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ABSTRACT

We present a multiscale agent-based non-small cell lung cancer
model that consists of a 3D environment with which cancer cells
interact while processing phenotypic changes. At the molecular level,
transforming growth factor β (TGFβ) has been integrated into our
previously developed in silico model as a second extrinsic input
in addition to epidermal growth factor (EGF). The main aim of this
study is to investigate how the effects of individual and combinatorial
change in EGF and TGFβ concentrations at the molecular level
alter tumor growth dynamics on the multi-cellular level, specifically
tumor volume and expansion rate. Our simulation results show
that separate EGF and TGFβ fluctuations trigger competing multi-
cellular phenotypes, yet synchronous EGF and TGFβ signaling
yields a spatially more aggressive tumor that overall exhibits an
EGF-driven phenotype. By altering EGF and TGFβ concentration
levels simultaneously and asynchronously, we discovered a particular
region of EGF-TGFβ profiles that ensures phenotypic stability of
the tumor system. Within this region, concentration changes in
EGF and TGFβ do not impact the resulting multi-cellular response
substantially, while outside these concentration ranges, a change
at the molecular level will substantially alter either tumor volume
or tumor expansion rate, or both. By evaluating tumor growth
dynamics across different scales, we show that, under certain
conditions, therapeutic targeting of only one signaling pathway may
be insufficient. Potential implications of these in silico results for
future clinico-pharmacological applications are discussed.
Contact: deisboec@helix.mgh.harvard.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
Signaling pathways are responsible for coordinating incoming
cues in an effort to regulate a diverse array of cellular processes
including proliferation, migration, differentiation, and apoptosis.
The deregulation of these signaling pathways induced by a variety
of growth factors is one of the fundamental elements contributing
to initiation and progression of many solid tumors (Hanahan and
Weinberg, 2000), the most prevalent being cancer of the lung. It is
estimated that in 2008 alone, ∼215 020 new cases of lung cancer
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will have been diagnosed in the United States and about 161 840
deaths will have occurred from the disease (Jemal et al., 2008).
The epidermal growth factor receptor (EGFR) is often mutated and
overexpressed in non-small cell lung cancer (NSCLC) (Hirsch et al.,
2003). Epidermal growth factor (EGF) binds EGFR and promotes
dimerization and subsequent autophosphorylation, resulting in the
downstream activation of a number of key cell decision-making
proteins such as phosopholipase Cγ (PLCγ), extracellular signal-
regulated kinase (ERK), and many others (Friedl and Wolf, 2003). In
addition, the secreted protein transforming growth factor β (TGFβ) is
another ligand that plays a prominent role in regulating or mediating
cellular and physiological processes in NSCLC (Anumanthan et al.,
2005). Cancer cells often secrete excess TGFβ and induce autocrine
signaling (Siegfried, 1987) resulting in enhanced invasion and
metastasis, while in healthy cells or benign tumor cells, TGFβ halts
proliferation and induces apoptosis (Blobe et al., 2000). Regardless
of this, the functional consequences of TGFβ in NSCLC patients are
still ambiguous, where TGFβ levels are generally elevated but show
considerable variation (median of 21 ng/ml, range 5–103 ng/ml)
compared to healthy individuals (range 4–12 ng/ml) (De Jaeger
et al., 2004).

In an effort to first integrate and ultimately enhance understanding
of the complex dynamics of growth factor mediated signaling
networks, mathematical and computational modeling approaches
combined with experiments have been utilized to probe cancer
systems, and their continued improvement may advance the
development of new cancer diagnostic and therapeutic techniques
(Khalil and Hill, 2005). However, current in silico modeling
efforts have been focusing primarily on the single-cell level
(Albeck et al., 2006), which may not be sufficient for exploring
cancer growth dynamics and predicting tumor response as these
approaches fail to incorporate the tumor’s interactions with its
heterogeneous biochemical environment (Di Ventura et al., 2006).
It is therefore desirable for computational cancer models to
encompass multiple biological scales within a specific temporal,
spatial and physiological context in order to generate more relevant
predictions.

