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Summary
Knowledge of the processes by which epilepsy is generated (epileptogenesis) is incomplete and has
been a topic of major research efforts. Animal models can inform us about these processes. We focus
on the distinguishing features of epileptogenesis in the developing brain and model prolonged febrile
seizures (FS) that are associated with human temporal lobe epilepsy. In the animal model of FS,
epileptogenesis occurs in ~35% of rats. Unlike the majority of acquired epileptogeneses in adults,
this process early in life (in the febrile seizures model as well as in several others) does not require
“damage” (cell death). Rather, epileptogenesis early in life involves molecular mechanisms including
seizure-evoked, long-lasting alterations of the expression of receptors and ion channels. Whereas
transient changes in gene expression programs are common after early-life seizures, enduring effects,
such as found after experimental FS, are associated with epileptogenesis. The ability of FS to generate
long-lasting molecular changes and epilepsy suggests that mechanisms, including cytokine activation
that are intrinsic to FS generation, may play a role also in the epileptogenic consequences of these
seizures
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Knowledge of the processes by which epilepsy is generated (epileptogenesis) is incomplete,
and has been a topic of major research efforts, as well as of this WONOEP meeting. In the case
of acquired epilepsies, epileptogenesis has classically been divided into three phases: the
inciting event (analogous to a mutation of an important gene or perhaps a cerebral malformation
in the case of genetic epilepsies), the silent period when epileptogenesis takes place, and,
finally, the onset of spontaneous recurrent seizures. In models of acquired epilepsy in the
mature brain, the inciting event is typically seizures/status epilepticus (SE), trauma, or stroke.
It provokes cell death (“damage”), with associated formation of new synapses of surviving
neurons, and a functional reorganization of the previously normal circuit into an “epileptic”
one (e.g., Sloviter, 1994; Pitkanen and Sutula, 2002). These events, i.e., loss of vulnerable
neurons and the maladaptive rewiring of neuronal connections, precede the onset of epilepsy,
and have generally been considered to contribute to the epileptogenic process. Indeed, one or
more of these events are often considered a requirement to the development of epilepsy (Coulter
and De Lorenzo, 1999; Mathern et al., 2002; Pitkanen and Sutula, 2002; Nadler, 2003)
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It has often been assumed that epileptogenesis in the immature brain, including the two first
postnatal weeks in the rodent (roughly equivalent to the neonatal and infancy periods of brain
development in the human, Avishai-Eliner et al., 2002), employs similar mechanisms.
Therefore, a major effort has been devoted to studying whether inciting seizures or SE evokes
cell death in neonatal/infant brain. Studies have focused specifically on seizure-vulnerable
regions including amygdala (Baram and Ribak, 1995; Toth et al., 1998), the hippocampal
formation (e.g., Sperber et al., 1991; Holmes et al., 1998; Sankar et al., 1998; Toth et al.,
1998; Koh et al., 1999; Dube et al., 2001; Haas et al., 2001; Lee et al., 2001; Bender et al.,
2003; Raol et al., 2003) limbic cortices (Fernandes et al., 1999), and thalamus (Bertram and
Scott, 2000, Kubova et al., 2001). However, the majority of studies over the past decade have
failed to reveal substantial seizure-provoked neuronal loss in these regions, suggesting that a
direct application of the principles of epileptogenesis derived from the mature limbic system
to the developmental limbic circuit may not provide us with satisfactory answers about
epileptogenesis in the developing brain (Baram et al., 2002; Baram, 2003).

CELL DEATH AND EPILEPTOGENESIS IN THE IMMATURE BRAIN
As mentioned above, during the first 2–3 postnatal weeks in rodent models, SE and severe
seizures have generally been found to cause little cell death. This has been shown for limbic
seizures generated by kainic acid (Nitecka et al., 1984), flurothyl (Holmes et al., 1998), hypoxia
(Jensen et al., 1992; Sanchez et al., 2001), hyperthermia (Toth et al., 1998; Bender et al.,
2003; Dube et al., 2006), or tetanus toxin (Lee et al., 2001). Although modest cell deathwas
found in the pilocarpine (Sankar et al., 1998; Kubova et al., 2001) and corticotropin-releasing
hormone (CRH) models (Baram and Ribak, 1995; Brunson et al., 2001), the general absence
of neuronal death in early-life seizure models indicates that it is not required for seizure-induced
functional hippocampal deficits (Sperber et al., 1991; Holmes et al., 1998; Haas et al., 2001;
Lee et al., 2001; Bender et al., 2003; Chang et al., 2003; Raol et al., 2003; Dube et al., 2006).
It should be noted that initially, this lack of neuronal death was considered indicative of a
relative absence of sequelae of experimental seizures on the function of the immature limbic
network, particularly because the typical synaptic reorganization (“sprouting”) associated with
cell death in the adult was sparse early in life (Sperber et al., 1991; Holmes et al., 1999; Bender
et al., 2003; Raol et al., 2003). However, more recently, hippocampal dysfunction after early-
life seizures has been recognized in some experimental models, manifest by limbic cognitive
deficits (Lee et al., 2001; Faverjon et al., 2002; Chang et al., 2003). This dissociation between
seizure-evoked “damage” and seizure-induced functional defects has contributed to the
increasingly recognized concept that cell death may not be required for functional injury to the
developing hippocampal/limbic network (Baram et al., 2002; Holmes, 2005). The same
principle has been found to be true also for epileptogenesis during the first few postnatal weeks
(Lee et al., 2001; Raol et al., 2003; Dube et al., 2006).

