using a large-scale
experimental validation of gene function predictions; we also
provide the results of this validation as a standalone benchmark for
gene function prediction. While we used mitochondrial organization
in yeast as a model system, there are important global lessons we can
derive from the results. We have demonstrated that, while a variety
of machine learning methods can discover novel biology based on
incomplete gold standards, a lack of functional coverage in these
standards can seriously bias subsequent evaluations of these learning
methods. This difficulty in evaluation emphasizes the importance
of validating computational predictions not only through curated
gold standards, but also using quantitative experimental results. This
underscores the need to develop such experimental benchmarks for
a variety of diverse biological processes and model organisms.

The benchmark resulting from this analysis is available at
http://function.princeton.edu/mitochondria. This includes four tiers
of experimentally validated proteins participating in S.cerevisiae
mitochondrial biogenesis: 106 initially available from the GO,
135 generated by guided literature curation, 83 confirmed by our first
set of experimental results and 17 by the second set. Approximately
4500 high-confidence negatives are also included, i.e. proteins
known to function in other biological processes and with no evidence
for mitochondrial involvement; however, this benchmark is by no
means perfect or complete, since even tested negatives may include
genes with a redundant role in mitochondrial biogenesis. In tandem
with existing curated standards, these results provide experimentally
driven training and test sets for development of future machine
learning, data integration and function prediction methodologies.

A key observation from our study is that gene function prediction
methods are much more reliable in this context than anticipated
from a purely computational evaluation. For instance, using only
the GO, we estimated that 5-25% of the genes we tested would be
true positives (the range of average precisions of the three individual
methods). However, we confirmed mitochondrial phenotypes for
52%, an increase of 2- to 10-fold over expected. These confirmed
phenotypes include both genes of previously unknown function as
well as genes with known involvement in other processes (but no
known MOB annotation). Moreover, these confirmations are not just
peripherally related to mitochondrial function, but some appear to
play crucial roles in core mitochondrial activities [e.g. respiration
or mitochondrial inheritance (Hess et al., 2009)]. These results
indicate that computational methods were able to correctly find novel
biological function for 100 proteins and to assign underannotated
functions to 135 additional proteins, even when trained using a
relatively sparse initial gold standard.

A second striking observation resulting from this validation
process is the amount of novel biology remaining to be discovered,
even in well-annotated areas and organisms such as yeast
mitochondrial biology. Our work began in April 2007, at which
point, there were 106 S.cerevisiae genes associated with the GO-term
MOB. Manual examination of each method’s top predictions

revealed another 135 genes that had ample evidence in the literature
for mitochondrial function but had no existing annotation to the
MOB GO term. Of the 193 additional novel predictions we
tested experimentally, we confirmed mitochondrial impairment
phenotypes for 100 proteins (52%), bringing the total number of
MOB annotations to 341. This has effectively increased the number
of annotations to this GO term by 220% with only a few months of
computationally directed experiments and literature review.

A less optimistic conclusion of this study is the difficulty
of relative performance comparisons between function prediction
methods using the currently available incomplete gold standards.
Our evaluation considered three different methods, an initial curated
gold standard, and our final benchmark gold standard augmented
with our experimental validations. We found that the methods’
apparent relative performance across these two evaluations was
strikingly different, qualitatively as well as quantitatively; for
example, using the initial gold standard, bioPIXIE’s AUPRC was
far higher than MEFIT’s, while their performances were more
comparable using the final, augmented gold standard [see Hibbs
et al. (2009) for additional details]. At the opposite extreme, a
hypothetical machine learning method that overfit its sparse training
data might have looked excellent in an initial evaluation but far
worse after laboratory validation. Thus, at least in the case of
mitochondrial biogenesis, a comparative evaluation based solely on
existing annotations was misleading due to incomplete knowledge.

While functional annotation repositories represent a valuable
source for comparative evaluations of prediction methods outside
of resource-intensive experimental validation, it is critical to
supplement such annotations with laboratory results or
experimentally based benchmarks, whenever possible. Experimental
collaboration is, of course, non-trivial; experimental studies based
on computational predictions require special attention from
computational groups and, obviously, substantial commitment
from experimental labs. However, our findings draw into question
the field’s ability to accurately resolve performance differences
between competing approaches using only incomplete gold
standards, particularly when such differences are small. This
observation suggests that the application of existing gene function
prediction methods in a laboratory setting can produce more
tangible biological results than can the incremental refinement
and development of new computational approaches. Experimental
results produced by such validations can further be made publicly
available as discrete benchmarks and submitted to functional
annotation catalogs such as the GO to improve future efforts across
the community.

There are, of course, a variety of limitations to the generalizability
of these results. We have evaluated a single GO biological process
term in a specific organism, and while there is every reason to
believe that qualitatively similar issues will arise for other organisms
and processes, their quantitative degree remains unknown. Within
yeast itself, we have found comparable preliminary results for other
GO terms (Hess et al., 2009). As mentioned above, GO, KEGG,
MIPS and other functional catalogs all provide excellent coverage
of a variety of model organisms when analyzed appropriately
(Myers et al., 2006), and computational techniques represent
a complementary method for exploring unannotated biology;
mitochondrial processes are highly conserved across eukaryotes, and
yeast mitochondria have been heavily used as a model system. Thus,
annotated knowledge in this area should be representative of general
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biological processes. However, extending these results to other
systems does require the availability of and resources for appropriate
laboratory assays, an obviously non-trivial requirement. Since not
every computational results can be tested experimentally, it remains
a challenge for the bioinformatician to consider the generalizability
and biological validity of comparative machine learning evaluations,
in part by techniques such as cross-validation using this and other
laboratory-based standards.

Here, we provide a benchmark for computational gene function
prediction derived from experimental validation of mitochondrial
biogenesis genes in yeast. During the validation of this benchmark,
we have demonstrated that the current incompleteness of gene
annotation repositories does not necessarily impair computational
function prediction, but it does hamper comparative performance
evaluation of different techniques. We anticipate that this combi-
nation of computational effort with rapid laboratory validation can
be applied to a variety of other biological processes (e.g. DNA repair)
to generate more complete, area-specific functional catalogs. These
would in turn provide more accurate bases for the comparative
evaluation of computational techniques, although this is still not
a substitute for the depth, precision and scientific potential of
collaborative computational and laboratory investigation. While
such validations are unlikely to be performed for every method or
every biological process, our hope is that the combination of several
experimental benchmarks with curated standards will increase the
accuracy of comparative evaluations and enable the continued
improvement of computational techniques.
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