We have recently developed a multiscale agent-based
computational model for the simulation of NSCLC (Wang
et al., 2007). Using this model, tumor expansion dynamics have
been studied across molecular and multi-cellular scales within a 2D
biochemical environment. In a follow-up study (Wang et al., 2008)
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we identified key signaling events that are critical in determining
the output behavior of the model (i.e. the tumor expansion rate) by
employing sensitivity analysis techniques. Together, our previous
modeling efforts provide a novel and functional computational
platform for investigating and predicting cancer behaviors at
the multi-cellular level in response to changes occurring at the
molecular level.

In this article, we present a physiologically and clinically
motivated extension to our previously developed 2D model. Here,
we monitor the synchronized motion of individual lung cancer cells
as they move through a 3D block of virtual lung tissue. At this
multi-cellular (microscopic) level, we have designed a biochemical
microenvironment with which cancer cells communicate and to
which they may respond by growing into or moving to different
locations, i.e. filling empty locations with daughter cells through
replication or migrating to unoccupied sites. This model expansion
is necessary en route to eventual clinical application of these types of
computational platforms because (i) a 3D environment can provide
a more accurate representation of an in vivo system and hence
will generate more clinically relevant information, and (ii) findings
from 2D and 3D models may differ (Zaman et al., 2006). In
addition, we extend our previous NSCLC-specific EGFR signaling
pathway at the molecular level by introducing TGFβ as a second
stimulus (in addition to EGF). While some earlier models of TGFβ

signaling have been proposed (Melke et al., 2006; Vilar et al.,
2006), multi-cellular computational models that maintain even a
partial focus on TGFβ are scarce. Studies that minimally incorporate
TGFβ as a model parameter include investigation of malignant brain
tumor immune cell interactions (Kronik et al., 2008), modeling of
morphogenesis and pattern formation of mesenchymal condensation
in the developing vertebrate limb (Christley et al., 2007; Kiskowski
et al., 2004), and simulation of prostate stem cell movement (Lao
and Kamei, 2008). However, none of these models adequately
incorporates the effects of molecular-level variations of TGFβ on
consequent cellular phenotypes and tumor patterns. We note that
the autocrine secretion and interaction process of EGF (as a growth
promoting factor) and TGFβ (as a growth inhibiting factor) were
studied in a theoretical work on the growth of solid tumors (Chaplain
et al., 2001), in which a novel numerical method to expedite the
computation of reaction kinetics was also developed. However, still,
the underlying signaling dynamics of EGF and TGFβ within a cell
were not presented. In this study, we investigate both the individual
and combinatorial effects of EGF and TGFβ fluctuation on multi-
cellular behaviors. Within our model, EGF and TGFβ distinctly
contribute to tumor volume and tumor expansion rate. We have
also discovered an EGF- and TGFβ-dependent stable phenotypic
region that partitions types of phenotypic response: changes within
the region (comprised of a range of EGF and TGFβ concentrations)
do not affect the stability of the robust tumor system; however,
alterations outside this area cause substantial changes in multi-
cellular behaviors, either in tumor volume or tumor expansion rate,
or in both.

2 METHODS

2.1 Molecular scale: signaling network
We have previously developed and implemented a NSCLC-specific protein
signaling pathway that mediates EGF-induced proliferative and migratory

responses of individual cancer cells (Wang et al., 2007). Cell stimulation
with EGF induces an EGFR-mediated phenotypic response, through the
downstream activation of the MAPK/ERK cascade. Recent experimental
studies have shown that TGFβ also stimulates the rapid activation of
ERK through activation of the oncogenic GTPase Ras (Derynck and
Zhang, 2003), which necessitates the incorporation of such TGFβ signaling
into our previous EGF-based pathway. For its part, TGFβ binds its type
II receptors (TGFβRII) promoting their dimerization, followed by the
recruitment of two type I receptors (TGFβRI) (Siegel and Massague, 2003).
The resulting heterotetrameric complex is then subject to internalization
(forming endosomes with kinase activity), recycling, and/or degradation.
Cytosolic signaling proteins such as Ras are activated, leading to activation
of Raf, the initiating kinase of the ERK signaling cascade. Figure 1 shows the
kinetic scheme of the integrated EGF and TGFβ signaling pathway which is
composed of 26 molecules and 23 chemical reactions. Signaling between the
two sub-pathways converges at the reaction step for Raf activation (reaction
step 11). While conventionally TGFβ signaling is processed through the
SMAD pathway (Derynck and Zhang, 2003), we have initially chosen this
simplified TGFβ-Ras-ERK signaling route because (i) Ras plays an important
role in NSCLC tumorigenesis (Gupta et al., 2004), and (ii) it is reasonable
to reduce the number of explicitly involved molecules as a starting point for
computational modeling from which refinement can begin (Aldridge et al.,
2006).