It should be emphasized that developmental processes, including maturation of neuronal
connectivity and the cellular machinery for interneuronal communication undergoes rapid
changes during the first few postnatal weeks in the rodent (e.g., Baram and Jensen, 2000;
Avishai-Eliner et al., 2002; Ben-Ari, 2002; Jensen and Sanchez, 2002; Swann, 2004).
Therefore, when discussing the concept of the “immature” brain, precision about the specific
age involved is warranted. This applies to comparing among animal studies carried out at
different postnatal ages, and even more so when comparing rodent models to the human
neonate, infant, and child.

Several studies have attempted to correlate the timing of human and rodent brain development
(e.g., Dobbing and Sands, 1979; Clancy et al. 2001; see references in Avishai-Eliner et al.,
2002). They generally have concluded that even comparative analyses of specific regions such
as the hippocampal formation cannot provide precise correlation of human and rodent “ages.”
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However, careful comparisons suggest that the majority of structural and functional milestones
occurring during the first week of life in rat hippocampus take place during the third-trimester
gestational period of the human. Using the same approach, the first year of human life might
correspond roughly to postnatal days 7–14 in the rat, whereas “early preschool years” might
correlate with the rat’s third week of postnatal life (Avishai-Eliner et al., 2002). With this in
mind, the following discussion of epileptogenesis during the neonatal-infancy period is focused
primarily on the first two postnatal weeks in rodent models.

IF CELL DEATH (“DAMAGE”) IS NOT REQUIRED FOR EPILEPTOGENESIS
EARLY IN LIFE, THEN WHAT ARE THE CRITICAL MECHANISMS INVOLVED
IN THIS PROCESS?

Clearly, understanding the mechanisms by which early-life epilepsy develops would be very
helpful because it would permit design of selective preventative or interventional strategies.
Whereas available possibilities such as global interruption of excitatory mechanisms can block
seizure-evoked excitotoxic processes, this approach may not be suitable to the developing brain
because it interferes with normal neuronal function. Defining specific mechanisms for
epileptogenesis or functional injury early in life will permit the design of selective blockers,
ideally without disruption of central nervous system (CNS) maturation and function. Also
evident is the fact that this enormously important problem will not be solved in human studies
because preexisting factors in individual infants cannot be controlled, and direct, controlled
mechanistic analyses cannot be undertaken in infants and children. In this regard, immature
rodent models offer important advantages so that careful design and analysis of immature
animal experiments can produce important information about the nature and mechanisms of
“acquired” epileptogenesis.

As mentioned above, neuronal death is unlikely to be required for the epileptogenic process
early in life. The same is true for synaptic reorganization (Bender et al., 2003; Raol et al.,
2003) as well as enhanced neurogenesis, a phenomenon implicated in the consequences of both
adult limbic seizures and potentially epileptogenesis (Parent et al., 1997; McCabe et al.,
2001; Bender et al., 2003). Indeed, available evidence suggests that structural alterations, such
as death, birth, or altered branching of neurons, do not provide a foundation for epileptogenesis
in the developing brain.

It might be noted that epileptogenesis that is independent from neuronal death has been found
in several typically genetic epilepsy models in the mature brain (e.g., GAERS, WAG/Rij;
Budde et al., 2005). Little cell death is also found after kindling (Cavazos et al., 1994). The
concept supported by converging studies on epileptogenesis in the developing brain supports
enduring functional changes, manifest (at least partly) by altered programs of gene expression,
as the foundation of the epileptogenic process.