During EGF and TGFβ signaling, pathway dynamics within the model
are regulated by material balance and kinetic equations, as well as reaction
rates that are dependent on changes of species concentrations over time.
The integrated pathway model is based on a total of 26 ordinary differential
equations (ODEs) and is constructed as previously described (Kholodenko
et al., 1999; Schoeberl et al., 2002). Supplementary Tables 1 and 2 summarize
the kinetic parameters and ODEs used for the model. Most parameters,
including initial concentrations and reaction rate constants, are obtained
from the literature or estimated when unavailable. As in the previously
developed 2D model (Wang et al., 2007), PLCγ and ERK are employed
to determine two important phenotypic traits: PLCγ-dependent migration
and ERK-dependent proliferation. Experimental studies have shown that
transient acceleration of accumulating PLCγ levels leads to cell migration
(Dittmar et al., 2002), while that of ERK leads to cell replication (Santos
et al., 2007). Therefore, in our model, the rate of change of PLCγ determines
whether a cell will migrate, and the rate of change of ERK dictates a cell’s
proliferation fate. Supplementary Figure 1 depicts a brief schematic of the
cellular phenotype decision algorithm. We emphasize here that a cell must
also meet other microenvironmental requirements such as sufficient local
nutrient conditions and available adjacent space in order to process any
phenotype transition [see Wang et al. (2007) for more details]. Finally, we
note that, although TGFβ has an impact on both cancer cell proliferation
and migration, only its impact on cell proliferation is explicitly implemented
in the model. This is since, between ERK and PLCγ, only ERK is a direct
downstream signaling molecule of TGFβ, whereas PLCγ is not. However,
this does not mean that TGFβ variation cannot influence PLCγ signaling.
Indeed, as we present in ‘Results’ section, our mathematical implementation
demonstrates that alterations in TGFβ concentration also result in a change
in the collective cell migration behavior, implying that TGFβ can indirectly
modulate the activity of PLCγ.

2.2 Microscopic scale: tumor cell–microenvironment
interaction

Illustrated in Supplementary Figure 2a is the structure of a 3D virtual
microenvironment comprised of a discrete cubic space with 200 × 200 × 200
grid points, within which the nutrient source and seed cells are positioned.
Each grid point may be occupied by a single cell or may remain empty.
Each cell or agent has a self-maintained signaling network (Fig. 1). Over the
course of a simulation, seed cells and their progeny respond to cellular and
environmental biochemical cues that determine their phenotype at each time
step. A simulation run is terminated when the first cell reaches the nutrient
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Fig. 1. Kinetic scheme of the integrated signaling network. Both EGF and TGFβ can initiate the pathway, leading to the ultimate molecular response in
doubly phosphorylated ERK (ERK-PP). Each component is identified by a specific number. The arrows represent the reactions specified in Supplementary
Tables 1 and 2 and characterized by reaction rates v1-v23.

source. We use the number of elapsed time steps as a measure for ‘tumor
expansion rate’ and the final number of live cells for ‘tumor volume’. We
note here that, the expression of the expansion rate should have units of
distance per time; however, for simplicity we use units of time in our model
evaluation because under all simulations, cells must travel the same distance
to the source (Supplementary Fig. 2b). Thus, a simulation that terminates
after a greater number of time steps has a slower tumor expansion rate.

Four external diffusive chemical cues (EGF, TGFβ, glucose and oxygen
tension) are normally distributed throughout the virtual lung tissue grid and
are weighted by the distance of a grid point from the nutrient source. As a
result, the nutrient source is assigned the highest weight for each of the four
cues, making it the most attractive location for the chemotactically acting
tumor cells. Moreover, throughout the simulation, the four chemical cues
are continuously updated at a fixed rate, using the following equation [as
described previously (Wang et al., 2007)]:

∂Cijk

∂t
=DC ·∇2Cijk, t = 1,2,3, ... , (1)

where C represents the concentration of one of the four external cues, DC

corresponds to the diffusion coefficient of the corresponding species C, t
represents the time step, and ijk is the 3D integer coordinate of a given
grid location. Glucose is continuously taken up from the local environment
by cells to support their metabolism, while EGF and TGFβ autocrine loops
mediate the cellular phenotype and are also considered in the model; these
cellular processes are described by Equations 2–4:

Glucose(t)=Glucose(t−1)−rg, t = 1,2,3, ... , (2)

EGF(t)=EGF(t−1)+regf , t = 1,2,3, ... , (3)

TGFβ(t)=TGFβ(t−1)+rtgf , t = 1,2,3, ... , (4)

where rg, regf and rtgf represent the glucose uptake coefficient, the secretion
rate of EGF, and the secretion rate of TGFβ, respectively. The values for the
coefficients of Equations (1)–(4) are listed in Supplementary Table 3. Only
at the nutrient source is glucose replenished at each time step. A main feature
of our model is that, in each simulation, tumor expansion patterns due to cell
proliferation and migration are neither pre-defined nor intuitive, but rather
are the accumulated result of dynamic interactions between individual cells,
and between cells and their biochemical microenvironment.

2.3 Cross-scale analysis
We have previously introduced an approach for identifying critical pathway
components that have significant impact on the tumor’s expansion rate within
a 2D environment (Wang et al., 2008). Here, we further examine the effects
of individual and combinatorial change in EGF and TGFβ concentrations
on tumor volume and expansion rate within the 3D environment. We use a
sensitivity coefficient as an index of the importance of how a change in a
single sub-cellular model component affects the overall system response at
the multi-cellular level (deemed the ‘multi-cellular readout’). This coefficient
is calculated by the following equation:

SM
p = δM/M

δp/p
, (5)

where δM is the change in M (the response of the system) due to δp, the
change in p [system parameter(s) varied during a simulation]. In this study,
the system response M corresponds to either tumor volume (indicated by
final live cell number) or tumor expansion rate (indicated by total simulation
steps). Furthermore, we explore two types of variations in p: a single
parameter change (altering either EGF or TGFβ levels) and a combinatorial
change (altering EGF and TGFβ levels simultaneously).

3 RESULTS
Our agent-based model was implemented in C/C++ and all
simulation runs were carried out on a 19-node dual-CPU cluster
supercomputer (Intel® Xeon™ 3.06 GHz CPUs, each with 2.5 GB
available RAM) provided by the Harvard University School of
Engineering and Applied Sciences (SEAS). A total of 27 seed cells
arranged in a 3 × 3 × 3 cube were initially positioned in the center
of 3D environment (Supplementary Fig. 2a). Due to computation
intensity, the maximum simulation step for all simulations was set
to 250; simulations that require more than 250 time steps to finish are
terminated at 250 time steps and are considered to represent a slow
expansion system. In our simulations, each time step corresponds
to 2.4 h, and one cell cycle requires 10–12 steps, in agreement
with experimental data (Hegedus et al., 2000). For both single and
combinatorial parameter changes, parameter variation ranges were
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Fig. 2. A typical tumor growth pattern over time in the full 3D environment; this is deemed the ‘standard simulation’.