EPILEPTOGENESIS WITHOUT CELL DEATH, BUT WITH PERSISTENT
CHANGES IN GENE EXPRESSION

Recent work has demonstrated epileptogenesis in several infant rodent models. The first, a
model of human childhood prolonged febrile seizures (FS), has been studied extensively (Toth
et al., 1998; Chen et al., 1999; Dube et al., 2000; Chen et al., 2001; Brewster et al. 2002; Bender
et al., 2003; Brewster et al., 2005; Dube et al., 2005a, 2005b, 2006). In this model, the inciting
seizures do evoke epileptogenesis (Dube et al., 2006). Remarkably, excitotoxicity (cell death)
does not accompany the epileptogenic process, indicating that cell death is not required for
epilepsy generation (Toth et al., 1998; Bender et al., 2003; Dube et al., 2006). In other words,
the developmental FS model dissociates proepileptogenic processes from excitotoxicity.
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Occurrence of spontaneous seizures (epilepsy) has also been found after developmental SE
induced by lithiumpilocarpine (Raol et al., 2003) and tetanus toxin (Anderson et al., 1999; Lee
et al., 2001). In these models (including the FS model), changes occurring at the molecular/
functional level, such as alterations in neurotransmitter receptors (Sanchez et al., 2001; Zhang
et al., 2004) or voltage-gated channels (Chen et al., 2001; Brewster et al., 2002, 2005), rather
than cell death, may be the critical mediators of epileptogenesis. Thus, a hallmark of the FS
and the pilocarpine-model is the persistence (for weeks and months) of seizure-evoked
perturbation in gene expression programs (Brewster et al., 2002; Zhang et al., 2004), and it
may be that the model-specific impact on these programs is the distinguishing feature between
developmental seizures that provoke epileptogenesis from seizures that do not. For instance,
both experimental FS and other seizures (e.g., kainic acid-evoked) alter the expression of the
hyperpolarization-activated, cyclic nucleotide-gated (HCN) ion channels in hippocampus
(Brewster et al., 2002) via a calcium-mediated mechanism (Richichi et al., 2005). However,
whereas changes in hippocampal HCN channel expression are transient after kainate-induced
seizures, they endure after experimental FS and render the hippocampal network in the affected
animals permanently hyperexcitable (Dube et al., 2000; Chen et al., 2001; Brewster et al.,
2002, 2005).

WHAT IS SO SPECIFIC ABOUT THE FS MODEL?
An understanding of mechanisms that may interact to render the developing brain
hyperexcitable, and subsequently epileptic, is only beginning to emerge. Findings in the FS
model have recently shed light on a potential role of cytokines, and particularly of
interleukin-1β (IL-1β; Dube et al., 2005b) in the epileptogenic process. Both fever and
hyperthermia induce the synthesis and release of IL-1β in the brain (Haveman et al., 1996;
Gatti et al., 2002; Heida and Pittman, 2005). Indeed, IL-1β is required for the generation of
hyperthermic seizures in the FS model (Dube et al., 2005b) because the temperature threshold
for hyperthermia-induced seizure induction was significantly increased in mice that lack the
IL-1βR1-gene. Interestingly, IL-1β does not seem to be released or involved in other
experimental seizure types during development (Rizzi et al., 2003). Thus, the seizure-evoked
actions of IL-1β on hippocampal neurons are a distinguishing feature of the FS model compared
to other early-life seizure models.

Several lines of evidence suggest that IL-1β release could promote hyperexcitability (Vezzani
et al., 1999, 2000; reviewed in Vezzani and Baram, 2006), particularly in hippocampus, where
IL-1β receptors (IL-1βR1) are expressed in high density (Takao et al., 1990; Ban et al., 1991;
Nishiyori et al., 1997). IL-1β binding to its receptor triggers a cascade of intracellular
messengers (Viviani et al., 2003), exerting genomic effects via MAP kinase and NF-κB
signaling. Therefore, it is attractive to hypothesize that the genomic actions of this cytokine
contribute to the enduring alterations in gene expression that underlie the epileptogenic process
following these seizures. This notion is schematized in Fig. 1: the effects of the seizures
themselves on gene expression (i.e., activity-dependent plasticity) are compounded by the
genomic actions of interleukins. Combined, these processes result in enduring changes of the
expression of critical molecules, including receptors and ion channels that promote
epileptogenesis.

In conclusion, information from numerous and diverse developmental models of epilepsy
indicate that epileptogenesis early in life has unique features. These data make a compelling
case for the notion that cell death is not required for epileptogenesis. In contrast, the enhanced
plasticity of gene expression programs early in life (Welberg et al., 2001; Baram, 2003;
Fenoglio et al., 2006) may allow seizures to alter expression of critical genes (receptors,
channels) in an enduring manner, facilitating conversion of a “normal” developing limbic
circuit to an “epileptic” one.
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FIG. 1.
A schematic representation of a hypothetical scenario for epileptogenesis following prolonged
experimental febrile seizures. The initial, inciting “insult” in this case consists of two elements:
First, the experimental seizures, that, similar to other early life seizures, provoke transient
changes in the expression of several ion channel and receptor genes (top fuchsia arrow).
Second, the release of endogenous interleukins, a phenomenon that appears not to occur in
chemical-induced seizures provoked prior to postnatal day 14–15 in the rodent. Interleukins,
in turn, act via several molecular cascades to influence gene expression (bottom fuchsia arrow).
Because interleukin expression and genomic actions appear to be sustained, the alteration in
gene expression described above endure, and promote epileptogenesis. Bottom yellow arrow,
with a “strikeout” bar, denotes relative absence of neuronal death associated with these
processes.
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