Fig. 3. The effects of individual changes in EGF and TGFβ concentration on tumor volume (cell number) and expansion rate [(inverse) simulation steps].
Illustrated are the two multi-cellular indices and corresponding sensitivity analysis results of (a) EGF and (b) TGFβ, where S is the sensitivity coefficient.
Horizontal lines in the first and third columns of (a) and (b) represent the simulation results obtained from the standard simulation (final cell number: 16 417;
simulation step: 222).

set to [0.2, 0.3, 0.5, 0.7, 1.0, 2, 3, 5, 7, 10, 20, 30, 50]-fold of their
corresponding reference (literature) values.

3.1 Multi-cellular patterns
In this model emergent multi-cellular tumor growth patterns result
from the collective behavior of individual cells and their repetitive
interactions. The progression of a tumor expansion pattern under
typical simulation conditions (i.e. when all kinetic parameters are
set to their reference values; called the ‘standard simulation’) is
shown in Figure 2. As expected, the cells tend to move toward the
nutrient source, which, according to our model setup, is the most
chemotactically attractive location. For this standard simulation,
the final cell number is 16 417 and the number of elapsed time
steps is 222. These values are then used for subsequent sensitivity
analyses. According to our model setup (Supplementary Fig. 2a),
the final tumor volume (including live and dead tumor cells and
interstitial fractions within the tumor mass) is 3.75 × 10−2 mm3

with a diameter of 1.1 mm.

3.2 Individual parameter change
We varied concentration levels of EGF and TGFβ according to the
aforementioned range in order to investigate the phenotypic changes
of individual cells in response to either stimulus, and how they in
turn collectively generate multi-cellular patterns over time. The final
tumor volume and expansion rate were obtained for all simulations,
and were compared to the results of the standard simulation
(Fig. 2) for sensitivity coefficient calculations. Figure 3 shows the
simulation results with varying concentrations of EGF or TGFβ

(while keeping the other stimulus constant). Overall, increasing
EGF concentrations leads to a decrease in both cell number
and simulation steps (indicating a slowly proliferating but highly
invasive phenotype); conversely, increasing TGFβ concentrations
results in an increase in cell number while the simulation steps
increase as well (describing a rapidly growing but less invasive
phenotype). Specifically, EGF variation: in Figure 3a, the final cell
number (i) remains relatively constant compared to the standard
simulation if variation is <1.0-fold; (ii) slightly increases if the
variation is >1.0 and <7.0; and (iii) decreases if variation is >10.0.
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Fig. 4. The effects of synchronous combinatorial change in EGF and
TGFβ concentrations on tumor volume (cell number) and expansion rate
[(inverse) simulation steps]. Horizontal lines represent the simulation results
obtained from the standard simulation (final cell number: 16 417; simulation
step: 222).

However, the number of simulation steps slightly decreases prior to
plateau for variations of up to 7.0-fold, beyond which it decreases
significantly, indicating an acceleration of the cancer system (albeit
with a smaller number of cells). In both sensitivity coefficient
plots, a smaller variation in EGF concentration leads to a relatively
large change in both the final cell number and simulation steps.
TGFβ variation: in Figure 3b, as the TGFβ concentration increases,
the simulation step plot stays relatively steady if the variation is
<7.0-fold and increases continuously by a small margin if exposed
to a variation of >10.0-fold (indicating a deceleration of the system).
The final cell number plot shows fluctuations if the variation is
<7.0-fold, and starts to show a consistent increase if >10.0. The
sensitivity analysis demonstrates that a small variation in the TGFβ

concentration also triggers a relatively substantial change in the final
cell number, but not in the number of simulation steps.

3.3 Synchronous combinatorial change
We next simultaneously varied the concentrations of EGF and TGFβ

at equivalent rates in order to investigate the combinatorial effects
on multi-cellular responses (Fig. 4). Our results indicated that the
variation patterns for both cell number and simulation steps are
similar to the corresponding simulation results for EGF variation
alone (Fig. 3a). Indeed, a correlation analysis (Supplementary
Table 4) showed that correlation coefficients between simulation
results of this combinatorial (EGF and TGFβ concentration) change
and the EGF concentration change are all positive and are all
near 1.0, indicating a direct and strong relationship, whereas
correlation coefficients between the combinatorial change and TGFβ

concentration change are all negative and around −0.5, indicating
an inverse and weak relationship. Together, these results indicate
that the EGF signal prevails as the most influential stimulus on
the cascade’s resulting phenotypic output. Furthermore, the point
at which the tumor system becomes more spatially aggressive than
the standard simulation occurs already at a smaller EGF variation,
i.e. from 10.0-fold (Fig. 3a) down to 7.0-fold (Fig. 4). This suggests

Fig. 5. The effects of asynchronous combinatorial change in EGF and TGFβ

concentrations on (a) tumor volume (cell number) and (b) tumor expansion
rate [(inverse) simulation steps]. In (a), the largest tumor volume (indicated
by the red portion of the graph) is reached under conditions of high TGFβ and
low or standard (with a variation of 1.0-fold) EGF concentrations. However,
in (b), the most aggressive tumor expansion rate (fewest simulation steps,
indicated by the blue portion of the graph) occurs under conditions of high
EGF, regardless of TGFβ concentrations.

that raising both EGF and TGFβ concentrations together increases
the sensitivity of the tumor system to environmental stimuli that
trigger invasiveness (as compared to increasing EGF alone).

3.4 Asynchronous combinatorial change
Based on the above findings on synchronous variation of EGF
and TGFβ concentrations, we sought to gain insight into how
asynchronous changes in the two stimuli affect tumor growth
dynamics across different scales. The concentration variation range
for both components included a total of 13 variations; this generated
a total of 132 simulation runs, each of which has a unique pair of
EGF and TGFβ concentration variations. It is noteworthy that the
set of variation-pairs used in the previously described synchronous
case is a subset of the variation-pairs used in this asynchronous
case. Figure 5 shows the simulation results from changing EGF and
TGFβ concentrations both simultaneously and asynchronously. As
shown in Figure 5a, smaller EGF and greater TGFβ concentrations
lead to larger final cell counts and thus increased tumor volume;
however, when both EGF and TGFβ concentrations remain small,
the cell number remains unaltered. In Figure 5b, increased EGF
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concentration leads to a smaller simulation step number and thus a
faster tumor expansion rate, independent of TGFβ levels. Comparing
both panels, there exists a common stable phenotypic region
(generated by [2–7]-fold variation of EGF and [0.3–3]-fold variation
of TGFβ) within which varying EGF and TGF concentrations only
results in minimal changes in the final cell number (17 570 ± 250
cells; see Supplementary Table 5 for detail) and does not alter
the tumor expansion rate. However, if a variation-pair does not
reside within this stable phenotypic region, it leads to a relatively
substantial change in either tumor volume or tumor expansion rate,
or both.

4 DISCUSSION
The significance of incorporating the underlying biological
mechanisms at multiple scales is being increasingly recognized in
developing computational cancer models that are more realistic
and predictive of in vivo outcomes (Wang and Deisboeck, 2008).
Focus at only the molecular level, which accounts for the vast
majority of current cancer modeling efforts, is likely insufficient for
achieving accurate predictions of cancer initiation and progression
because even extrinsic environmental conditions alone, independent
of genetic mutations, can induce the carcinogenic transformation of
cells (Postovit et al., 2006). Here, we presented a multiscale agent-
based computational model for NSCLC, the dynamical processes of
which span both molecular and multi-cellular levels. Within the 3D
biochemical environment, the effects of changing EGF and TGFβ

expression levels, in an individual or concurrent manner, on tumor
volume and expansion rate have been investigated. It is the first
time, to our knowledge, that an in silico approach has been utilized to
explore the differences in multi-cellular behaviors caused by various
extrinsic stimuli within NSCLC.

Elevated expression of EGF leads to increase in tumor cell
motility and invasiveness, thereby enhancing lung metastasis (Price
et al., 1996; Xue et al., 2006). This clinical observation is consistent
with our findings where increasing EGF concentrations engenders
a more spatially aggressive tumor, with expansion rates greater
than the standard simulation (Fig. 3a). However, experimental data
indicate that excess TGFβ leads to an enhanced invasion and
metastasis (Akhurst and Derynck, 2001) which, at first, appears
to be in conflict with our simulation findings where increasing
TGFβ concentrations ultimately results in a less spatially aggressive
tumor. This disagreement may be in part due to our simplified TGFβ

pathway design and, more so, to our modular approach of adding
the TGFβ module to a preexisting phenotypic decision algorithm
(Wang et al., 2007). While going ‘modular’ is a reasonable if
not desirable first step from a computational perspective, in the
resulting composite design PLCγ (Fig. 1) is responsible for the
cell’s migration decision and is a direct downstream effector of EGF
but not TGFβ. As such, in the current network iteration, regulation
of TGFβ does not have an immediate direct effect on changing
the expression level of PLCγ nor in regulating subsequent cellular
PLCγ-mediated phenotype decisions. This shortcoming can be
addressed by rendering the TGFβ sub-pathway and its downstream
components more directly responsible (via experimentally validated
means) for determining the cell’s migratory fate.

In examining the combinatorial synchronous change of EGF
and TGFβ (Fig. 4), it was observed that EGF was the dominating
stimulus of both tumor volume and expansion rate increases

within our model design. Surprisingly, altering EGF and TGFβ

synchronously yields a more chemotactically sensitive and thus
spatially more aggressive tumor (as compared to altering EGF
separately while keeping TGFβ constant). As such, the TGFβ signal
when varied in context is not migration-limiting as in the case
described above (compare Figs 3a and 4), but rather is in agreement
with the experimental data. Also of note, we discovered a stable
phenotypic region of EGF-TGFβ variation pairs when we altered
concentrations of both stimuli, asynchronously and simultaneously
(Fig. 5). If a variation-pair of EGF and TGFβ concentrations
falls within this region, the tumor system appears to be robust
with regards to its resulting multi-cellular performance patterns of
volumetric increase and expansion rate. However, the tumor system
becomes sensitive to external variations in EGF and/or TGFβ when
they occur outside this region. Furthermore, within our multiscale
simulation platform, we are not only able to monitor multi-cellular
dynamics in response to molecular changes, but can also determine
the fate of molecular components as the tumor system evolves.
For instance, Supplementary Figure 3 tracks the activated form
of PKC (PKC*) and GTPase Ras (RasGTP) (which are the final
downstream effectors of the EGF- and TGFβ-induced sub-pathways,
respectively; see Fig. 1) as well as Raf (the point of convergence
of both sub-pathways). Monitoring these molecular components,
it can be seen that while RasGTP levels change sharply as TGFβ

concentration increases, levels of RasGTP’s direct downstream
target Raf are not affected and thus do not lead to major alterations
in the ERK activation cascade. This behavior is a result of the
cross-talk between the EGF and TGFβ branches of our implemented
pathway: changes in downstream protein levels caused by TGFβ can
be masked by EGF signaling. In fact, it has been demonstrated that
such inherited cross-talk in the underlying signaling pathways may
be the most challenging obstacle in the development of molecular-
targeted cancer therapeutics (Adjei, 2006; McClean et al., 2007).
Our combinatorial analysis results indeed suggest that adding TGFβ

to an EGF signal up-regulates an EGF-dominated, invasive tumor
growth pattern (Fig. 4), despite lacking direct interaction with the
migration switching molecule PLCγ. Current NSCLC therapies still
rely on monoclonal inhibitors that target EGF or TGFβ or their
receptors, where only moderate clinical outcome has been achieved
so far [see Janne et al. (2005) and Yingling et al. (2004) for reviews].
Our simulation results indicate that both EGF and TGFβ pathways
need to be targeted to effectively regulate tumorigenesis.

To quantify cell motility, the expansion rate or the spreading
speed of cell populations have been studied both experimentally
and computationally (Dubin-Thaler et al., 2004; Edelstein-Keshet
and Ermentrout, 2001; Mogilner and Edelstein-Keshet, 2002). The
computationally determined expansion rate varies between these
studies, which is not surprising as multiple cell types under unique
biochemical or biophysical environments should behave differently.
In our model, the expansion rate is 2.07 µm/h for the standard
simulation; the fastest expansion rate is 2.88 µm/h (observed in
simulations with pairs of 50.0-fold variation of EGF and [0.7–50.0]-
fold variation of TGFβ). Our simulation results are in very good
agreement with a recent study on growth regulation mechanisms
in epithelial cell populations that shows a representative cellular
expansion rate of 2.1 µm/h (Galle et al., 2005). Furthermore, our
results are also comparable to in vitro experiments with cancer cell
lines, where e.g., Bru et al. (2003) demonstrate expansion rates of
1.10–11.50 µm/h. Additionally, the diameter of the final tumor mass
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is ∼1 mm in all simulations. At this size, the simulated tumor could
be reliably detected with existing technologies, e.g. helical computed
tomography (CT) (McMahon et al., 2008).

The tumor microenvironment is known to influence both tumor
progression and metastasis (Gatenby et al., 2006). A number of
computational models, with a focus on tumor growth and invasion
behaviors on and beyond the single-cell level, have been developed
to investigate cell–matrix interactions and corresponding gradient-
driven process (Gerlee and Anderson, 2009; Ramis-Conde et al.,
2008, 2009). Moreover, cell–cell adhesion is another important
component in cancer cell invasion (Hood and Cheresh, 2002),
and corresponding biophysical properties have also been widely
studied using a mathematical modeling approach [see Armstrong
et al. (2006) and Gerisch and Chaplain (2008) and references
presented therein]. Taken together, in an ongoing effort to create
a more realistic cell phenotypic decision algorithm, especially in
determining cell migration, the dynamic interactions among cells
and between cells and their biological microenvironment will be
integrated into our intracellular signal driven algorithm presented in
here.

Alone, TGFβ has potent inhibitory effects on cell proliferation
at the pre-tumor stage and stimulatory effects on cell invasion
and metastasis in later tumor stages (Cui et al., 1996). This
important multifunctional role of TGFβ has not yet been fully
captured by our model where tumor volume (final cell number)
fluctuates as TGFβ concentration increases (Fig. 3b). To address
this limitation, the current TGFβ pathway can be supplemented
with an SMAD-dependent one. The main targets of activation by
TGFβ are the SMAD proteins, the complex of which can target
specific genes, contributing to tumor formation in certain forms
of cancer, including lung (Derynck and Zhang, 2003). Hence, the
development of an SMAD-dependent pathway is ongoing in a
continued effort to improve the model design at the molecular
level. Finally, because in reality (cancer) cells rely on many more
interacting signaling pathways to process phenotypic decisions,
the combined effects of other pathway components (in addition
to EGF and TGFβ) on tumor volume and expansion rate will be
investigated. By doing so, we can further examine and validate
the relationship between extrinsic stimuli variations, intracellular
signaling dynamics and multi-cellular tumor readout. These model
amendments will facilitate the identification of potential molecular-
level biomarkers and/or critical pathway components that can be
targeted to affect tumor progression at the multi-cellular level.

5 CONCLUSIONS
The effects of individual and combinatorial change of EGF and
TGFβ at the molecular level on multi-cellular tumor behaviors,
including tumor volume and expansion rate, have been investigated
in a 3D in silico NSCLC model. We identify EGF as the dominant
stimulus over TGFβ in regulating the two evaluation indices within
our model and found that TGFβ’s phenotypic signal output is
context-dependent. We discovered a particular region of tumor
system stability, generated by unique pairs of EGF and TGFβ

concentration variations. When the variation-pair of EGF and TGFβ

concentrations occurs on the edge of this region, we observed that
changes caused by the two growth factors do not effectively transmit
to the downstream activation cascade, potentially explaining the

resulting robustness of the tumor system at the multi-cellular
level. Together, our combinatorial analysis results demonstrate that
changes in TGFβ can modulate the EGF downstream cascade,
thereby affecting the motility of tumor cells through signaling
cross-talk. With regard to pharmaceutical and clinical strategies,
our findings, cautiously extrapolated, suggest that, future NSCLC
therapies may need to target both of these pathways in order to
achieve effective tumorigenic-signal disruption.
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